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Abstract—Compressed sensing (CS) techniques have been suc-
cessfully applied to multi-input multi-output (MIMO) radars to
drastically reduce the sampling rates required for acquiring data.
In this work, a CS MIMO radar is derived by employing a matrix
recovery algorithm exploiting the low-rank structure of the data
matrix based on linearly compressed measurements. Compared
to a MIMO radar based on low-rank matrix completion, the pro-
posed approach is seen to provide superior data reconstruction
and target estimation performance at lower sampling rates.

Index Terms—MIMO radar, low-rank matrix recovery, ran-
dom modulator pre-integrator, compressed sensing.

I. INTRODUCTION

Recently, compressive sampling (CS) techniques have been
applied to MIMO radar signal processing, allowing drasti-
cally reduced sampling rates, without sacrificing the radar
performance. A CS MIMO radar was developed by exploiting
the sparsity of the radar scene and the bounds for the range
and azimuth resolution, as well as the number of recoverable
targets were derived [1]. The CS technique was employed
assuming that the targets are sparse in the angle-Doppler
domain, and the recovery algorithm was implemented based
on `1-norm minimization to achieve high-resolution estimation
with much fewer samples than a traditional MIMO radar in [2].
A typical limitation in the sparsity-based CS MIMO radar is
that the estimated parameter space needs to be discretized,
which incurs errors when the targets are not well aligned with
the grid points.

It has also been recognized that a CS MIMO radar can
be developed based on the low-rank structure of the data
matrix. In [4], at each receive antenna element, either ran-
domly switched matched filtering or sub-Nyquist-rate random
sampling is performed, and the samples are forwarded to a
fusion center, resulting in a data matrix with missing entries.
Then, the entire data matrix is reconstructed through matrix
completion (MC) based on the low-rank property. This MIMO-
MC radar does not require discretization of the parameter
space and was shown to provide high-resolution estimates at
a low sampling rate. In [5], MC was applied to a MIMO
radar system with a shared receive array. When the received
signal is only partially observed due to receiver sharing, the
missing entries are imputed by exploiting the correlation of
successive data matrices through dynamic MC. It was shown

that the MC algorithm can also improve the signal quality
due to the denoising effect. MC was also applied to MIMO
radar using a sparse planar array, where the sparsity of the
array was induced by randomly removing individual elements
or entire rows/columns [6]. In order to guarantee that the
low-rank property held, the original matrix was reconstructed
into a two-fold Hankel structure. The MC technique was also
used for meteorological remote sensing and target estimation
applications [7], [8].

In this work, a CS MIMO radar is developed based on
the low-rank property of the data matrix, but random linear
projections of the received signal are used as measurements.
In particular, the random modulator pre-integrator (RMPI) ar-
chitecture, which was shown effective for CS data acquisition
systems, is adopted [9], [10]. Then, the entire data matrix is
recovered based on low-rank matrix recovery using a nuclear
norm minimization formulation. The resulting RMPI MIMO
radar shows excellent performance in data matrix recovery
and target parameter estimation, outperforming the MC-based
MIMO radar especially when the effective sampling rate is
much lower than the Nyquist rate.

The rest of the paper is organized as follows. The MIMO
radar signal model is presented in Sec. II. The compressive
sensing scheme and the data matrix recovery are described in
Sec. III. The results of performance evaluation are discussed
in Sec. IV. The conclusion is provided in Sec. V.

II. SIGNAL MODEL

A standard model for a MIMO pulsed radar system with
collocated transmit and receive antennas is adopted [3], [4].
The transmit and receive antennas, which are stationary, are
uniform linear arrays (ULAs) having MT and MR elements,
respectively. The inter-element spacings of the transmit and
receive arrays are denoted as dT and dR, respectively. The
radar system transmits Q pulses, each of duration TP with
energy E. The pulse repetition interval (PRI) of the pulses
is TPRI . Let τ be the time within each pulse satisfying
0 ≤ τ ≤ TP . The m-th element in the transmit array emits
an orthogonal baseband waveform sm(τ) :=

√
Eφm(τ) with∫

φm(τ)φ∗k(τ)dτ = δmk, for m, k ∈ {0, 1, . . . ,MT − 1},
where ∗ denotes complex conjugation, and δmk = 1 if m = k



and 0 otherwise. The modulated waveform s̃m(t) that is
transmitted over carrier frequency f can be expressed as

s̃m(qTPRI + τ) =
√
Eφm(τ)ej2πf(qTPRI+τ),

q = 0, 1, . . . , Q− 1, 0 ≤ τ ≤ TP . (1)

Suppose that there are K targets, with the k-th target
located at range R and azimuth angle θk, moving at a radial
velocity vk, having a complex reflection coefficient βk, for
k = 1, 2, . . . ,K. Let λ be the wavelength of the carrier given
by λ = c

f , where c is the speed of light. Then, the signal
transmitted by the m-th transmit antenna, reflected by the k-
th target, and received by the n-th receive antenna, can be
expressed as

s̃m

(
qTPRI + τ +

2R

c

)
· βkej

2π
λ (ndR sin θk+mdT sin θk)ej

2π
λ 2vkqTPRI . (2)

For simplicity, let us assume that the transmit waveforms
sm(t) are narrowband, and the target reflection coefficients
βk are constant over all pulses. Furthermore, the delay spread
in the received signals is assumed to be much smaller than the
pulse duration TP , and the Doppler spread 2vk

λ much smaller
than the pulse bandwidth 1/TP . Moreover, it is assumed that
the Doppler shift in the fast time can be neglected, resulting
in the Doppler shift depending only on the slow time pulse
index q [4].

Under these assumptions, the demodulated signal xl(t)
observed by the l-th receive antenna during the q-th pulse
interval can be written as

xl

(
qTPRI + τ +

2R

c

)
≈ wl

(
qTPRI + τ +

2R

c

)
+

K∑
k=1

MT−1∑
m=0

√
Eφm(τ)βke

j 2π
λ sin θk(ldR+mdT )ej

2π
λ 2vkqTPRI ,

l = 0, . . . ,MR − 1 (3)

where wl(t) contains both noise and interference. Eq. (3) can
be simplified by introducing the steering vector a(θk) of the
transmit array toward the k-th target, given by

a(θk) := [1, ej
2π
λ dT sin θk , ..., ej

2π
λ (MT−1)dT sin θk ]> (4)

where > denotes transposition. Similarly, define the steering
vectors of the receive array as

b(θk) := [1, ej
2π
λ dR sin θk , ..., ej

2π
λ (MR−1)dR sin θk ]>. (5)

Define also s(τ) := [s0(τ), . . . , sMT−1(τ)]
>. Then, xl(t) can

be expressed as

xl

(
qTPRI + τ +

2R

c

)
≈ wl

(
qTPRI + τ +

2R

c

)
+

K∑
k=1

βke
j 2π
λ ldR sin θkej

2π
λ 2vkqTPRIa(θk)

>s(τ). (6)

The samples of xl(t) will be acquired using a sub-Nyquist
rate sampling device, as will be discussed in Sec. III. For now,

Fig. 1. Block diagram for RMPI.

if each element in the antenna array were to be sampled at the
Nyquist sampling rate fNyq , the N samples over the q-th pulse
obtained from the l-th antenna element can be expressed as

xql :=
[
xl
(
qTPRI +

2R
c

)
, . . . , xl

(
qTPRI +

N−1
fNyq

+ 2R
c

)]>
.

(7)

Collecting the samples from MR antennas, the data matrix for
the q-th pulse can then be defined as

Xq := [xq0, . . . ,xq,(MR−1)]
> ∈ CMR×N . (8)

Now let

A := [a(θ1), . . . ,a(θK)] ∈ CMT×K (9)

B := [b(θ1), . . . ,b(θK)] ∈ CMR×K (10)
Σ := diag{β1, . . . , βK} (11)

Dq := diag{ej 2π
λ 2v1(q−1)TPRI , . . . , ej

2π
λ 2vK(q−1)TPRI} (12)

S := [s(0), . . . , s((N − 1)/fNyq)] ∈ CMT×N . (13)

Finally, let Wq ∈ CMR×N be the matrix whose (l+1, n+1)-
entry for l = 0, . . . ,MR− 1 and n = 0, . . . , N − 1 is equal to
wl(qTPRI + n/fNyq + 2R/c). Then, it can be easily verified
that

Xq = BΣDqA
>S + Wq. (14)

Therefore, provided that min{K,MT } � min{MR, N}, the
rank of the noise-free data matrix Zq := BΣDqA

>S is
min{K,MT } and Zq is low-rank [4].

III. COMPRESSIVE SENSING AND RECOVERY

To acquire sub-Nyquist rate compressive samples, the
random-modulation pre-integrator (RMPI) architecture is em-
ployed [9], [10]. The RMPI is an analog-to-information (A2I)
converter that has been shown to provide simple and efficient
compression for data acquisition systems. The input is pro-
cessed by a random demodulator (RD) based on a pseudo-
random bit sequences (PRBSs), followed by integration and
sampling. The pipeline provides a channel of outputs, and
multiple channels are often implemented. Fig. 1 shows the
RMPI architecture with a single channel.

More specifically, consider an input signal x(τ) and a
chipping signal c(τ) of duration TP . Then, for a positive



integer M with Tint := TP /M , the RMPI obtains the i-th
sample by integrating the modulated signal x(τ)c(τ) as

y[i] =

∫ (i+1)Tint

iTint

x(τ)c(τ)dτ, i = 0, . . . ,M − 1. (15)

The chipping signal c(τ) is generated using a PRBS taking
values ±1 with equal probabilities and toggling at a rate of
fchip. In order to efficiently capture signals with bandwidth
B, it is necessary to have fchip ≥ fNyq = 2B. To simply
the exposition, let us assume here that fchip = fNyq and
a rectangular pulse of duration 1/fchip is used for the chip
waveform. Furthermore, assume that TP fNyq is an integer
equal to N , and Nint := N/M is also an integer.

Suppose that the input x(τ) = xl(qTPRI + τ + 2R/c).
Then, one can relate the Nyquist-rate samples xql to the sub-
Nyquist rate samples obtained from the RMPI. For this, define
a diagonal matrix of the PRBS {c(l,p)n ∈ {−1, 1}}N−1n=0 for
receive antenna l and RMPI channel p as

C(l,p) := diag{c(l,p)0 , . . . , c
(l,p)
N−1},

l = 0, . . . ,MR − 1, p = 1, . . . , Nch (16)

where the PRBS is unique for each of Nch channels. Define
also the matrix that represents the integration and the sampling
operations as

H := IM ⊗ [1, 1, . . . , 1]︸ ︷︷ ︸
Nint

∈ {0, 1}M×N (17)

where IM is an M ×M identity matrix and ⊗ denotes the
Kronecker product. Let y

(p)
ql ∈ CM be the vector of samples

from the RMPI [cf. (15)], and

yql := [y
(1)>
ql , . . . ,y

(Nch)>
ql ]> ∈ CNchM . (18)

Then, upon defining

Φl :=

 HC(l,1)

...
HC(l,Nch)

 ∈ {−1, 1}NchM×N (19)

it can be seen that yql = Φlxql.
This process can be repeated for all receive antenna ele-

ments. Collecting yql for l = 0, . . . ,MR − 1, one can obtain
the compressive sample vector yq := [y>q0, . . . ,y

>
q,MR−1]

> ∈
CNchMMR . Then, it can be easily seen that

yq = bdiag{Φ0, . . . ,ΦMR−1}vec(X>q ) (20)

= A(Xq) = A(Zq) +A(Wq) (21)

where bdiag{·} constructs a block-diagonal matrix by arrang-
ing the matrices in {·} consecutively, vec(·) vectorizes a matrix
by stacking its columns, and A : CMR×N → CNchMMR is a
linear mapping defined implicitly from (20)–(21). Note that A
compresses the Nyquist rate data matrix of dimension MR×N
to a vector of dimension NchMMR, reducing the sampling
rate effectively to

fs := fNyq
NchM

N
[samples per second]. (22)

To recover the Nyquist-rate data matrix Zq from com-
pressive samples yq , low-rank matrix recovery (LRMR) is
performed based on (20)–(21). In particular, the following
nuclear norm minimization problem is solved [11].

minimize ‖Zq‖∗ (23a)
subject to ‖yq −A(Zq)‖2 ≤ ε (23b)

where ‖ · ‖∗ denotes the nuclear norm (the sum of singular
values), which is a convex surrogate for matrix rank, and
ε is a parameter related to noise magnitude. Problem (23)
can be solved efficiently using various methods including the
alternating direction method of multipliers (ADMM) [12].

IV. PERFORMANCE EVALUATION

A. Experiment Setup

To evaluate the performance, a MIMO radar system with
MT = MR = 20 is considered. The inter-element spacing
is dT = dR = λ

2 . The transmitter emits a set of Hadamard
waveforms of length N = 512 at carrier frequency f = 1 GHz.
The number of pulses transmitted is Q = 3 and the pulse
repetition frequency (PRF) is 6 kHz. The number of targets is
set to K = 3. The targets were assigned with azimuth angles in
[−90◦, 90◦] with velocities in [−450, 450] m/s. The complex
reflection coefficients of the targets were generated randomly.
Zero-mean Gaussian noise was introduced at the receive
antennas. For comparison, the matrix completion (MC)-based
MIMO-MC radar [4] was also implemented. The average
results are obtained from 100 Monte Carlo runs.

B. Data Matrix Recovery Performance

First, the performance of the data matrix recovery of the
RMPI-based MIMO radar is evaluated at various compression
rates and signal-to-noise power ratio (SNR) levels. The com-
pression rate is defined as(

1− NchM

N

)
× 100 [%]. (24)

As the performance metric, the normalized mean square error
(NMSE) between the true data matrix Zq and the estimated
one Ẑq , defined by

NMSE :=
‖Ẑq − Zq‖F
‖Zq‖F

(25)

is used, where ‖ · ‖F denotes the Frobenius norm. Fig. 2
shows the NMSE performances of the RMPI MIMO radar at
compression rates {25%, 50%, 75%, 87.5%, 90.6%} and SNRs
0–60 dB. For comparison, the NMSEs of the MIMO-MC radar
are also depicted. It can be seen that, at low compression
rates, the two schemes perform similarly. However, the RMPI
MIMO radar performs markedly better at compression rates
equal to or larger than 75%.



C. Target Parameter Estimation Performance

To assess the target parameter estimation performance of the
radar, a subspace-based algorithm is adopted for joint angle
and velocity estimation as in [4]. Let Ẑq denote the estimated
data matrix during pulse q. Noting that TP

EN SSH = I, where
·H denotes Hermitian transpose, one can perform matched
filtering on Ẑq to get

Yq :=
TP
EN

ẐqS
H = BΣDqA

> + W̃q (26)

where W̃q represents the noise matrix that is a function of
both the noise due to the radar receiver and the recovery
error. By collecting Yq for q = 0, . . . , Q − 1, form Ỹ :=
[Y0, . . . ,YQ−1]

> ∈ CQMT×MR . Upon defining

F := [d(v1)⊗ a(θ1), . . . ,d(vK)⊗ a(θK)] (27)

d(v) := [1, ej
2π
λ 2vTPRI , . . . , ej

2π
λ 2v(Q−1)TPRI ] (28)

it can be shown that [4]

Ỹ = FΣB> + W̃ (29)

where W̃ := [W̃0, . . . ,W̃Q−1]
>. The sample covariance

matrix R̂Ỹ of Ỹ can be computed as

R̂Ỹ =
1

MR
ỸỸH . (30)

For joint angle and velocity estimation, a two-dimensional
MUSIC estimator performs an eigenanalysis of R̂Ỹ to obtain
the noise subspace En corresponding to the (QMT − K)
smallest eigenvalues. The azimuth angles and velocities of the
targets can be obtained by finding the peak locations of the
MUSIC pseudospectrum given by

P (θ, v) =
1

(d(v)⊗ a(θ))HEnEH
n (d(v)⊗ a(θ))

. (31)

Fig. 3 shows the pseudospectra based on the ground truth
data matrix Zq (top), the estimated data matrix Ẑq using RMPI
MIMO radar (middle), and the estimated data matrix using
MIMO-MC radar (bottom), at 75% compression and 10 dB
SNR. It is clear that the pseudospectrum for the MIMO-
MC radar undergoes excessive spreading in the angle-velocity
domain. Also notice that the peak values at the target locations
are much smaller than those from the RMPI MIMO radar,
which indicates that the RMPI radar estimates are more robust.

Fig. 4 shows the mean velocity errors at different compres-
sion rates and SNR levels. It is clear that the RMPI MIMO
radar offers better target parameter estimation performance
than the MIMO-MC radar especially when the compression
rate is high.

V. CONCLUSION

A compressive sensing MIMO radar is proposed using low-
rank matrix recovery. The RMPI architecture is adopted to
obtain sub-Nyquist rate samples of the received signals at the
antenna array, and the Nyquist-rate data matrix was recovered
through a nuclear norm minimization formulation based on
the low-rank property. Compared to the MIMO-MC radar that

performs low-rank matrix completion, it was seen from the
numerical tests that the RMPI MIMO radar obtains the data
matrix with smaller NMSE when the compression rate exceeds
50%. Furthermore, the target velocity estimation performance
of the RMPI MIMO radar was seen to be superior to that of
the MIMO-MC radar, especially when the undersampling is
aggressive. Further experimental tests and theoretical analysis
of the recovery guarantee are planned for future work.
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Fig. 2. NMSE versus SNR for different compression rates.

Fig. 3. MUSIC pseudospectra at 75% compression and 10 dB SNR.



Fig. 4. Average velocity estimation error versus SNR at various compression rates.


