
KERNEL-BASED LIFELONG POLICY GRADIENT REINFORCEMENT LEARNING

Rami Mowakeaa† Seung-Jun Kim† Darren K. Emge?

† Dept. of Computer Science and Electrical Engineering
University of Maryland, Baltimore County

Baltimore, MD, USA
{ramo1, sjkim}@umbc.edu

? Combat Capabilities Development Command
Chemical Biological Center RDCB-DRC-P

Gunpowder, MD, USA
darren.k.emge.civ@mail.mil

ABSTRACT

Policy gradient methods have been widely used in reinforcement
learning (RL), especially thanks to their facility to handle continuous
state spaces, strong convergence guarantees, and low-complexity up-
dates. Training of the methods for individual tasks, however, can still
be taxing in terms of the learning speed and the sample trajectory
collection. Lifelong learning aims to exploit the intrinsic structure
shared among a suite of RL tasks, akin to multitask learning, but in
an efficient online fashion. In this work, we propose a lifelong RL al-
gorithm based on the kernel method to leverage nonlinear features of
the data based on a popular union-of-subspace model. Experimental
results on a set of simple related tasks verify the advantage of the
proposed strategy, compared to the single-task and the parametric
counterparts.

Index Terms— Reinforcement learning, lifelong learning, ker-
nel methods, policy gradients, dictionary learning.

1. INTRODUCTION

Policy gradient (PG) methods have gained much attention due to
their suitability to reinforcement learning (RL) applications with
continuous domains such as in robotics [1]. More recently, non-
parametric PG methods have been proposed to capitalize on the
vast flexibility of the more general class of functions living in a
reproducing kernel Hilbert space (RKHS) [2, 3]. Despite these ad-
vantages, and strong convergence guarantees [4], PG methods may
require extensive interactions with the environment by the learning
agent, resulting in slow convergence. Beginning with the original
REINFORCE [5], many approaches have been put forth to achieve
faster and more robust learning such as the actor-critic method [6],
functional approximation of the value function [7], the use of natural
gradients [4], and the expectation maximization approach [8].

While these approaches target the performance of RL applied
to a single task, considering multiple related tasks jointly or in se-
quence provides additional opportunities for improving not only in
the rate of learning, but in the quality of the resulting learners as well.
Transfer learning has been applied to RL by leveraging experience

This work was supported in part by the MSI STEM Research & Devel-
opment Consortium (MSRDC)/U.S. Army under Grant W911SR-14-2-0001,
and in part by the National Science Foundation under Grant 1547347.

gained in past tasks towards new yet similar tasks [9, 10, 11]. Mul-
titask learning, in contrast, has been applied to RL, allowing joint
analysis of a set of related tasks in pursuit of greater performance
across them. Hierarchical Bayesian frameworks have been proposed
to analyze a collection of tasks from a fixed, yet unspecified dis-
tribution, where the shared structures in the dynamics and the re-
ward/value functions are captured [12, 13]. In [14], multitask RL is
cast as a variational inference problem and a distributed solver is de-
veloped with quadratic convergence. Other methods target multitask
RL in partially observable environments [15], and tackle inverse RL
setups [16].

Lifelong learning (LL) extends the goal of multitask learning to
efficient online solutions tailored to streaming data and tasks, and
has been applied recently to supervised learning problems [17, 18,
19, 20]. LL seeks to leverage experience gained from past tasks
towards new tasks, and incorporate knowledge obtained from new
tasks toward old tasks, while processing the tasks sequentially, in an
efficient online manner. LL has been applied to PG RL in the para-
metric case [21], where a union-of-subspace model was employed to
extract the shared knowledge among sequential tasks.

In this work, a novel kernel-based lifelong PG RL algorithm is
developed, which targets the RL tasks, where the policies are sought
in a flexible RKHS. We utilize a union-of-subspace model in the
RKHS to capture the shared skills across tasks [22], and apply an
online kernel dictionary learning method to deal with the tasks arriv-
ing sequentially to the learner [23]. Functional stochastic gradient
descent is employed to pursue a low-cost solution to minimize an
expected risk functional. To alleviate the rapid increase in computa-
tional and memory complexity associated with any kernel method, a
sparsification approach is also adopted to attain parsimonious repre-
sentations of the shared skill library in function space. Preliminary
numerical tests based on a collection of spring-mass-damper tasks
verify the advantage of the proposed kernel LL strategy, over the
parametric LL counterpart, as well as the parametric/nonparametric
single-task learning approaches.

The rest of this paper is organized as follows. In Sec. 2, the
problem formulation is put forth. In Sec. 3, the proposed algorithm
is derived. The results of the numerical experiments are presented in
Sec. 4. Conclusions are provided in Sec. 5.

2. PROBLEM FORMULATION

2.1. Policy Gradient Reinforcement Learning

The RL problem can be formulated as a sequential decision mak-
ing problem modeled using a Markov decision process (MDP) de-
fined by the tuple (X ,A, p, r,H), where X ⊂ Rp is the bounded
set of possible states, A ⊂ R is the set of possible actions, p :
X × A × X → R+ is the state transition probability density func-
tion describing the environment dynamics, r : X × A → R is
the instantaneous reward function, and H ∈ N is the length of
the episode (trajectory). At a given time step h, an agent in state
xh selects an action ah ∈ A according to a policy distribution
πθ : X × A → R+ parameterized by θ. At the next time step
h + 1, the agent is transitioned to state xh+1 according to p and re-
ceives a reward rh+1 = r(xh+1, ah). The sequence of {xh}Hh=0

and {ah}H−1
h=0 form a trajectory τ over a finite horizon H . The goal

of the RL agent is to learn a policy distribution πθ that maximizes
the expected reward given by

J̃ (θ) =

∫
T
pθ(τ)R(τ)dτ (1)

where T is the set of trajectories, the trajectory reward R(τ) :=
1
H

∑H
h=1 rh, and the trajectory density pθ(τ) is given by

pθ(τ) = p0(x0)

H−1∏
h=0

p(xh+1|xh, ah)πθ(ah|xh) (2)

with p0 being the initial state distribution.
PG algorithms are often derived through a lower bound on (1)

using Jensen’s inequality as [24, 8]

log J̃ (θ̃) = log

∫
T

pθ(τ)

pθ(τ)
pθ̃(τ)R(τ)dτ (3)

≥
∫
T
pθ(τ)R(τ) log

pθ̃(τ)

pθ(τ)
dτ + const. (4)

∝ −D(pθ(τ)R(τ)||pθ̃(τ)) := −Jθ

(
θ̃
)

(5)

whereD(·||·) is the Kullback-Leibler (KL) divergence, and the terms
not dependent on variable θ̃ are neglected. The lower bound in (5)
shows that the expected reward in (1) can be maximized, given a
baseline policy πθ , by minimizing the KL divergence between the
reward-weighted trajectory distribution under policy πθ and the tra-
jectory distribution under the desired policy πθ̃ . Then, πθ is sub-
stituted with πθ̃ , new trajectories are sampled, and the process is
repeated until convergence.

In order to seek nonparametric policies via kernel methods, we
postulate a RKHS H, determined by a positive semidefinite kernel
function κ(·, ·) : X × X → A, which is given through a feature
transform φ : X → H by κ(x1,x2) = 〈φ(x1), φ(x2)〉, and a norm
‖φ(x)‖H =

√
〈φ(x), φ(x)〉.

2.2. Multitask Policy Gradient Reinforcement Learning

Consider a stream of RL tasks defined by MDPs (X ,A, p(t),

r(t), H(t)), t ∈ {1, . . . , T}, which are defined on shared state
and action spaces but can differ in their transition densities, reward
functions, and horizon lengths. The purpose of multitask policy
gradient reinforcement learning is to estimate a collection of poli-
cies {πθ(t)}Tt=1

that maximize the per-task expected reward of (1),

leveraging the structure shared among the tasks. In this work, we
capture the shared structure of the tasks using the union-of-subspace
model of policy parameterization as in

θ
(t)
st ≈ Ls(t) (6)

where θ(t)
st ∈ H is the optimal single-task learning (STL) solution

when task t is considered alone, L := [`1, . . . , `K] is a shared skill
library of K atoms with `k ∈ H, and s(t) ∈ RK is a sparse code
that describes the task parameterization through the shared library.

By combining the cost functions of all T tasks together with the
model in (6), the multitask RL problem can be formulated as

min
L

1

T

T∑
t=1

min
s(t)

{
Jθ(t)

(
Ls(t)

)
+ µ

∥∥∥s(t)
∥∥∥

1

}
+ λ‖L‖2H (7)

where || · ||1 is the `1-norm promoting sparsity in {s(t)}, ‖L‖2H :=∑K
k=1 ‖`k‖

2
H controls the complexity of L, and θ(t) is the baseline

policy from which θ(t)
st is computed. Positive parameters µ and λ

adjust the strengths of the regularizations.
In practice, the per-task cost Jθ(t) is evaluated using the sample

trajectories from the corresponding task. Thus, it can be seen that
the objective in (7) depends on the samples of the entire set of tasks.
To alleviate this issue, a strategy similar to those used in [21, 20] is
employed here. Specifically, by performing a second-order Taylor
series expansion of Jθ(t)(θ̃) around the single task optimum θ

(t)
st ,

and dropping some constants, the multitask learning formulation can
be written as

min
L

1

T

T∑
t=1

min
s(t)

{∥∥∥Ls(t) − θ(t)
st

∥∥∥2

H
(t)
st

+ µ
∥∥∥s(t)

∥∥∥
1

}
+ λ‖L‖2H

(8)
where ‖v‖2U := v>Uv, and

H
(t)
st := ∇2

θ̃,θ̃Jθ(t)

(
θ̃
)∣∣∣

θ̃=θ
(t)
st

(9)

= − E

[
R(τ)

H−1∑
h=0

∇2
θ̃,θ̃ log πθ̃(ah|xh)

]∣∣∣∣∣
θ̃=θ

(t)
st

(10)

with the expectation taken with respect to τ ∼ pθ(t)(τ) is the Hes-
sian evaluated at the single-task optimum. We assume that the poli-
cies πθ̃ are twice differentiable. For example, in much of the policy
gradient literature, the policies are assumed to be Gaussian as in

πθ̃(ah|xh) = C exp

{
− 1

2σ2

(
ah −

〈
θ̃, φ(xh)

〉)2
}

(11)

where C is an appropriate normalization constant and σ2 is the vari-
ance of the distribution, which controls the amount of exploration
conducted by the policy. Then, the gradient can be expressed as

∇θ̃Jθ(t)

(
θ̃
)

= −E

[
R(τ)

H−1∑
h=0

1

σ2

(
ah −

〈
θ̃, φ(xh)

〉)
φ(xh)

]
(12)

and the Hessian as

∇2
θ̃,θ̃Jθ(t)

(
θ̃
)

= E

[
R(τ)

H−1∑
h=0

1

σ2
φ(xh)φ>(xh)

]
. (13)

3. LIFELONG PG RL IN RKHS

3.1. Library Update in Function Space

In the LL setup, new tasks arrive continuously in a streaming fash-
ion. Collecting a batch of tasks and solving for all the tasks jointly
through (8) may incur significant delay and computational burden. A
viable alternative is to derive an online learning algorithm, which en-
joys low-cost updates as well. Specifically, assuming that the tasks
arrive independently and with identical distributions, and invoking
the law of large numbers with T →∞, (8) can be re-written as

min
L

E
[
min

s
‖Ls− θst‖2Hst

+ µ ‖s‖1
]

+ λ‖L‖2H. (14)

We seek solutions to (14) using the stochastic gradient descent
(SGD) method in function space [25, 20]. To simplify the presen-
tation, let us assume that task t arrives at iteration t. In order to
compute the instantaneous gradient, consider first the solution to the
inner minimization problem, i.e., the sparse coding problem, for a
particular task t, given by

s(t) = arg min
s

∥∥∥θ(t)
st − L(t−1)s

∥∥∥2

H
(t)
st

+ µ‖s‖1 (15)

where L(t−1) is the library from iteration t − 1. Then, the instanta-
neous gradient of the objective of (14) at iteration t is given by

2H
(t)
st

(
L(t−1)s(t) − θ(t)

st

)
s(t)> + 2λL(t−1) (16)

and the library update using SGD at time t is given by

L(t) = (1− λη)L(t−1) − ηH(t)
st

(
L(t−1)s(t) − θ(t)

st

)
s(t)> (17)

where a factor of 2 in the gradient has been absorbed into the step

size parameter η. Upon convergence, we refer to the product θ̂
(t)

=
Ls(t) as the LL policy for task t.

3.2. Library Update via Dual Representation

Thanks to the Representer Theorem, the STL solution to each
task t can be described in its dual form, using a linear combination
of the lifted features of the state vectors in the sample trajecto-
ries [26]. Denote by Nt the number of trajectories sampled for
task t. Let X

(t)
n := [x

(t)
n,1, . . . ,x

(t)

n,H(t)] ∈ Rp×H
(t)

be the collec-

tion of state vectors from the n-th trajectory. Define also X(t) :=

[X
(t)
1 , . . . ,X

(t)
Nt

] ∈ Rp×H
(t)Nt . Likewise, the collection of the

lifted features is defined as Φ(X
(t)
n) := [φ(x

(t)
n,1), . . . ,φ(x

(t)

n,H(t))]

and Φ(X(t)) := [Φ(X
(t)
1), . . . ,Φ(X

(t)
Nt

)]. Now, upon introducing

a coefficient vector w
(t)
st ∈ RH

(t)Nt , the STL optimum can be
expressed as

θ
(t)
st = Φ(X(t))w

(t)
st . (18)

Assuming that a Gaussian policy is used for πθ(t) , let R(t)
n :=

R(τ
(t)
n) be the reward of the n-th trajectory τ (t)

n , 1H(t) be a vector
of 1’s of length H(t) and

J ′′t :=
1

σ2
diag

{
R

(t)
1 1H(t) , . . . , R

(t)
Nt

1H(t)

}
∈ RH

(t)Nt×H(t)Nt .

(19)

Input: λ, µ, ε, η, and {τ (t)
n }Nt

n=1, t = 1, 2, . . . , T

Output: D(T), A(T), {s(t)}Tt=1

1: Initialize D(0) and A(0) randomly
2: For t = 1, 2, . . . , T

3: Obtain STL solution θ(t)
st

4: Compute H
(t)
st from (20)

5: Compute sparse code s(t) via (22)
6: Let Ď(t) = [D(t−1),X(t)]

7: Compute Ǎ(t) as the r.h.s. of (23)
8: Obtain sparsified pool D(t) (via, e.g., destructive KOMP)
9: Compute A(t) from (27)

10: End For

Table 1. Kernel lifelong PG RL algorithm.

Then, the Hessian in (13) can be approximated from samples
Φ(X(t)) as

H
(t)
st =

1

Nt
Φ(X(t))J ′′t Φ(X(t))>. (20)

To derive the library updates, consider the pool of samples
D(t−1) := [X(1), . . . ,X(t−1)] taken up to task t−1 and invoke the
Representer Theorem to represent L(t−1) as [cf. (8)]

L(t−1) = Φ(D(t−1))A(t−1). (21)

At time t, upon obtaining (θ
(t)
st , H

(t)
st), further define Kt,t :=

Φ(X(t))>Φ(X(t)) as the per-task kernel matrix and Kt,1:t−1 :=

Φ(X(t))>Φ(D(t−1)) as the task-pool kernel matrix. Then, (15)
can be written in dual form as

s(t) = arg min
s

∥∥∥J ′′t 1
2 Kt,tw

(t)
st −J ′′t

1
2 Kt,1:t−1A

(t−1)s
∥∥∥2

2
+µ‖s‖1

(22)
and library L(t) = Φ(D(t))A(t) can be updated as [cf. (17)]

A(t) =

[
(1− λη)A(t−1)

− η
Nt

J ′′t
(
Kt,1:t−1A

(t−1)s(t) −Kt,tw
(t)
st

)
s(t)>

]
.

(23)
Since A(t) (and D(t)) grow byH(t)Nt rows (columns, respectively)
at each iteration, a method to control the growth in complexity of the
representation of L is needed.

3.3. Sparsification

Despite its strength and flexibility, kernel SGD suffers from a rapid
growth in complexity as additional samples are observed, which is
also known as the curse of kernelization. In order to restrain the
growth in complexity, the pool of samples D(t) must be sparsified
by throwing away the samples that do not contribute much in the rep-
resentation of L [27]. Recently, a sparsification technique that can
ensure convergence at the expense of small error in the functional
approximation was developed, which is adopted here too [28].

With some abuse of notation, let D(t−1) ∈ Rp×Mt−1 denote the
sparsified pool at iteration t − 1 from now on. Then, the tentative
pool at iteration t is given by

Ď(t) = [D(t−1),X(t)] (24)

and the corresponding library is defined as Ľ(t) := Φ(Ď(t))Ǎ(t),
where Ǎ(t) is obtained as the right-hand side of (23). The goal is

Fig. 1. A horizontal spring-mass-damper system.

(a) (b)

Fig. 2. Average convergence curves. (a) kernel STL (b) kernel LL

then to obtain a smallest subset D(t) of Ď(t) for which the projection
error

min
L∈span(Φ(D(t)))

‖L− Ľ(t)‖2H (25)

does not exceed a pre-specified tolerance ε. In [28], a greedy algo-
rithm called destructive kernel orthogonal matching pursuit (KOMP)
was proposed to perform this subset search approximately.

Defining KD(t),D(t) := Φ(D(t))>Φ(D(t)) and KD(t),Ď(t) :=

Φ(D(t))>Φ(Ď(t)), projection (25) can be computed via

A(t) = arg min
A
‖Φ(D(t))A−Φ(Ď(t))Ǎ(t)‖2H (26)

= K−1

D(t),D(t)KD(t),Ď(t)Ǎ
(t) (27)

(again with some abuse of notation.) Finally, the library at iteration
t is given as L(t) = Φ(D(t))A(t). The overall algorithm is listed in
Table 1.

4. NUMERICAL EXPERIMENTS

To demonstrate the effectiveness of the proposed algorithm, it is
tested with a spring-mass-damper system illustrated in Fig. 1, which
is commonly considered in the RL literature. The system consists of
a mass ofm kg, connected horizontally on a fixed surface to a spring
with a spring constant of k N/m and a damper with a damping con-
stant of d N·s/m. A collection of T = 24 tasks were generated with
the parameters drawn uniformly from m ∈ [0.5, 5], k ∈ [1, 10], and
d ∈ [0.01, 0.2], which allows for a variety of system responses. De-
note the displacement of the mass by x, its velocity by ẋ and the
state vector by x = [x, ẋ]>. The objective of each task is to move
the mass from its initial state [xinit, 0]> to a target state [xtarg, 0]> by
applying forces {Fh} over horizon h = 1, . . . , 50. We chose xinit

randomly in {1, . . . , 10} and xtarg in {1, . . . , 5}. The reward ob-
tained at time step h is given by rh := −

√
(xh − xtarg)2 + (ẋh)2.

The STL optima {θ(t)
st } were computed using a natural actor-

critic (NAC) algorithm [4, 29] with the state vector appended by a
constant 1 to allow for an affine offset in the case of parametric STL.
The exploration variance is set to σ2 = 502 for parametric poli-
cies and σ2 = 52 for nonparametric policies. A Gaussian radial
basis function (RBF) kernel was adopted, whose bandwidth param-
eter was chosen by observing the STL performances on a subset of
8 tasks. The regularization parameters λ and µ were selected via
10-fold cross-validation using a subset of 8 tasks chosen at random.

pSTL pLL kSTL kLL
Avg. reward -0.8809 -0.8132 -0.2781 -0.2307

% improvement 0% 7.69% 68.43% 73.81%

Table 2. Average rewards and percentage improvements.

5 10 15 20

Tasks

-1

-0.8

-0.6

-0.4

-0.2

0

A
v
e
ra

g
e
 r

e
w

a
rd

Kernel LL

Kernel STL

(a)

5 10 15 20

Tasks

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

A
v
e
ra

g
e
 r

e
w

a
rd

Kernel LL

Parametric LL

(b)

Fig. 3. Per-task performances.

Then, 10 independent runs were performed on all tasks using the
best regularization parameters. To evaluate either a STL or a LL,
sample trajectories were taken using the learned policy but without
the exploration, that is, with σ2 = 0. We used K = 10.

In Fig. 2, the learning curves are presented to show convergence.
In Fig. 2(a), the average reward (1) is shown for the NAC-based
kernel STL algorithm. Fig. 2(b) depicts the objective of (8), where
random permutations of T tasks were presented repeatedly to the
proposed kernel LL algorithm.

In Table 2, the average rewards over 24 tasks and 10 independent
runs of the parametric STL (pSTL), the parametric LL (pLL), the
kernel STL (kSTL), and the kernel LL (kLL) algorithms are listed.
Also shown is the percentage improvement with reference to the
pSTL algorithm. It is noted that in both parametric and kernel cases,
LL achieves performance gain by exploiting the shared structure in
the collection of STLs, even though the STLs themselves have been
fully trained. Furthermore, the advantage of using nonparametric
learning algorithms is clearly observed over the parametric counter-
parts, which highlights the usefulness of considering rich families of
functions for PG RL, even for the relatively simple tasks involving
spring-mass-damper systems.

In Fig. 3(a), the reward of each of the 24 tasks using kLL is com-
pared to that of kSTL. The error bars represent the standard devia-
tions from 10 independent runs of the LL algorithm. It is observed
that the LL strategy significantly improves the performance of the
STL for some tasks—a clear manifestation of the multitask learning
advantage, where the skills learned from other tasks are transferred
to improve the performance for challenging tasks. Fig. 3(b) shows
the rewards, averaged over 10 runs, for the kLL and the pLL al-
gorithms. This highlights again the advantage of employing kernel
learning in a lifelong setting.

5. CONCLUSION

A kernel-based lifelong PG RL algorithm has been proposed, which
can exploit a shared union-of-subspace structure in RKHS across
related tasks that arrive sequentially over time. An online learning
algorithm was derived based on the SGD method in function space
to yield low-cost updates. The prohibitive growth in computational
and memory complexity inherent in kernel learning has been miti-
gated using a sparsification strategy. The numerical tests verified the
advantage of the proposed algorithm, compared to both the nonpara-
metric STL and the parametric lifelong counterparts.

6. REFERENCES

[1] M. P. Deisenroth, G. Neumann, and J. Peters, “A survey on pol-
icy search for robotics,” Foundations and Trends in Robotics,
vol. 2, no. 1–2, pp. 1–142, 2013.

[2] G. Lever and R. Stafford, “Modelling policies in MDPs in
reproducing kernel Hilbert space,” in Proc. Int. Conf. Artificial
Intell. Stat., San Diego, CA, May 2015, pp. 590–598.

[3] S. Paternain, J. Bazerque, A. Small, and A. Ribeiro, “Stochas-
tic policy gradient ascent in reproducing kernel Hilbert spaces,”
arXiv:1807.11274, 2018.

[4] J. Peters and S. Schaal, “Natural actor-critic,” Neurocomput-
ing, vol. 71, pp. 1180–1190, 2008.

[5] R. Williams, “Simple statistical gradient-following algorithms
for connectionist reinforcement learning,” Machine Learning,
vol. 8, pp. 229–256, 1992.

[6] V. Konda and J. Tsitsiklis, “Actor-critic algorithms,” in Adv.
Neural Info. Process. Syst., Denver, CO, 2000, pp. 1008–1014.

[7] R. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy
gradient methods for reinforcement learning with function ap-
proximation,” in Adv. Neural Info. Process. Syst., Denver, CO,
2000, pp. 1057–1063.

[8] J. Kober and J. Peters, “Policy search for motor primitives in
robotics,” in Adv. Neural Info. Process. Syst., Vancouver, BC,
Dec. 2009, pp. 849–856.

[9] D. Abel, Y. Jinnai, S. Guo, G. Konidaris, and M. Littman, “Pol-
icy and value transfer in lifelong reinforcement learning,” in
Proc. Int. Conf. Mach. Learn., Stockholm, Sweden, Jul. 2018,
pp. 20–29.

[10] F. Fernández and M. Veloso, “Learning domain structure
through probabilistic policy reuse in reinforcement learning,”
Progress Artific. Intell., vol. 2, pp. 13–27, 2013.

[11] M. Taylor and P. Stone, “Transfer learning for reinforcement
learning domains: A survey,” J. Mach. Learn. Res., vol. 10, pp.
1633–1685, 2009.

[12] A. Wilson, A. Fern, S. Ray, and P. Tadepalli, “Multi-task re-
inforcement learning: a hierarchical Bayesian approach,” in
Proc. Int. Conf. Mach. Learn., Corvallis, OR, Jun. 2007, pp.
1015–1022.

[13] A. Lazaric and M. Ghavamzadeh, “Bayesian multi-task rein-
forcement learning,” in Proc. Int. Conf. Mach. Learn., Haifa,
Israel, Jun. 2010, pp. 599–606.

[14] R. Tutunov, D. Kim, and H. Ammar, “Distributed multi-
task reinforcement learning with quadratic convergence,” in
Adv. Neural Info. Process. Syst., Montreal, QC, Dec. 2018, pp.
8907–8916.

[15] H. Li, X. Liao, and L. Carin, “Multi-task reinforcement learn-
ing in partially observable stochastic environments,” J. Mach.
Learn. Res., vol. 10, pp. 1131–1186, 2009.

[16] C. Dimitrakakis and C. Rothkopf, “Bayesian multitask inverse
reinforcement learning,” in Proc. Eur. Workshop Reinforce-
ment Learn., Athens, Greece, Sep. 2011, pp. 273–284.

[17] G. Pillonetto, F. Dinuzzo, and G. De Nicolao, “Bayesian online
multitask learning of Gaussian processes,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 32, no. 2, pp. 193–205, 2008.

[18] P. Ruvolo and E. Eaton, “ELLA: An efficient lifelong learning
algorithm,” in Proc. Int. Conf. Mach. Learn., Atlanta, GA, Jun.
2013, pp. 507–515.

[19] C. Clingerman and E. Eaton, “Lifelong learning with Gaussian
processes,” in Proc. Eur. Conf. Mach. Learn. Principles Prac-
tice Knowl. Discovery Databases, Skopje, Macedonia, Sep.
2017, pp. 690–704.

[20] S.-J. Kim and R. Mowakeaa, “Kernel-based efficient lifelong
learning algorithm,” in Proc. IEEE Data Sci. Workshop, Min-
neapolis, MN, Jun. 2019.

[21] H. Ammar, E. Eaton, P. Ruvolo, and M. Taylor, “Online multi-
task learning for policy gradient methods,” in Proc. Int. Conf.
Mach. Learn., Beijing, China, Jun. 2014, pp. 1206–1214.

[22] H. Nguyen, V. Patel, N.Nasrabadi, and R. Chellappa, “Design
of non-linear kernel dictionaries for object recognition,” IEEE
Trans. Image Process., vol. 22, no. 12, pp. 5123–5135, Dec.
2013.

[23] S.-J. Kim, “Online kernel dictionary learning,” in Proc. IEEE
Global Conf. Signal and Info. Process., Orlando, FL, Dec.
2015, pp. 103–107.

[24] P. Dayan and G. Hinton, “Using expectation-maximization for
reinforcement learning,” Neural Computation, vol. 9, no. 2,
pp. 271–278, 1997.

[25] J. Kivinen, A. Smola, and R. Williamson, “Online learning
with kernels,” IEEE Trans. Signal Process., vol. 52, no. 8, pp.
2165–2176, Aug. 2004.

[26] J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern
Analysis, Cambridge University Press, New York, NY, 2004.

[27] P. Honeine, C. Richard, and J. C. M. Bermudez, “On-line non-
linear sparse approximation of functions,” in Proc. IEEE Int.
Symp. Info. Theory, Nice, France, Jun. 2007, pp. 956–960.

[28] A. Koppel, G. Warnell, E. Stump, and A. Ribeiro, “Parsi-
monious online learning with kernels via sparse projections in
function space,” in Proc. Int. Conf. Acoust. Speech Signal Pro-
cess., New Orleans, LA, 2017, pp. 4671–4675.

[29] N. Vien, P. Englert, and M. Toussaint, “Policy search in repro-
ducing kernel Hilbert space.,” in Proc. Int. Joint Conf. Artific.
Intell., New York, NY, Jul. 2016, pp. 2089–2096.

