
  

  

Abstract— We investigate methodologies for the automated 
registration of pairs of 2-D X-ray mammographic images, taken 
from the two standard mammographic angles. We present two 
exploratory techniques, based on Convolutional Neural 
Networks, to examine their potential for co-registration of 
findings on the two standard mammographic views.  To test 
algorithm performance, our analysis uses a synthetic, surrogate 
data set for performing controlled experiments, as well as real 
2-D X-ray mammogram imagery. The preliminary results are 
promising, and provide insights into how the proposed 
techniques may support multi-view X-ray mammography image 
registration currently and as technology evolves in the future.  
 

I. INTRODUCTION 

We consider the area of standard two-view X-ray 
mammography and explore the use of two Convolutional 
Neural Network (CNN) based approaches for performing 
automated registration of features from the Craniocaudal (CC) 
and Mediolateral Oblique (MLO) standard mammographic 
views. 

Breast cancer is one of the leading causes of death for 
women worldwide with a half million lives lost annually, 
including 40,000 in the United States alone. [1]. Early 
detection has been shown to be critical for less invasive 
treatment of breast cancer and for saving lives [2]. Hence, tools 
and techniques that can aid clinicians in early detection of 
breast cancer will be invaluable. 

X-ray based two-view mammography is the main imaging 
modality used for breast cancer screening in asymptomatic 
women and is also used for more specialized diagnostic exams, 
which are performed when suspicious findings or symptoms 
are present [3]. Conventional mammography involves two-
dimensional Full-Field Digital Mammography (FFDM) or, in 
recent years, Digital Breast Tomosynthesis (DBT). DBT is a 
new type of digital mammography which was FDA approved 
in the United States in 2011. This technique involves obtaining 
numerous mammographic images across an arc. 
Reconstruction generates multiple contiguous 1 mm thick 
slices through the breast, as well as synthesized 2-D images of 
the entire breast [4]. DBT images, like FFDM images, are 
obtained in standard CC and MLO views. Other modalities 
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such as Ultrasound (US), Magnetic Resonance Imaging 
(MRI), Positron Emission Mammography (PEM) and 
Molecular Breast Imaging (MBI) can also be used to image the 
breast, but X-ray based mammography is the only imaging 
modality that has been proven to improve outcomes and 
decrease mortality rates when used as a screening tool. 

Mammographic imaging typically involves imaging the 
breast from at least two different angles. The most frequently 
used views are the CC and MLO views. The name of each 
view describes the direction of the X-ray beam from the source 
through the breast to the X-ray detector. Thus, the CC view is 
obtained at an angle of 0 degrees from the top to the bottom of 
the compressed breast and the MLO view is obtained at an 
angle in the range of 45 to 50 degrees from medial near the 
center of the chest, toward the axilla [5]. Each view involves 
physically positioning and compressing the breast between 
two compression plates immediately adjacent to an X-ray 
source and detector. The purpose of the two views is to include 
as much breast tissue as possible, and also to locate lesions by 
triangulating from these projections.  Breast lesions may be 
visible in both views or only on one view depending on the 
lesion location in the breast and also depending on the density 
of the breast tissue. When breast tissue is very dense, meaning 
it is made up of mostly fibrous and glandular components, it 
can obscure lesions, as the background breast tissue will have 
similar x-ray attenuation compared to the lesion, in essence 
hiding the finding. This is in contrast to mainly fatty breast 
tissue where lesions have much greater density compared to 
the fatty tissue, based on the attenuation of the X-ray beam as 
it travels through breast tissue, making the lesions readily 
visible.  

We hypothesize that image registration will be critical in 
improving clinicians’ accuracy and machine learning 
algorithms by assisting with lesion location on CC and MLO 
mammographic views. Currently radiologists analyze images 
by extrapolating between the two views in search of 
abnormalities. Seeing a lesion on both views is an important 
feature which signals to the radiologist that the lesion is more 
likely to be real rather than a false alarm.  Additionally, in 
order to better characterize breast lesions, visualizing the 
finding in two views is beneficial. Finally, identifying a lesion 
in both views localizes the finding in the breast, which is 

She is formerly the Director of Johns Hopkins Breast Imaging at Johns 
Hopkins Medicine, in Baltimore, MD. USA and was in this role during this 
work. (e-mail: sharvey7@jhmi.edu). 

L.A. Mullen is an Assistant Professor of Radiology in the Breast Imaging 
Division at Johns Hopkins Medicine, Baltimore, MD. USA. (e-mail: 
lmullen1@jhmi.edu). 

D. W. Porter is a member of the professional staff at the Johns Hopkins 
University Applied Physics Laboratory (JHU/APL), Laurel MD. USA. (e-
mail: david.w.porter@jhuapl.edu). 

This work was supported in part by NSF grant 1631838. 

Towards CNN-Based Registration of Craniocaudal and 
Mediolateral Oblique 2-D X-ray Mammographic Images 
William C. Walton, Seung-Jun Kim, Susan C. Harvey, Lisa A. Mullen, David W. Porter 



  

critical. Thus, precise registration assists clinicians in locating 
findings, confirming accurate lesion detection, and therefore 
planning further breast imaging evaluation.  Registration is 
essential to guide biopsies and surgical procedures as accurate 
information regarding lesion position is required. Machine 
learning algorithms and Computer Aided Diagnosis (CAD) 
processes that involve joint processing (or fusion) of breast 
images, such as is reported in [6], would also be improved by 
accurate registration of breast lesions.  

However, the automated registration of mammographic 
images has proven to be a challenging task due to the non-rigid 
heterogeneous nature of breast tissue and due to tissue 
distortion that can occur as part of breast imaging, including 
mammographic compression [7]. Moreover, the resulting 
pixel-wise mappings may not be bijective, but rather involve 
one-to-many pixel mappings for each pixel [8]. While 
advancements in deep learning have generally resulted in 
numerous improvements in medical image processing, recent 
surveys indicate that a best approach has not yet been 
identified for medical image registration and that challenges 
remain in achieving the desired levels of accuracy [9] [10]. 
Moreover, not many automated registration methods of X-ray 
mammographic images have been reported to the best of our 
knowledge. 

In this work, we explore two CNN-based techniques which 
may be useful for registering the CC and MLO X-ray 
mammographic images. One methodology evaluates pixel 
level registration using a CNN-based nonrigid deformation 
field registration approach. The second involves object level 
feature correspondence based on the fusion of dual Region-
based CNNs [11].  

This paper is organized as follows. Section II provides a 
brief review of existing automated medical and breast image 
registration techniques along with recent image registration 
efforts involving CNNs. Section III discusses our approaches 
and methodologies. In Section IV, we discuss experimental 
results, and Section V presents conclusions and future work. 

II. REVIEW OF EXISTING REGISTRATION TECHNIQUES 

A.  Surveys and Registration Basics for Medical Imagery 
 There are several surveys on medical image registration 

[12] [13] [14], but little  has been presented related to breast 
image registration, especially for X-ray imaging. One 
prominent survey by Guo et al. is devoted exclusively to breast 
image registration [7]. Though it predates recent developments 
of deep learning, it provides significant insight into key 
techniques and challenges associated with breast image 
registration. Further, it briefly discusses X-ray breast image 
registration, which is the focus of our study.  

Guo et al. defines the problem of registration as one of 
finding an optimal transformation or mapping for aligning one 
image to another (or relating the points in one image to 
corresponding points in another). Similar to other registration 
surveys [12] [15], they describe the key components of 
registration as a transformation, an optimization technique, a 
similarity measure, and a feature space. In general, the 
transformation can be rigid, non-rigid, or hybrid. Various 
optimization techniques exist such as gradient descent-based 
techniques. Common similarity measures include the Sum 

Squared Error (SSE), Mean Absolute Error (MAE), 
Normalized Cross Correlation (NCC), Mutual Information 
(MI), and Joint Entropy [16], where the latter two are 
particularly suggested for intermodal registration. Depending 
on the feature space, the techniques can be categorized into 
intensity versus feature-based techniques, with features 
comprising either control points or various structures of the 
breast. The survey also notes the use of biomechanical models 
that may involve displacement fields or Finite Element Models 
(FEM) for registering breasts.  

B.  Non-CNN Based Breast Registration Techniques 
Prior to the wide-spread use of CNNs, some examples of 

automated breast image registration techniques involved 
registering 2-D X-ray mammogram images to MRI [17] [18]. 
Others involved utilizing 3-D information from MRI or FEMs 
to aid in the registration of different 2-D X-ray mammography 
images [8] [19]. Several efforts proposed techniques for 
identifying location correspondence between CC and MLO 
views [20] [21] [22].  

C. CNN and Deep Learning Based Registration Techniques 
While a variety of research on CNN based medical image 

registration has been reported [23] [24] [25] [26] [27] [28] 
[29], our review of the literature revealed a limited amount of 
information regarding  mammography registration. One study 
proposed a dual CNN architecture-based technique, similar to 
one of our approaches, in which two CNNs are used in parallel, 
one for processing each image view, whose outputs are fused 
[30]. A key distinction from the technique in [30] is that ours 
involves a different type of parallel CNN architecture and also 
utilizes a third CNN, versus a fully connected network, for 
combining the results from the individual view CNN paths. 

 One of the common techniques used by many CNN-based 
medical registration algorithms, involves non-rigid, 
deformation field-based approaches [23] [25] [27]. This is the 
basis for the first of our two proposed methods. Some of these 
approaches are parametric, involving the use of B-splines, or 
other spline techniques, while others involve the non-
parametric generation of deformation fields. In general, these 
involve optimizing a cost function that includes an image 
similarity metric 𝑆 for two images 𝐼#(𝒙) and 𝐼'(𝒙), where one 
of the images is warped through a deformation field 𝐷(𝒙), and 
a regularizer 𝑅	with a nonnegative weight 𝜆 as in  

										min𝑫	𝑆	{𝐼#(𝒙), 𝐼'2𝐷(𝒙)3} + 𝜆𝑅(𝐷)                     (1) 

The regularizer component helps to ensure that the resulting 
deformation field is practical [31] [32]. The regularizer is 
normally based on the 𝐿' or 𝐿# norm of the gradients of the 
deformation field, where 𝐿# based techniques, known as Total 
Variation Regularization (TVR) are more suitable for handling 
large, non-smooth displacements [33]. 

A key advantage of deformation field-based registration 
approaches is that they can more practically address the non-
rigid, non-linear distortions that are common to medical 
imagery. We leverage a technique similar to that reported in 
[27] for one of our approaches as discussed in the next section. 

III. METHODOLOGIES 

For our research, we explore developments in two areas of 
CNNs: one involving CNN non-rigid registration algorithms 



  

based on non-parametric deformation field generation for 
pixel level registration and another technique, involving the 
joint processing of region-based CNNs for facilitating the 
feature correspondence between objects in the CC and MLO 
views.  

A.  Pixel-Level Registration 
Our approach for pixel-based registration is based on an 

adaptation of a Fully Convolutional Network (FCN) [34] [27]. 
Our version of the network, shown in Figure 1, involves a skip 
architecture [34]. Note that in our diagram, convolution layers 
also involve rectified linear units (ReLus) and batch 
normalization (except for the final convolution layers along 
each path, for which the feature maps serve as optimized 
deformation field components).  

The network input involves two channels: the image to be 
registered and the target image. While this may appear to be 
unusual, it becomes clearer when we consider that the 
objective of the network is to learn a mapping, or a 
deformation field between the two images, as opposed to 
learning the target image. The network functions as a self-
supervised regression network which uses final convolution 
layers in each path for generating deformation field 
components at different resolutions. There is no fully 
connected layer. The resulting deformations from each skip 
level are up-sampled to the same resolution as the input image, 
averaged, and used to warp desired regions of one of the input 
channels to corresponding regions of the other input. In the 
top, serial, path of the network, three convolution layers result 
in down sampled feature maps, followed by deconvolution 
layers which up-sample layer information back to the same 
resolution as the input image. The final convolution layer 
involves two channels which serve as row and column 
deformation components.  

Optimization is performed using a cost function of the style 
in (1), using pixel-wise MAE as our similarity measure. We 
experimented with different forms of regularization.  In 
essence, the network is self-supervised in that optimization is 
based solely on the similarity measure between the 
deformation-modified output image and the target image. As 
reported in [27], this type of network both learns and optimizes 
non-parametric deformation fields and can be applied to new 
data without retraining. 

B.  Object-Level Registration 
Our approach for object level registration involves a 

custom architecture that involves fusing the results of two 
CNNs in order to find candidate matching pairs of lesions on 

the CC and MLO views. The architecture is shown in Figure 
2. For each mammographic view, we use a CNN architecture 
known as Regions with CNN features (R-CNN) [11] which 
finds candidate lesions in the respective image. Whereas 
conventional CNNs process the entire image, R-CNNs first 
identify smaller candidate regions within the image and 
process only those regions. Hence, less memory is required 
which allows larger images to be processed—a characteristic 
that can be important for medical image processing where 
maintaining original pixel resolution can be important for 
preserving subtle differences in texture. For our R-CNN, we 
experimented with a custom region proposal function for 
finding candidate lesion areas.  Further, we used a pre-trained 
network, which requires less training data, for the CNN 
component and fine-tuned it for the mammography problem.  

As shown in Figure 2, the output candidate regions from 
each R-CNN are paired and various combinations are formed. 
The score values provided by each R-CNN are used to filter 
out certain combinations of pairs. The remaining pairs are 
merged into a two-image-layer product. Yet we also create a 
third band, involving the absolute difference between relative 
distances-from-nipple for each detection as is shown in 
Figure 2. Hence, a three-image-layer input is provided to our 
final CNN, which classifies the pair candidates as matching or 
non-matching. 

Somewhat related to this approach are multi-view CNN 
processing techniques, which have demonstrated that using a 
CNN to recover 3-D shapes from multiple 2-D images 
provided better performance than with 3-D representations 
[35]. Our approach was also motivated by an observation that 
lesions in the CC and MLO views showed a somewhat linear 
correlation in the relative lesion-to-nipple distance for the 
same lesions in both views as shown in Figure 3 for the lesions 
in CC and MLO images of the Curated Breast Imaging Subset 
of the Digital Database for Screening Mammography (CBIS-
DDMS) [36] [37] [38]. 

  

IV. EXPERIMENTAL RESULTS 

A.  Datasets 
We used two data sets for our experiments. The first is a 

synthetic, surrogate data set, involving 3-D versions of Mixed 
National Institute of Standards and Technology (MNIST) 
letters [39] which we generated using the package, iso2Mesh 
[40]. We use this set for validating the premise and 

 
 
Figure 1: Pixel Level Registration CNN Architecture. 

 
 

 
 
Figure 2: Object level Registration CNN Architecture. 



  

functionality of our algorithms. The second involves 2-D 
Scanned Film mammography images from the CBIS-DDSM 
data set. The CBIS-DDSM data set includes matched pairs of 
CC and MLO mammogram views, along with binary mask 
images that denote the location of lesions in the breast tissue. 
CBIS-DDSM is a publicly available mammography database 
[36]. Therefore, our experiments did not involve human 
subjects. 

B.  Pixel Level Registration 
We first discuss experiments with our surrogate 3-D 

MNIST data set. These experiments involved using a 
simplified imaging model for simulating the projection from 
3-D to 2-D views so as to evaluate the basic feasibility of the 
breast image registration problem. 

The experiment involved the CNN illustrated in Figure 1, yet 
for the inputs we used two 2-D projections of 3-D MNIST 
letters taken from a 3-D object space in which we placed the 
3-D letters. Figure 4 shows an example 3-D MNIST letter 
generated and the projection of three such letters into 2-D 
views. Each letter is randomly oriented, and also randomly 

positioned along the Y and Z axes of a cylindrical tube. The 
only non-random placement is along the X-axis, where we 
constrain a single letter in one of three bins along the X-axis. 
Some random overlap of letters among the bins is allowed. We 
generated the 2-D projections by saving a view of the cylinder 
at a given position, then rotated the entire cylinder space 
approximately 45 degrees, with some random variability and 
saving a second view. The resulting two projections serve as 
our two-channel input to the network shown in Figure 1. The 
images are 1024 x 1024 pixels, though we also tested lower 
resolutions such as 128 x 128 pixels. We generated 
approximately 9,000 instances of these random projection 
pairs (18,000 images total), and trained on 90% of them, using 
the remainder for testing. While this model is very simplistic 
in that it is rigid and does not simulate gray level texture of the 
breast nor the distortion effects of compression, it does provide 
a basis for testing the basic concept.  

The results on an example test image in Figure 5 show the 
degree to which the network is able to warp the moving image 
such that it matches the target image. The network performed 
in this fashion in general on test data. The deformation field in 
Figure 5 shows the left-most side of the images (boxed in blue 
in the "Image to Register" panel), revealing pixel movement 
for the letters A and B. 

Quantitative performance was assessed for several training 
and testing configurations. For all configurations, the mean 
intersection over union (IOU) [41] for binary versions of the 
registered vs. target images was consistently around 0.99 (on 
a scale of 0 to 1). For the gray scale versions of the images, 
normalized to intensity ranges between 0 and 1, the average 
Mean Squared Error (MSE) was approximately 0.0014 and 
average Peak Signal-to-Noise (PSNR) Ratio was 28. Hence, 
the warped images were nearly identical to the target images.  

 
Figure 3: Plot of Lesion Distance to Nipple for MLO vs. CC images in 
CBIS-DDSM data set. 

 
 
Figure 4: 3-D to 2-D Projection of 3-D MNIST letters. 

 

 
Figure 5: Pixel level Registration of two different MNIST letter 
projections and corresponding deformation field for a region.  



  

Our experiments with mammography images involved 
significantly less data (around 1000 image pairs with 90% 
used for training). Our network showed some ability to warp 
the images as is shown in Figure 6. However, it became 
evident that further modelling is needed in order to 
appropriately register the similar tissue areas.  In essence, 
while the general form of our MLO image is warped to that of 
the CC target image, the texture and structure of the breast is 
not properly registered. We believe that there are several 
reasons for this (in addition to limited training data) such as 
the one-to-many pixel mappings and occlusions of tissue. Yet 
we believe that with sufficient training data and further 
refinements, such as an improved cost function, the network 
will be able to learn and match certain common breast tissue 
features, such as the brighter regions in the breasts in Figure 6. 
Further, it may be more feasible to test this type of network on 
3-D DBT CC and MLO data, where there is a greater 
possibility of finding matching tissue and anatomical regions 
due to the full breast coverage of this data. Hence, given these 
observations, we hope to continue exploring the use of this 
type of network.  

We considered ways of quantitatively assessing 
performance for the pixel based mammographic registration 
but it became evident that given the variability of breast tissue 
features, additional clinical insight is needed in order for such 
metrics to be meaningful. Hence, we plan to investigate this 
further from both a machine learning and clinical perspective.  

C.  Object Level Correspondence 
In this set of experiments, we sought to determine if a dual 

CNN and fusion based architecture, as shown in Figure 2, 
could achieve object level correspondence by correctly 
detecting and matching objects present in two image views. 
The same data sets from the pixel registration experiments 
were used here. 

The R-CNN training for each of the dual paths involved 
fine-tuning an existing network that had already been trained 
on the CIFAR10 data set [42]. We used a minibatch size of 64 
both for the MNIST data and X-ray data. The third CNN, in 
the final, fused, stage involved two convolutional layers 
(including ReLu and Max-Pooling) and a fully connected 
layer. A minibatch size of 64 was also used for training this 
CNN. For each data set, a third of the data was used for training 
the first-stage R-CNNs, another third for training the final-
stage CNN, and the final third used to test the final-stage CNN. 
As noted in section III, combinations of image pairs are 
formed using the R-CNN output regions and this results in 
significantly more datapoints for the final CNN stage of the 
network. 

The left panel in Figure 7 shows the results for three 
example MNIST pairs. As indicated, output pairs 1 and 2 were 
correctly predicted as matching. Output 3 (for letters B and A) 
were also correctly predicted as not matching. As noted earlier, 
an extra feature that is provided for the final stage CNN is a 
relative distance measure for each candidate object detected 
from the first stage R-CNNs. The right panel of Figure 7 
illustrates the computation of this distance for the MNIST 
letters. In the left panel, this value is shown for each of the 
three example output pairs. The comparatively small values 
for outputs 1 and 2 reflect the fact that these two objects, in 
their respective original image projections were at 
approximately the same position along the X-axis, referring to 
our model in Figure 4. Recall that the 3-D cylinder space has 
been rotated about the X-axis. Therefore, while the objects 
from each projection will both appear different and while their 
positions along the plane of rotation may vary, their positions 
along the X-axis will remain the same. This roughly simulates 
the notion of the relative distance of a breast lesion from the 
nipple as it appears between the CC and MLO mammographic 
views.  

Quantitatively, the final stage of the network was tested on 
33,909 image pairs resulting from pair-wise combinations of 
regions detected by each R-CNN from the first stage. Of these, 
10,683 were actual matching pairs (e.g., A and A) and the 
network accurately predicted 98.56% of these as matching 
(10,529). For the remaining 23,226 non-matching candidates, 
the network accurately predicted 96.77% as non-matching.  

For our experiments with this network using 
mammographic data, the results showed significant potential 
visually, but varied. Figure 8 shows one of the best performing 
output cases in which a single lesion (based on the true data, 
indicated by the blue boxes) was both detected and matched 
between the CC and MLO views. First stage R-CNN scores 
for the lesions were 0.85 (CC) and 0.74 (MLO). However, 
Figure 9 shows a more commonly observed output case in 
which the correct lesion was matched, but with significant 
false alarms. Yet, it is noted that for this particular case, the R-
CNN scores for the correctly matched lesions were 0.97 (CC) 

 
Figure 6: Pixel level registration results for CC and MLO X-ray 
images. 

 
 
Figure 7: Object level registration (matching) of 3-D MNIST letters. 



  

and .98 (MLO), whereas the scores for most of the false alarms 
were less than 0.7. Hence, false alarms could be filtered out 
using score thresholds or other information.  

As similarly discussed for our pixel-based registration 
technique, we plan to further investigate, with additional 
clinical insight, appropriate quantitative metrics for the object 
level correspondence of the mammography data. 

While the object level correspondence results are 
preliminary, we believe that with additional training and 
refinement, this network architecture can be improved to 
provide reasonable performance. Here again, potential 
improvements may also be realized by using 3-D DBT data, 
which would allow for more localized tissue information to be 
provided to the network. 

V. CONCLUSION 
We have explored techniques for performing automated 

registration for mammographic images taken from multiple 
views. We performed preliminary experiments with two CNN 
architectures, involving custom modifications, for this 
problem. One architecture involved a non-rigid deformation 
field-based pixel level registration technique. The other 
involved a dual-path, fusion-based architecture for 
performing object level feature correspondence. We use a 
surrogate, rigidly-transformed data set involving 3-D MNIST 

letters for simulating certain basic geometric modelling facets 
of the breast imaging process. Moreover, we also utilized real 
mammographic image data from the CBIS-DDSM data set. 

Our results showed that both networks could successfully 
register the MNIST-based data from both a visual and 
quantitative perspective. However, challenges were revealed 
for registering or performing objective correspondence with 
the X-ray mammography data. Still, both networks showed 
areas of potential which suggest that, with modifications, 
improvements could be made. Observed areas to address for 
the deformation-field based CNN network included utilizing 
a more appropriate similarity measure and applying an 
appropriate regularization technique. However, it is also 
assessed that this type of network may perform better using 
more 3-D-like DBT mammographic images, where it is 
possible that more one-to-one pixel (or local region) type 
mappings may be possible. For the joint-fusion based 
network, additional training, additional data, experimentation 
with different pre-trained CNNs (or custom trained CNNs), 
and the use of additional image statistical features are areas 
that should yield improvements. For both techniques we plan 
to further investigate, with additional clinical insight, ways of 
quantitatively characterizing registration performance for the 
mammography data and means of improving the networks in 
general, along with identifying additional potential use cases.  
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