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Abstract—Lifelong learning capitalizes on the shared skill
structure present in a stream of tasks that arrive over time
to improve upon the performance of single-task learners. In
contemporary lifelong learning applications, it is often the case
that there are multiple sensing modalities or views associated
with each task. A crucial aspect in lifelong multitask multiview
learning is to capture not only the shared structure among
the tasks but also across views effectively. In this work, a
nonparametric kernel-based learning framework is adopted to
model even nonlinear shared structures in the tasks and views in a
flexible and robust way. An efficient lifelong learning formulation
is derived by judicious approximation of the per-task learning
objectives, based on which the shared skill libraries can be
updated online in function space. Numerical tests verify the
efficacy of the proposed approach.

I. INTRODUCTION

Multitask learning exploits the shared structure among re-
lated tasks to learn classifiers that can improve upon those that
are obtained from independent single-task learning [1]. In a
lifelong learning scenario, the tasks are revealed sequentially
over time, and the shared knowledge and skills for different
tasks need to be continually transferred from the past-trained
tasks to new ones and vice versa. Lifelong learning has been
applied to various problems including supervised learning [2]–
[4] and reinforcement learning [5], [6].

Multitask multiview (MTMV) learning attempts to learn
from related tasks, where the data from each task contain one
or more sensing modalities or views. The crucial aspect of
MTMV learning is to capture the dual heterogeneity structure
that exists across tasks and views jointly to improve the
prediction capability over the learners that observe the data
from each of the tasks and views separately [7]. MTMV
learning finds applications in various areas ranging from data
mining [7], classification [8], to medicine [9].

A bipartite graph was used in [7] to capture the connections
between tasks and views, and an objective was designed to
increase the consistency among them. A full-order tensor
was used in a multilinear formulation to model task-view
interactions [10]. A shared latent representation was employed
with consistency imposed upon per-view libraries over labeled
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as well as unlabeled samples in [11]. A latent space model
was adopted and the consistency across views and the task-
specificity of views were captured in the latent codes [12].
These works, however, postulated rather simple shared struc-
ture with parametric classes of functions.

Our goal is to develop a flexible lifelong MTMV learning
algorithm by adopting a nonlinear nonparametric shared struc-
ture model in the reproducing kernel Hilbert space (RKHS).
The lifelong learning strategy is derived based on judicious
approximation of per-task learning objectives, and the update
of the shared skill libraries for different views is done in the
function space [4], [6], [13]. The computational complexity of
the kernel method is also curbed through an online sparsifica-
tion method.

The rest of this paper is organized as follows. In Sec. II,
the formulations for single-task single-view (STSV), single-
task multiview (STMV), and MTMV learning are presented.
In Sec. III, our proposed method for kernel lifelong MTMV
learning is derived. The results from numerical experiment
validate our proposed method in Sec. IV. Conclusions are
offered in Sec. V.
Notations: (·)> represents the vector/matrix transpose, and (·)†
the pseudoinverse. ⊗ denotes the kronecker product. 1M×N
denotes a matrix of size M -by-N with all entries equal to 1.
IM represents the M -by-M identity matrix. diag{·} represents
a diagonal matrix whose diagonal entries are equal to the
elements listed in {·}, and bdiag{·} denotes a block diagonal
matrix with the elements in {·} used as the diagonal blocks.

II. PROBLEM FORMULATION

A. STSV Learning

Given a set of N samples X(1) := [x
(1)
1 , . . . ,x

(1)
N ] ∈ Rd1×N

and the corresponding labels y := [y1, . . . , yN ]> ∈ RN , where
(1) signifies the single view, STSV learning entails estimation
of a function f (1) : Rd1 → R such that f (1)(x

(1)
n ) ≈ yn,

for n = 1, . . . , N . We consider a space of functions, which
is a RKHS H(1) defined by a kernel function κ(1)(x,x′) =
〈φ(1)(x), φ(1)(x′)〉, where φ(1)(·) is a nonlinear feature map,
〈·, ·〉 the inner product, and the norm is defined as ‖f‖H(1) :=√
〈f, f〉.



B. STMV Learning

In multiview learning, the samples are obtained from differ-
ent sources termed views. Define X =

[
X(1)>, . . . ,X(V )>]>,

where X(v) ∈ Rdv×N are the features from view v, dv is the
number of features for the v-th view, and

∑V
v=1 dv = d. As

in the single-view case, the goal is to find a function f that
maps the features xn := [x

(1)>
n , . . . ,x

(V )>
n ]> to the label yn.

To accommodate different views, let us estimate a collection
of functions f := [f (1), . . . , f (V )]>, where each f (v) ∈ H(v)

is associated with nonlinear feature map φ(v)(·). The desired
function f is obtained as

f(xn) :=

V∑
v=1

〈f (v), φ(v)(x(v)
n )〉. (1)

Then, a STMV learning problem can be formulated as

min
f

1

N

N∑
n=1

L

(
V∑
v=1

〈f (v), φ(v)(x(v)
n )〉, yn

)
+ γ

V∑
v=1

‖f (v)‖2H(v)

(2)

where L is a twice-differentiable loss function, and γ ≥ 0
is a regularization parameter that balances the complexity
of the estimated functions and the fidelity to the training
data. Given a collection of samples, the Representer Theorem
[14] reduces specifying each function f (v) to finding a suit-
able linear combination of the lifted features Φ(v)(X(v)) :=

[φ(x
(v)
1 ), . . . , φ(x

(v)
N )], yielding f (v) = Φ(v)(X(v))w(v).

C. MTMV Learning

In MTMV learning, one is presented with a collection of
tasks {Zt := (Xt,yt)}, where Zt represents the multiview
data Xt := [X

(1)>
t , . . . ,X

(V )>
t ]> ∈ Rd×Nt and labels

yt := [yt,1, . . . , yt,Nt ]
> for task t = 1, . . . , T . For each

task t, the purpose is to estimate ft = [f
(1)
t , . . . , f

(V )
t ]> as

in Sec. II-B. However, rather than solving a STMV problem
for each task independently, shared structure across tasks is
exploited.

Specifically, let us hypothesize that the functions corre-
sponding to a view approximately adhere to a sparse latent
model. That is, it is postulated that for view v ∈ {1, . . . , V }

f
(v)
t ≈ L(v)s

(v)
t , t = 1, . . . , T (3)

where L(v) :=
[
`
(v)
1 , . . . , `

(v)
K

]
is a view-specific shared library

with “skills” `(v)
k ∈ H(v) and s

(v)
t ∈ RK is the sparse code for

the t-th task that linearly combines a small number of skills
from library L(v).

In order to enforce consistency across different views, first
aggregate the latent codes of task t across views into a matrix
St := [s

(1)
t , . . . , s

(V )
t ] ∈ RK×V . Then, it is postulated that St

can be decomposed as St = Pt+Qt, where Pt is row-sparse
and Qt is column-sparse [12], [15]. Promoting row-sparsity
in Pt encourages task t to utilize a few common skills across
views, thereby effecting skill consistency. On the other hand,
column-sparse Qt allows task t to employ any skills for select

few views that do not conform to the aforementioned skill
consistency, thus providing robustness to the model.

Putting these elements together, our MTMV problem can
be formulated as

min
{L(v)}

1

T

T∑
t=1

min
Pt,Qt

{
1

Nt

Nt∑
n=1

L
( V∑
v=1

〈
L(v)s

(v)
t , φ(v)(x

(v)
t,n)
〉
,

yt,n

)
+ µ1 ‖Pt‖2,1 + µ2

∥∥Q>t ∥∥2,1

}
+

V∑
v=1

λv‖L(v)‖2H(v)

s.t. St = Pt + Qt, t = 1 . . . , T (4)

where the `2,1-norm of P := [p1, . . . ,pR]> is defined as
‖P‖2,1 :=

∑R
r=1 ‖pr‖2, µ1, µ2, and {λv} are preselected

nonnegative parameters, and ‖L(v)‖2H(v) :=
∑K
k=1 ‖`

(v)
k ‖2H(v) .

III. LIFELONG MTMV LEARNING

A. Lifelong MTMV Formulation

Solving the batch formulation in (4) becomes challenging
when the tasks keep arriving continually. A viable alternative
is to perform lifelong learning, where the library is updated
in an online fashion.

First, it is noted that (4) involves the data from all tasks
and views, incurring high storage and computational burdens.
A useful idea is to eliminate the dependency on the past tasks’
samples by employing an appropriate local approximation of
the STMV learning objective.

Denote the objective function of (2) for task t as Jt(f).
Then, a quadratic approximation of Jt(f) around its min-
imum f∗t can be adopted [4]–[6]. Since L(·) is twice-
differentiable, the gradient of Jt is given by ∇fJt(f) =[
∇f(1)Jt(f), . . . ,∇f(V )Jt(f)

]>
where

∇f(v)Jt(f) =
1

Nt

Nt∑
n=1

L′t,nφ(v)(x
(v)
t,n) (5)

and L′t,n := ∂L(ŷt,n, yt,n)/∂ŷt,n. Similarly, the Hessian of Jt
is given as

Ht :=


H

(1,1)
t . . . H

(1,V )
t

...
. . .

...
H

(V,1)
t . . . H

(V,V )
t

 (6)

where for u, v ∈ {1, . . . , V }

H
(u,v)
t := ∇2

f(u),f(v)Jt(f)

=
1

Nt

Nt∑
n=1

L′′t,nφ(x
(u)
t,n)φ>(x

(v)
t,n) (7)

and L′′t,n := ∂2L(ŷt,n, yt,n)/∂ŷ2
t,n. Define a block diagonal

matrix consisting of the view-specific libraries as

L := bdiag{L(1), . . . ,L(V )} (8)

and the task t’s code vector st := [s
(1)>
t , . . . , s

(V )>
t ]>. Then,

by substituting the loss function in (4) with the second-order



Taylor series expansion of Jt, and dropping the constant terms,
the problem can be re-written as

min
{L(v)}

1

T

T∑
t=1

min
Pt,Qt

{
1

2
‖Lst − f∗t ‖

2
Ht

+ µ1‖Pt‖2,1

+µ2‖Q>t ‖2,1
}

+

V∑
v=1

λv‖L(v)‖2H(v)

s.t. St = Pt + Qt, t = 1, . . . , T (9)

where ‖v‖2H := v>Hv. Problem (9) is amenable to online
learning by optimizing the objective over Pt and Qt upon
arrival of task t (without updating the past Pτ ’s and Qτ ’s for
τ < t), followed by updating {L(v)}, as detailed next [13].

B. Online Library Update in Function Space

In lifelong learning, the goal is to find the solution to (9)
in an online fashion as the number of tasks grows—possibly
indefinitely. To that end, it is first noted that upon defining the
instantaneous cost

g (L; f∗t ,Ht) := min
Pt,Qt

{
1

2
‖Lst − f∗t ‖

2
Ht

+ µ1‖Pt‖2,1

+µ2‖Q>t ‖2,1
}

(10)

the objective of (9) tends to

E {g(L; f∗t ,Ht)}+

V∑
v=1

λv‖L(v)‖2H(v) (11)

as the number T of tasks increases due to the Law of Large
Numbers, where the expectation is taken with respect to f∗t
and Ht.

Suppose that at the current iteration t, the aggregate library
is denoted by L(t− 1) and a new task is presented. First, the
single-task optimum and the associated Hessian are computed
from the incoming task by solving (2). Next, Pt and Qt are
computed by solving (10). Then, using stochastic gradient
descent (SGD) in function space, the aggregate library is
updated as

L(t) = L(t− 1)

− η∇L

{
g (L(t− 1); f∗t ,Ht) +

V∑
v=1

λv‖L(v)‖2H(v)

}
(12)

where η > 0 is a small step size and

∇L {g (L(t− 1); f∗t ,Ht)} = Ht (L(t− 1)st − f∗t ) s>t . (13)

Performing the library update in function space as in (12) is
made tractable through the dual updates in finite dimensions.
To see this, note that the Representer Theorem allows the
description of L as a linear combination of the lifted features
of all observed samples. That is,

L =

Φ(1)(D(1))
. . .

Φ(V )(D(V ))


A(1)

. . .
A(V )

 .
(14)

For example, at iteration t − 1, L(t − 1) can be represented
using the pool of samples D(v)(t−1) = [X

(v)
1 , . . . ,X

(v)
t−1] and

coefficients A(v)(t − 1) ∈ R(
∑t−1
τ=1Nτ )×K , v = 1, . . . , V . At

iteration t, when task t arrives, the new set of samples X
(v)
t

are appended to the pool as

D(v)(t) = [D(v)(t− 1),X
(v)
t ], v = 1, . . . , V. (15)

The coefficient matrices {A(v)(t)} correspondingly grow in
size by Nt rows.

To derive the update equations in finite dimensions, let us
define a block diagonal matrix

Φ(t) := bdiag
{

Φ(v)
(

[D(v)(t− 1),X
(v)
t ]
)}V

v=1
. (16)

The aggregate library at time t can then be
represented as L(t) = Φ(t)A(t) with A(t) :=
bdiag{A(1)(t), . . . ,A(V )(t)}. At time t − 1, it can be
expressed as

L(t− 1) = Φ(t) · bdiag

{[
A(v)(t− 1)

0

]}V
v=1

. (17)

Note also that upon defining a V (
∑t
τ=1Nτ )× V Nt matrix

L′′(t) := IV ⊗
[

0(
∑t−1
τ=1Nτ )×Nt

diag{L′′t,1, . . . ,L′′t,Nt}

]
(18)

the Hessian Ht can be expressed as

Ht = Φ1:tL′′(t)1V×1 ⊗ [Φ(1)(X
(1)
t )>, . . . ,Φ(V )(X

(V )
t )>].

(19)

By incorporating these definitions into (12) and matching the
terms on both sides of the equation, one obtains

A(v)(t) =

[
(1− 2λvη)A(v)(t− 1)

Ã(v)(t)

]
, v = 1, . . . , V (20)

where {Ã(v)(t)}Vv=1 can be found by extracting the V diago-
nal blocks of size Nt ×K from

− η

Nt
IV ⊗ diag{L′′t,1, . . . ,L′′t,Nt}

· [K1A(t− 1)st + K2w
∗
t ] s
>
t ∈ RV Nt×V K (21)

where K
(v)
X,X′ := Φ(v)(X)>Φ(v)(X′),

K1 := 1V×1 ⊗
[
K

(1)

X
(1)
t ,D(1)(t−1)

, . . . ,K
(V )

X
(V )
t ,D(V )(t−1)

]
(22)

K2 := 1V×1 ⊗
[
K

(1)

X
(1)
t ,X

(1)
t

, . . . ,K
(V )

X
(V )
t ,X

(V )
t

]
(23)

and w∗t is the dual coefficient vector for f∗t , i.e., w∗t =

[w
(1)∗>
t , . . . ,w

(V )∗>
t ]> with f

(v)∗
t = Φ(v)(X

(v)
t )w

(v)∗
t , v =

1, . . . , V .



TABLE I
KERNEL LIFELONG MTMV LEARNING ALGORITHM.

Input: Multiview data Xt, labels yt, t = 1, 2, . . . and parameters
{λv}, µ1, µ2, η, ε,K

Output: Per-view libraries {L(v) = Φ(v)(D(v))A(v)},
and latent codes {Pt}, {Qt}, t = 1, 2, . . .

1: Initialize libraries {L(v)(0)} randomly or with first K f∗t ’s
2: For t = 1, 2, . . .
3: Compute STMV optimum f∗t by solving (2) in batch or online
4: Compute the corresponding Hessian Ht via (6)–(7)
5: Obtain Pt and Qt by solving (10)
6: Obtain {Ľ(v)(t)} using (24) and (20)
7: Sparsify the pool elements to obtain {D(v)(t)} and project the

libraries via (26) to produce parsimonious libraries {L(v)(t)}
8: End For

C. Parsimonious Library Representation

As in any kernel-based learning methods, the solution ob-
tained in Sec. III-B depends on all observed training samples.
This is particularly acute in lifelong learning as the number
of tasks can grow indefinitely, accumulating a prohibitive
number of samples. To mitigate the ensuing computational and
memory complexity, a method to prune the sample pool needs
to be adopted. Inspired by [16], we propose to discard as many
samples as possible from the pools {D(v)(t)} at each iteration
t as long as the libraries {L(v)(t)} can be approximated within
a specified tolerance in the Hilbert norm sense.

Starting from the pools {D(v)(t− 1)} from iteration t− 1,
upon arrival of task t, append the new set of samples {X(v)

t }
as in (15) but now denote the updated pool as Ď(v)(t), i.e.,

Ď(v)(t) := [D(v)(t− 1),X
(v)
t ], v = 1, . . . , V. (24)

By performing the update in (20), one can get the updated
coefficient matrix, which we will denote as Ǎ(v)(t) now. De-
fine Ľ(v)(t) := Φ(v)(Ď(v)(t))Ǎ(v)(t) for v = 1, . . . , V . Then,
a greedy algorithm called the destructive kernel orthogonal
matching pursuit (KOMP) algorithm is employed to discard
one by one the samples (columns) in Ď(v)(t) to find the
smallest subset D(v)(t) of Ď(v)(t) that satisfies a specified
error tolerance [16]. That is, the approximation error given by

max
v∈{1,...,V }

min
L(v)∈span{Φ(v)(D(v)(t))}

‖L(v) − Ľ(v)(t)‖2H(v) (25)

is ensured not to exceed a pre-specified tolerance ε. The set of
indices of the discarded samples is constrained to be identical
across all views. The projection (minimization) in (25) can be
computed through

A(v)(t)

= arg min
A
‖Φ(v)(D(v)(t))A− Φ(v)(Ď(v)(t))Ǎ(v)(t)‖2H(v)

= K
(v)†
D(v)(t),D(v)(t)

K
(v)

D(v)(t),Ď(v)(t)
Ǎ(v)(t) (26)

from which one can get L(v)(t) = Φ(v)(D(v)(t))A(v)(t) for
v = 1, . . . , V . The overall algorithm is described in Table I.
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Fig. 1. Convergence of the proposed algorithm.
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Fig. 2. Evolution of the pool size.

IV. NUMERICAL TESTS

To demonstrate the effectiveness of the proposed approach,
regression tasks with V = 5 views were considered based on
synthetic data sets. First, K = 3 task clusters with centroids
{fc,k := [f

(1)
c,k , . . . , f

(5)
c,k ]>}3k=1 were generated through

f
(v)
c,k = Φ(v)(D(v))c

(v)
k , k = 1, . . . , 3, v = 1, . . . , 5 (27)

where the elements of D(v) ∈ R20×100 and c
(v)
k ∈ R100

were randomly drawn from Gaussian distributions N (0, 4)
and N (0, 1), respectively. Then, the ground truth mappings
for T = 15 tasks {ft} were generated via

f
(v)
t = f

(v)
c,kt

+ Φ(v)(D(v))b
(v)
t , t = 1, . . . , 15, v = 1, . . . , 5

(28)
where kt is a cluster index for task t chosen uniformly over
{1, 2, 3}. The coefficients b

(v)
t ∈ R100 is equal to 0 for all

views except for one randomly chosen view v̄, for which
b

(v̄)
t has elements drawn from N (0, 1). The first term in (28)
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TABLE II
MSES AND NORMALIZED MSES AVERAGED OVER TASKS.

STSV Lifelong MTSV STMV Lifelong MTMV
MSE 0.71 0.68 0.61 0.39

NMSE 1.07 1.02 0.92 0.59

captures a common skill across views, while the second term
represents an aberration present in some random view. Then,
200 samples were generated for each task according to x

(v)
t,n ∼

N ((2v−6)120×1, 0.1I20) and the corresponding ground truth
labels were obtained by yt,n =

∑V
v=1 f

(v)
t (x

(v)
t,n)+N (0, 0.01).

Finally, the data set was divided into 10% training, 45%
validation, and 45% test samples.

In Fig. 1, the evolution of the kernel lifelong MTMV
learning objective function in (4) is shown. It can be seen
that the algorithm converges. Fig. 2 depicts the evolution of
the number of the pool elements needed to represent each of
the per-view libraries. Interestingly, although our algorithm is
never privy to the particular set of samples used to generate
the ground truth, the pool size tends to stabilize at around
90 elements—on par with the 100 used in the ground truth
libraries.

In Fig. 3, the per-task mean-square error (MSE) perfor-
mances of the proposed lifelong MTMV algorithm is shown.
For comparison, the MSEs of STSV learning, lifelong MTSV
learning, and STMV learning are also depicted. For single-
view algorithms, the MSE is averaged over all views. It
is observed that while lifelong MTSV learning improves
upon the STSV learning slightly, much more improvement is
achieved by STMV learning as the views are selected robustly.
However, the best performance is attained through proposed
lifelong MTMV learning, which is seen to perform markedly
better than the others, particularly in the challenging tasks,
by effectively learning from other tasks. Table II lists the
MSEs and the normalized MSEs (NMSEs), normalized by
the variance of the ground truth labels, averaged over tasks,
achieved by different methods.

V. CONCLUSIONS

A kernel-based lifelong MTMV learning algorithm that can
exploit the inherent shared structure across related tasks as
well as multiple views has been proposed. A sparse latent
model was adopted in function space to learn the skill li-
brary shared across tasks for each view. Skill consistency
across views was robustly enforced through appropriate group
sparsity constraints. The resulting batch MTMV problem was
then approximately re-formulated to derive practicable online
update rules suitable for the lifelong learning setting. The
SGD-based library updates in function space were shown to be
implementable in finite dimensions thanks to the Representer
Theorem. The growing pool of samples needed to represent
the solution was pruned parsimoniously. The numerical tests
verified the effectiveness of our proposed approach.
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