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Abstract—In this work, a robust subspace clustering algo-
rithm is developed to exploit the inherent union-of-subspaces
structure in the data for reconstructing missing measurements
and detecting anomalies. Our focus is on processing an inces-
sant stream of large-scale data such as synchronized phasor
measurements in the power grid, which is challenging due to
computational complexity, memory requirement, and missing
and corrupt observations. In order to mitigate these issues, a
low-rank representation (LRR) model-based subspace clustering
problem is formulated that can handle missing measurements and
sparse outliers in the data. Then, an efficient online algorithm
is derived based on stochastic approximation. The convergence
property of the algorithm is established. Strategies to maintain a
representative yet compact dictionary for capturing the subspace
structure are also proposed. The developed method is tested on
both simulated and real phasor measurement unit (PMU) data to
verify the effectiveness and is shown to significantly outperform
existing algorithms based on simple low-rank structure of data.

Keywords— Anomaly detection, incomplete measurement,
low-rank representation, online algorithm, subspace clustering,
phasor measurement unit, power system monitoring, syn-
chrophasor.

I. INTRODUCTION

Grid status monitoring is an important prerequisite for
reliable and efficient operation of the power system. Failure to
identify anomalies in the grid states in an accurate and timely
manner may result in inefficient use of resources, equipment
damages, system instabilities, and even cascading blackouts.
It is also critical that cyber-attacks to the power system and
its data be detected, and their effect mitigated promptly.

The benefit of employing synchrophasor measurements for
power system monitoring has been widely recognized in recent
years [1], [2]. The phasor measurement unit (PMU) is a
device that can measure voltage phasors at buses, typically
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at a rate of 30 samples per second or higher. Based on
the global positioning system (GPS), PMU measurements
can achieve precise synchronization across a wide region.
Compared to the conventional supervisory control and data
acquisition (SCADA) protocol, which provides measurements
at a frequency of a few samples per minute, PMU data
can reveal dynamic changes in the grid states, significantly
improving the monitoring capability.

As the high-speed large-scale spatio-temporal measurement
of the grid is enabled, data-driven approaches for power
system monitoring became important. Departing from the
more conventional model-driven paradigm, which requires
detailed and accurate system models and parameters, the data-
driven methods utilize the ample measurements to learn the
salient structures in the data and perform inferences. Voltage
stability was predicted using singular value decomposition
(SVD), spline extrapolation, and neural networks, trained on
measured and simulated data [3]–[6]. Line outages were iden-
tified using machine learning techniques [7], [8]. A real-time
event identification method was developed based on unique
subspace signatures present in the dynamics of PMU data [9].
Co-occurring multiple events were recognized from frequency
measurements through sparse coding techniques [10]. The
onset of events was detected based on compressed PMU
data using dynamic programming optimization [11]. Periodic
forced oscillations caused by rogue inputs were detected from
PMU measurements in [12].

There are some challenges associated with analyzing the
large-scale data generated by PMUs. The processing of up to
tera-bits of daily measurements for large-scale systems require
significant dimensionality reduction that can still preserve
informative features in the data [13], [14]. Furthermore, such
data are often generated in a streaming fashion and need to
be processed in real time. Thus, processing algorithms are
constrained to be of low computational complexity. Based on
the data, fast and accurate inference must be performed to
detect anomalies and disturbances occurring in the systems.
As the data volume grows large, it is natural to have miss-
ing and corrupt entries in the data due to various reasons,
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such as sensor failure and communication errors. In critical
infrastructures, the measurements may also be tampered by
cyber-attacks, which must be detected and isolated.

Exploiting inherent structures in the data shows promises in
mitigating these challenges. Missing measurements in power
grid data were reconstructed using low-rank matrix com-
pletion approaches in [15]. Subspace clustering approaches
were devised and tested for synchrophasor data [16], [17].
Measurements deviating from the postulated models were
detected as indicating disturbance events or cyber-attacks [17]–
[19]. The classification problem to detect the attacks in the
smart grid was tackled using supervised and semi-supervised
methods [20], [21]. However, these works were based on
batch implementations, where the processing takes place of-
fline after measurements have been collected, or the model
is re-trained frequently. Thus, the methods may incur large
computational and memory burden and may not be suitable for
real-time monitoring applications. Deep learning models, such
as the convolutional neural network (CNN), deep autoencoder
(DAE), generative adversarial network (GAN), and long short-
term memory (LSTM) network, were employed to detect
anomalies in power system data, but they typically demand
large datasets and long training time [22]–[27].

To mitigate these issues, online algorithms are desired,
which can process the data stream sequentially and incre-
mentally. Online identification of low-dimensional subspaces
from data with missing entries was tackled in [28]. Online
algorithms for robust principal component analysis (PCA)
were derived for processing outlier-corrupted data with low-
dimensional structures in [29], [30]. Online learning of sparse
coding dictionary models was proposed in [31]. An online
nonnegative matrix factorization algorithm was derived in [32].
An online algorithm for missing PMU data estimation was
developed based on low rank matrix completion in [33].

In this paper, the subspace clustering model is adopted,
in which data points are assumed to lie in a union of
subspaces [34]. Such a model is readily justified since sub-
spaces can capture different states of the dynamic system
operations [3], [18]. While the subspace clustering model
can subsume low-rank subspace models, it can capture the
richer union-of-subspaces structure, and thus can be used
in high-rank situations as well—i.e., when the sum of the
dimensionalities of individual subspaces is higher than the
ambient measurement dimension [16], [35].

A host of approaches have been developed for learning
subspace clustering structures, including the k-plane clus-
tering [36], generalized PCA [37], sparse subspace cluster-
ing [38], and low-rank representation (LRR) [39]. Here the
LRR framework is employed for its good performance and
extendability to online implementation. It is noted that an
online algorithm for the LRR model was developed in [40].
However, in addition to neglecting the missing data issue and
employing a costly second-order update rule, it was suggested
in [40] to use the entire data matrix itself as the representative
dictionary. Therefore, the algorithm can be started only after
the data collection is done. If the initial portion of the
streaming data is used as the dictionary, the dictionary may
lose the representative power if the data distribution changes

over time.
In our work, the dictionary for subspace representation is

updated in an online fashion as well. More specifically, the
dictionary atoms are selected incrementally yet judiciously
based on an appropriate sparsification criterion. Furthermore,
to maintain the dictionary size under a given memory budget,
the atoms are adaptively discarded, which is called a pruning
procedure.

Some preliminary results were presented in confer-
ences [17], [41]. Compared to these precursors, the current
journal version contains slightly different formulations for
the consistency of batch and online problems. Furthermore,
rigorous proofs are provided for the convergence of the derived
batch and online algorithms. Extended numerical tests are
performed with synthetic data using grids of different sizes,
and with real PMU data. Various aspects of the performance
of the proposed algorithms are also compared with existing
alternatives that adopt low-rank models of data.

Our contributions can be summarized as follows.
1) We formulate a novel LRR-based robust subspace clus-

tering problem accommodating both incomplete and
corrupt measurements.

2) Both batch and online algorithms are derived with
provable convergence guarantees. The online algorithm
enjoys low computational complexity, processing delay,
and storage overhead. In addition, it can track slow vari-
ations in the underlying dynamics. Online sparsification
and pruning procedures are also proposed to maintain a
compact dictionary to represent the subspaces.

3) The algorithms are applied to the synchrophasor data
analysis for power grid monitoring. Numerical tests are
performed to validate the performance of reconstructing
missing measurements and detecting anomalous events
using both simulated and real PMU data. The algorithms
are compared with existing alternatives and shown to be
significantly superior.

The rest of the paper is organized as follows. In Section II,
the subspace clustering formulation with missing and corrupt
data is presented. The batch and online algorithms are derived,
and then strategies to update the dictionaries on the fly are
discussed in Section III. Results from the numerical tests
are presented in Section IV. The conclusion is provided in
Section V.

II. LOW RANK REPRESENTATION FOR INCOMPLETE DATA

Let us denote the N -channel measurements obtained from
various sensors at time t as zt ∈ RN . Collecting the
measurements over T time intervals, matrix Z is formed as
Z := [z1, z2, . . . , zT ] ∈ RN×T . The subspace clustering
model postulates that a (noise-free) measurement vector z̄t
lies in one of K subspaces {Sk}Kk=1; that is, z̄t ∈ ∪Kk=1Sk.
Such a model is useful for PMU data since small variations
in the node voltages lead to the measurements that are well
approximated by a linear subspace, and significant variations
in the operating point or disturbances in the system would
result in measurements that belong to different subspaces [3],
[16]. Thus, z̄t can be represented by a linear combination of a
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set of template vectors, called atoms, which are collected as the
columns in a dictionary matrix D ∈ RN×M , where M is the
dictionary size or the number of atoms. Then, with ct ∈ RM
representing the vector of coefficients, one has z̄t ≈ Dct.

Interestingly, upon defining C := [c1, c2, . . . , cT ] ∈
RM×T , the LRR model insists that C has a rank that is
much smaller than min{M,T}. It turns out that this constraint
can reveal the subspace clustering structure. More specifically,
consider the optimization problem with Z̄ := [z̄1, . . . , z̄T ]

min
C
‖C‖∗ (1a)

subject to Z̄ = DC (1b)

where ‖C‖∗ denotes the nuclear norm of C, or the sum of its
singular values. Minimizing ‖C‖∗ is tantamount to promoting
a low rank in C [42]. If D = Z̄ and Z̄ has the skinny SVD
given by Z̄ = U0Σ0V

>
0 (> denotes transposition), it can be

shown that the solution of (1) is C = V0V
>
0 [39]. Under

the assumption that the data {z̄t} are clean, that is, they lie
exactly in the union of subspaces, and the set of subspaces
{Sk} are independent, which means that the dimension of the
union (the rank of Z̄) is equal to the sum of the individual
dimensions of the subspaces, it can be shown that the (i, j)-th
entry of V0V

>
0 is nonzero only if z̄i and z̄j belong to the

same subspace [43]. Thus, V0V
>
0 can serve as the affinity

matrix, which indicates whether a given pair of data points
lie in the same subspace. In fact, various subspace clustering
techniques first compute the affinity matrix, and then extract
the clusters [34]. Note also that if D contains the atoms that
span the individual subspaces {Sk}, then the resulting C can
still be used as the affinity matrix [39].

As the data may be collected at a high rate and transported
over some communication infrastructure, it may happen that
some measurements do not arrive at the processing unit on
time, resulting in incomplete measurements. Let Ω denote
the set of indices for the entries of Z corresponding to the
observed measurements, and Ωc the missing ones. Also, define
operator PΩ(Z), which keeps the observed entries unchanged,
while setting the missing ones to zero. In other words, with
the (i, j)-entry of Z denoted as Zij , the (i, j)-entry of PΩ(Z)
is defined as

[PΩ(Z)]ij :=

{
Zij , if (i, j) ∈ Ω

0, if (i, j) ∈ Ωc.
(2)

In addition, the measurements may become corrupted by
gross errors in the communication channel, or even by cyber-
attacks. Such measurements need to be detected and isolated.
Anomalous measurements containing significant deviations
from nominal operational states also need to be identified.
Assuming that only a small portion of the data matrix Z
is corrupted, one can adopt a robust LRR model, which
postulates that Z = DC + E, where E ∈ RN×T is a sparse
matrix. Overall, an optimization problem for robust LRR with
incomplete measurements can be posed as

min
C,E
‖C‖∗ + µ‖E‖1 (3a)

subject to PΩ(Z) = PΩ(DC + E) (3b)

where ‖E‖1 is the `1-norm of E defined as the sum of absolute
values of all entries in E, and µ > 0 is a parameter that
balances the low rank of C and the sparseness of E. Group or
other structured sparsity can be easily incorporated to capture
the correlations in the corruption patterns.

It can be easily verified that at the optimum, E will have the
entries in Ωc equal to 0, or E|Ωc = 0. Therefore, the optimal
objective of (3) is equal to that of

min
C,E
‖C‖∗ + µ‖PΩ(E)‖1 (4a)

subject to PΩ(Z) = DC + E. (4b)

The optimal C for (3) will be identical to the optimal C for
(4). Once the optimal E for (4) is denoted as E, the optimal
E for (3) is simply given by E = PΩ(E).

III. ALGORITHM DERIVATION

A. Batch Algorithm

An iterative algorithm to solve (4) can be derived, which
processes the entire data set Z in a batch fashion. The batch
solution is useful for offline analysis of historical data and
serves as a performance benchmark for the online algorithm
that will be developed in Section III-B.

To solve (4) efficiently, the alternating direction method of
multipliers (ADMM) is employed [44]. First, a copy of vari-
able C is introduced as C to obtain a formulation equivalent
to (4) as

min
C,E,C

‖C‖∗ + µ‖PΩ(E)‖1 (5a)

subject to PΩ(Z) = DC + E (5b)

C = C. (5c)

Upon introducing Lagrange multiplier matrices Λ1 and Λ2

associated with constraints (5b) and (5c), the augmented
Lagrangian can be written as

Lρ(C,E,C; Λ1,Λ2)

:= ‖C‖∗ + µ‖PΩ(E)‖1 + 〈Λ1,PΩ(Z)−DC−E〉

+ 〈Λ2,C−C〉+
ρ

2
‖PΩ(Z)−DC−E‖2F +

ρ

2
‖C−C‖2F

(6)

where ρ > 0 is a positive constant, and ‖ · ‖F denotes the
Frobenius norm. The ADMM is an iterative algorithm that
minimizes Lρ alternatingly with respect to two blocks of
variables. Here, C is taken as one block of variables, and
(C,E) as the other block. Then, at iteration k, based on
the k-th (current) iterates Ck,Ck,Ek,Λ

k
1 ,Λ

k
2 , the ADMM

generates the next iterates as

Ck+1,Ek+1 = arg min
C,E

Lρ(Ck,E,C; Λk
1 ,Λ

k
2) (7)

Ck+1 = arg min
C

Lρ(C,Ek+1,Ck+1; Λk
1 ,Λ

k
2) (8)[

Λk+1
1

Λk+1
2

]
=

[
Λk

1

Λk
2

]
+ ρ

[
PΩ(Z)−DCk+1 −Ek+1

Ck+1 −Ck+1

]
. (9)
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TABLE I
BATCH ROBUST SUBSPACE CLUSTERING ALGORITHM.

Input: Ω, PΩ(Z), D, µ > 0, ρ > 0, tol > 0
Output: C and E

1: Initialize: C0, E0, Λ0
1, Λ0

2, and k = 0
2: While not converged
3: Perform SVD: Ck + 1

ρ
Λk

2 = UΣV>

4: Ck+1 = US1/ρ(Σ)V>

5: Ek+1|Ω = Sµ/ρ((Z−DCk + 1
ρ
Λk

1)|Ω)

6: Ek+1|Ωc = (−DCk + 1
ρ
Λk

1)|Ωc

7: Ck+1 = (D>D + I)−1
(
Ck+1 + D>(PΩ(Z)−Ek+1)

+ 1
ρ

(D>Λk
1 −Λk

2)
)

8: Λk+1
1 = Λk

1 + ρ(PΩ(Z)−DCk+1 −Ek+1)

9: Λk+1
2 = Λk

2 + ρ(Ck+1 −Ck+1)
10: Check ‖PΩ(Z)−DCk+1 −Ek+1‖2F < tol

and ‖Ck+1 − C̄k+1‖2F < tol
11: k ← k + 1
12: End while
13: Set Ek|Ωc = 0.
14: Return C = Ck and E = Ek .

It is noted that (7) can be split into the optimizations with
respect to C and E separately. The optimization for C can be
written as

Ck+1 = arg min
C
‖C‖∗ − 〈Λk

2 ,C〉+
ρ

2
‖Ck −C‖2F (10)

= arg min
C
‖C‖∗ +

ρ

2
‖C−Ck −

1

ρ
Λk

2‖2F . (11)

Thus, with the SVD of Ck + ρ−1Λk
2 = UΣV>, and upon

defining a soft-thresholding operator Sµ(·) as

Sµ(x) :=


x− µ, if x > µ

x+ µ, if x < −µ
0, otherwise

(12)

Ck+1 is given by [45]

Ck+1 = US1/ρ(Σ)V> (13)

where S1/ρ(Σ) applies the soft-thresholding operation entry-
wise.

The optimization problem for Ek+1 is given by

Ek+1 = arg min
E

µ‖PΩ(E)‖1 − 〈Λk
1 ,E〉

+
ρ

2
‖PΩ(Z)−DCk −E‖2F (14)

whose closed-form solution is given by

Ek+1|Ω = Sµ/ρ
((

Z−DCk +
1

ρ
Λk

1

) ∣∣∣
Ω

)
(15)

Ek+1|Ωc =

(
−DCk +

1

ρ
Λk

1

) ∣∣∣
Ωc
. (16)

Finally, the update equation for Ck+1 can be derived from
(8) as

Ck+1 = (D>D + I)−1
(
Ck+1 + D>(PΩ(Z)−Ek+1)

+
1

ρ
(D>Λk

1 −Λk
2)
)

(17)

where I is the M ×M identity matrix.

The resulting batch robust subspace clustering (RSC)
algorithm is described in Table I. Compared to a similar
algorithm derived in [39], the algorithm in Table I can
handle missing entries and provides a provable convergence
guarantee. The convergence follows from the standard ADMM
literature. On the contrary, the algorithm in [39] alternates
among three blocks of variables, for which convergence has
not been established in general [46].

Proposition 1: (Convergence of the algorithm in Table I) The
iterates {Ck,Ek,Λ

k
1 ,Λ

k
2} generated from the batch algorithm

are bounded, and every limit point of {Ck,Ek} is an optimal
solution to (3).
Proof: See Appendix A.

B. Online Algorithm

Contrary to the batch analysis method that processes a bulk
of measurements together, the online algorithm updates the
estimates of C and E each time a new datum arrives. This
allows low-delay real-time analysis. Since only the latest data
sample is involved, the online update rules are typically of low
complexity and require a small memory footprint as well.

To facilitate the derivation of an online algorithm, (4) is first
re-written as an unconstrained problem as

min
C,E

1

2
‖PΩ(Z)−DC−E‖2F + λ‖C‖∗ + µ‖PΩ(E)‖1 (18)

where λ > 0 is a parameter tuning the rank of C. Note that
the nuclear norm of a matrix C, whose rank is no larger than
R, can be expressed as [42]

‖C‖∗ = min
A∈RM×R,B∈RT×R

1

2
(‖A‖2F + ‖B‖2F )

subject to C = AB>. (19)

Based on this, (18) is modified to [see also [47]]

min
A,B,E

1

2
‖PΩ(Z)−DAB> −E‖2F

+
λ

2
(‖A‖2F + ‖B‖2F ) + µ‖PΩ(E)‖1. (20)

Proposition 2: If the optimal C for (18) has a rank no
larger than R, then (20) achieves the same optimal objective
as (18).
Proof: Let A∗ and B∗ be the optimal solution to (20), and
set C∗ = A∗B∗>. If one minimizes 1

2 (‖A‖2F + ‖B‖2F )
subject to C∗ = AB> (call the corresponding optimal
solution Ǎ and B̌), one should be able to further reduce
the objective of (20) by using Ǎ and B̌. However, since
A∗ and B∗ are already optimal for (20), one must have
1
2 (‖Ǎ‖2F + ‖B̌‖2F ) = 1

2 (‖A∗‖2F + ‖B∗‖2F ) = ‖C∗‖∗. �

Let bt represent the t-th column of B>, i.e., B> =
[b1, · · · ,bT ], and et the t-th column of E, i.e., E =
[e1, · · · , eT ]. The set Ωt denotes the set of indices of the
observed entries at time t, that is, Ωt := {n : (n, t) ∈ Ω}.
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TABLE II
ONLINE RSC ALGORITHM.

Input: Ω, PΩ(Z), D, λ > 0, µ > 0, ρt > 0
Output: A, {bt}, and {et}
1: For t = 1, 2, . . . , T
2: Set l = 0 and e0

t = 0
3: Repeat
4: Update bl+1

t by (23)
5: Update el+1

t by (24)–(25)
6: l← l + 1
7: Until convergence
8: Set bt = blt and et = elt
9: Update At by (29)

10: Set et|Ωc
t

= 0
11: Next t
12: Return A = AT , {bt}, and {et}

Thanks to reformulation (20), the problem is now separable
into different time slots and can be rewritten as

min
A,{bt},{et}

1

T

T∑
t=1

(
1

2
‖PΩt

(zt)−DAbt − et‖22

+
λ

2
‖bt‖22 + µ‖PΩt

(et)‖1
)

+
λ

2T
‖A‖2F . (21)

The basic idea for deriving the online algorithm is to update
bt and et based on PΩt(zt) at each time t, without revisiting
the past entries {bτ} and {eτ} for τ = 1, 2, · · · , t−1. Further-
more, A is updated based on the stochastic gradient descent
(SGD) method to reduce computational complexity [48].

First, the update for bt and et at time t is based on the
previous iterate of At−1 via solving

{bt, et} = arg min
b,e

1

2
‖PΩt(zt)−DAt−1b− e‖22

+
λ

2
‖b‖22 + µ‖PΩt

(e)‖1. (22)

To solve this problem, the coordinate descent method is
adopted, where bt and et are obtained by fixing one and
solving for the other alternately until they both converge. Let
et|Ωt

and et|Ωc
t

denote the entries of et whose indices are in
Ωt and Ωct , respectively. Then, the coordinate descent proceeds
for l = 0, 1, 2, · · · as

bl+1
t = (A>t−1D

>DAt−1 + λI)−1A>t−1D
>(PΩt

(zt)− elt)

(23)

el+1
t |Ωt

= Sµ
(
PΩt

(zt)−DAt−1b
l+1
t

) ∣∣
Ωt

(24)

el+1
t |Ωc

t
= (−DAt−1b

l+1
t )|Ωc

t
(25)

where Sµ(x) for vector x applies element-wise.
The update for A is based on the SGD method. The

key observation is that as T increases, the objective of (21)
approaches the expected value, thanks to the law of large
numbers. That is, upon defining

h(b, e,A, zt,Ωt; D) :=
1

2
‖PΩt

(zt)−DAb− e‖2F

+
λ

2
‖b‖22 + µ‖PΩt

(e)‖1 +
λ

2T
‖A‖2F (26)

and

g(A, zt,Ωt; D) := min
b,e

h(b, e,A, zt,Ωt; D) (27)

problem (21) tends to

min
A

E [g(A, zt,Ωt; D)] (28)

where the expectation E[·] is with respect to zt and Ωt. Instead
of computing the gradient of the entire cost function, the SGD
takes the instantaneous derivative using only the current data
sample. Thus, the update rule for A becomes

At = At−1+ρt

[
D>
(
PΩt(zt)

−DAt−1bt − et
)
b>t −

λ

T
At−1

]
(29)

where ρt > 0 is the step size. The derived online RSC
algorithm is listed in Table II. The convergence of the
algorithm is established in the following proposition.

Proposition 3: (Convergence of the algorithm in Table II)
Suppose that {zt} are bounded and the iterates {At} gener-
ated by the algorithm in Table II are bounded as well. Then,
for ρt = 1/Lt with a large enough L > 0, {At} converge to
the stationary point of (28) almost surely.
Proof: See Appendix B.

C. Dictionary Update

Clearly, for the union-of-subspaces structure to be captured,
D must contain the vectors that span the individual subspaces
{Sk}. If this is true, provided that the subspaces are indepen-
dent, and the data samples are strictly drawn from ∪Kk=1Sk, it
can be shown that C from (1) will have its (m, t)-entry equal
to zero if the m-th atom in D and the t-th data sample zt lie
in different subspaces [39].

A choice for the dictionary often made in the literature
is to use the batch dataset Z itself by setting D = Z [40].
Obviously, such a choice does not result in truly online
processing since the algorithm would then require the entire
data set to be available first. One could instead make use of
the historical data. However, this might incur sizable memory
requirements. Moreover, the dictionary should still be updated
from time to time to keep up with any slow drift in the data
distribution. A desirable option would be to start with a small
initial dictionary, which is then updated continuously based on
the incoming data stream.

In this work, instead of learning the dictionary from the data
as in the dictionary learning frameworks [31], it is constructed
directly from the online measurement vectors. A critical issue
in this context is to be selective in adding a new measurement
into the dictionary so that the size of the dictionary does
not grow excessively, but still the diversity of the atoms is
maintained so that a good representation capability is achieved.
For this, online sparsification and pruning procedures are
proposed next.

1) Online Sparsification: Various online sparsification
strategies have been developed, in particular, in the context
of kernel-based adaptive filtering literature [49]–[51]. The
main idea is to accept a new datum into the dictionary only
when it is deemed to sufficiently contribute to the diversity of
the dictionary based on an appropriate metric. Representative
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TABLE III
ONLINE RSC ALGORITHM WITH DICTIONARY UPDATE.

Input: Ω, PΩ(Z), λ > 0, µ > 0, ρt > 0, M0, M , δ2

Output: D, A, {bt}, and {et}
1: Initialize D0 ∈ RN×M0 and A0

2: For t = 1, 2, . . . , T
3: Set l = 0 and e0

t = 0
4: Repeat
5: Update bl+1

t by (23) with D replaced by Dt−1

6: Update el+1
t by (24)–(25) with D replaced by Dt−1

7: l← l + 1
8: Until convergence
9: Set bt = blt and et = elt

10: Update At by (29) with D replaced by Dt−1

11: Set et|Ωc
t

= 0
/* sparsification */

12: If Ωct = ∅, set ẑt = zt
13: Otherwise go to line 23

(Optionally, let ẑt = Dt−1At−1bt and proceed to the next line)
14: If minm∈{1,...,Mt−1}

[
‖ẑt‖22 − (ẑ>t žm)2/‖žm‖22

]
≥ δ2

15: Dt = [Dt−1, ẑt]
16: Mt = Mt−1 + 1
17: Otherwise Dt = Dt−1 and Mt = Mt−1

/* pruning */
18: If Mt > M
19: Find m∗ := arg minm∈{1,...,M} ‖at(m, :)‖22
20: Remove the m∗-th column of Dt and m∗-th row of At

21: Mt = Mt − 1
22: End if
23: Next t
24: Return D = DT , A = AT , {bt}, and {et}

sparsification criteria include minimum pairwise distance, ap-
proximate linear dependence, coherence, and Babel measure,
all of which can be shown to eventually upper-bound the
condition number of the kernel (Gram) matrix [51]. In this
work, the minimum pairwise distance measure is adopted for
its simplicity.

Let us first focus on the case where there are no missing
entries in the data. Suppose that at time t − 1, Mt−1 data
vectors ž1, ž2, . . . , žMt−1

are in the dictionary as Dt−1 =
[ž1, ž2, . . . , žMt−1

], where žm ∈ {z1, z2, . . . , zt−1}. Then, at
time t, a new datum zt arrives. The distance metric computed
for zt is given by

κt := min
m∈{1,...,Mt−1}

min
ζ
‖zt − ζžm‖22 (30)

= min
m∈{1,...,Mt−1}

‖zt‖22 −
(z>t žm)2

‖žm‖22
. (31)

If κt is greater than some threshold δ2, then zt is admitted
to the dictionary. That is, one sets Mt = Mt−1 + 1 and
žMt

= zt. Otherwise, zt is discarded. When there are missing
entries, that is, Ωct 6= ∅, a simple pragmatic strategy is to
discard this measurement, which is used in the numerical
tests. An alternative would be to use the reconstructed vector
ẑt = Dt−1At−1bt in place of zt.

Through sparsification, the size of the dictionary Mt tends
only to increase as time goes on. One can show that as
long as the data vectors zt belong to a compact set, the
size of the dictionary does not increase without bound [49].
However, the resulting size of the dictionary may still be too
large in practice. To contain the size of the dictionary within
a prescribed memory budget, a pruning procedure may be
employed as explained next.
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Fig. 1. A 23-bus power system.

2) Pruning: When Mt exceeds a memory budget M for
the dictionary, that is, from the last sparsification step, Mt =
M + 1 results, pruning removes an atom from the current
dictionary Dt. A reasonable strategy is to discard the atom
that has the least contribution for representing the data seen so
far [52]. Thus, upon denoting the m-th row of At as at(m, :),
one finds

m∗ = arg min
m∈{1,2,...,M}

‖at(m, :)‖22 (32)

and žm∗ is removed from Dt. The corresponding row in
At should also be removed before the next iteration. Note
that the atom that was just added to the dictionary is not
pruned immediately. An alternative strategy would be to look
at {ct := At−1bt}, but this is not pursued here since it
requires a larger memory overhead. The overall online RSC
algorithm including the dictionary update is described in detail
in Table III.

IV. NUMERICAL TESTS

The performance of the proposed algorithms was verified
by numerical tests. Average performance values were obtained
based on 20 runs. First, the results using the simulated PMU
data are reported, followed by the real PMU data results.

A. Tests with Simulated PMU Data

1) A 23-bus System: The algorithms were first tested on
simulated PMU data generated using the PSS/E simulator [53].
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Fig. 2. Online algorithm results for simulated PMU data. (Top) Simulated
measurements. (Middle) Reconstruction from data with 5% of the entries
missing. (Bottom) Estimated sparse component matrix.

The simulated power system consists of 23 buses and 6
generators, as shown in Fig. 1. The PMU at each bus acquires
measurements at a sampling rate of 40 samples per second
and a signal-to-noise power ratio (SNR) of 92 dB. More
detailed grid parameters are provided in [17]. To simulate
events, the transmission line connecting buses 3001 and 3003
was tripped at t = 10 seconds and closed at t = 70 seconds.
Then, the same line was tripped again at t = 110 seconds
and closed back at t = 170 seconds. This is to ensure the
convergence of online algorithms in the first half of the data
so that the algorithm performance can be assessed accurately
in the steady state during the second half. For simplicity,
only the voltage magnitudes were used in the experiment.
Employing multiple modalities, such as using the magnitudes
and the angles together, resulted in very similar results. The
voltage magnitudes are shown in the top panel of Fig. 2. For
preprocessing, the nominal per-unit quantity 1 was subtracted
to construct the data matrix Z. To verify that the proposed
algorithms can accurately recover missing measurements, 5%
of the entries in Z were randomly removed. We also manually
identified the outliers in Z as the part from the beginning of
an event to when the system returns to its steady state. Let O
denote the set of the time indices of the events (outliers). Then,
Z|O and Z|Oc represent the outlier and the inlier columns of
Z, respectively.

The middle panel of Fig. 2 shows the voltage magnitudes
reconstructed using the algorithm in Table III. The memory
budget M was set to 100, and λ = 10−2, µ = 5 × 10−3,
ρt = 10−2, and δ2 = 10−6 were used. The initial dictionary
D0 was constructed by randomly choosing M0 = 5 columns
from Z|Oc . The maximum rank R of the low-rank matrix C
was set to 10 based on the singular value distribution of Z. It
can be seen that the reconstructed voltage magnitudes match
well with the true values. The bottom panel of Fig. 2 shows
the sparse error component E estimated from the algorithm. It
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Fig. 3. Convergence of the online algorithm.

is seen that the estimated sparse errors indicate the disturbance
events accurately.

To check the convergence of the algorithm, the instan-
taneous objective h(bt, et,At, zt,Ωt; Dt) in (26) is plotted
in the top panel of Fig. 3. The objective rapidly converges
both initially and after each disturbance event. In the bottom
panel of Fig. 3, the Frobenius norm of the difference of
the consecutive iterates of {At}, namely ‖At −At−1‖F , is
plotted. It can be seen that whenever there is a disturbance
in zt, At tries to track it. However, as the effects of the
disturbances vanish quickly as seen in Fig. 2, At captures
only the nominal structure, and the disturbances are detected
by the sparse error component.

Next, the performance of the proposed algorithms is com-
pared with that of benchmark algorithms. Specifically, the
online robust principal component analysis (ORPCA) algo-
rithm [29] and the improved version [54] of the robust online
subspace estimation and tracking algorithm (ROSETA) [55]
are considered. The ORPCA objective in [29, Eq. (6)] is very
similar to the objective function of (21), but it does not account
for missing observations. Thus, the ORPCA formulation is
modified here, which turns out to be the same as (21) with
D = I. As for the improved ROSETA (iROSETA), it can be
verified that the objective function can be expressed as

1

T

T∑
t=1

(γ
2
‖PΩt

(zt)−Abt − et‖22 + µ‖PΩt
(et)‖1

)
(33)

where A is again M × R. Note also that µ is a parameter
to be specified, whereas γ is adapted automatically by the
algorithm. It can be seen that (33) lacks the regularizers on A
and bt, which means that the rank of the subspace is fixed to
R specified, and R no longer plays the role of the maximum
rank. In the experiment, we set the values of R for the RSC
and ORPCA algorithms equal to 10, but for iROSETA, both
R = 5 and R = 10 were tested.

Fig. 4 depicts the receiver operating characteristic (ROC) of
detecting the disturbance events. Each curve shows the trade-
off between the true positive rate and the false positive rate.
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Fig. 5. NMSE performance for reconstructing missing observations.

The false positive rate is the probability that the algorithm
erroneously detects an anomaly when the grid is in the normal
condition. The true positive rate is the probability that the
algorithm correctly detects a disturbance event during such
an event. When a disturbance event happens, the sparse error
vector et will have non-zero entries. To compute the true
positive rate, we assume that the event is detected if any of the
sparse error vectors during the event duration is non-zero. The
curves with the triangle, circle, and square markers depict the
results obtained by the batch RSC, online RSC, and ORPCA
algorithms, respectively. The curves with the cross markers
correspond to the performance of iROSETA, where the solid
curve is for R = 5 and the dash-dot for R = 10. Each curve
was obtained by varying µ (as well as λ for ORPCA and
online RSC) in the corresponding algorithm. As expected, the
batch RSC algorithm performs the best. Among the online
algorithms, the online RSC algorithm is seen to be superior to
other algorithms. In the case of iROSETA, the one with R = 5
yields better performance than R = 10, as the true rank of Z
is in fact closer to 5.
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Fig. 6. Evolution of estimated low-rank subspaces. (Top) ORPCA. (Bottom)
Online RSC.

We also compared the reconstruction performance of the
missing observations. To do this, the average normalized
mean-square error (NMSE) between the true and the recon-
structed measurements is computed for the missing observa-
tions outside the disturbance events. (Recall that the missing
observations cannot be reconstructed for outliers.) Specifically,
the average NMSE is defined as

‖(Z− Ẑ)|Ωc∩Oc‖2F
‖Z|Ωc∩Oc‖2F

(34)

where Ẑ = DC. Since λ and µ not only affect the NMSE
but also the event detection performance, one must hold the
event detection performance of the algorithms at the same
level for fair comparison. In Fig. 5, the average NMSEs are
compared at different false positive rates. It can be seen again
that among the online algorithms, online RSC achieves the
smallest NMSEs across all false positive rates less than 0.5.

To see why online RSC performs better than ORPCA in
terms of both event detection and missing entry estimation
even though the formulations of the two algorithms are very
similar, the evolution of the estimated low-rank subspaces
is examined. In Fig. 6, the top panel shows the differences
‖At−At−1‖F of successive iterates of At in ORPCA, where
At spans the low-rank subspace at each time t. Likewise,
the variation of the subspace in online RSC can be cap-
tured by ‖Dt−1At − Dt−1At−1‖F , which is depicted in
the bottom panel of Fig. 6. Recall that the difference of the
two algorithms lies in that in online RSC, dictionary Dt is
continually estimated, while in ORPCA, essentially an identity
matrix is used as the dictionary. It can be observed from the
figure that ORPCA takes much more time to stabilize than
online RSC, both initially as well as after disturbance events,
even though ORPCA employs computationally costly block
coordinate descent (BCD) while online RSC uses SGD. It
can be deduced that the dynamic dictionary of online RSC
with efficient sparsification and pruning strategies significantly
improves the stability of the algorithm in the presence of
outliers, which contributes to the performance.



9

Fig. 7. (Top) Simulated frequency measurements for an IEEE 68-bus system.
(Middle) Reconstruction with 5% missing entries. (Bottom) Estimated sparse
error component.

2) An IEEE 68-bus System: The proposed algorithm was
tested with a data set for a larger power system. The data
set was generated for an IEEE 68-bus system using the Grid-
STAGE (Grid Spatio-Temporal Adversarial scenario GEnera-
tion) simulator, a multivariate spatio-temporal data generation
tool for simulating adversarial scenarios [56], [57]. A sampling
rate of 50 samples per second and an SNR of 92 dB were
used. A load change event started at t = 1 second and ended
at t = 1.25, which is repeated once more from t = 31 to
t = 31.25. Note that even though an event occurs during 0.25
seconds, it takes about 10 seconds for the grid to return to its
steady state. Thus, we view the entire period from the start
of an event to the return to the steady state as the disturbance
duration. Also, while the data set contains voltage magnitudes,
voltage phase angles, and frequencies, only the frequencies
(shown in the top panel of Fig. 7) were utilized in our
experiment to show the various availability of the algorithm.
The nominal frequency 60 Hz was subtracted from each entry
when constructing the data matrix Z for preprocessing. To test
the performance of estimating missing observations, 5% of the
entries in Z were randomly obliterated.

The middle panel of Fig. 7 depicts the reconstructed one
from the incomplete frequency measurement. Parameters were
set as λ = 10−4, µ = 10−6, and ρt = 10−2. The sparsification
and pruning procedures were utilized with δ2 = 10−6. It can
be seen that the reconstructed frequencies match the true ones
faithfully. The bottom panel of Fig. 7 depicts the sparse error
matrix E, where the disturbance events are well captured.

The average NMSE performance of the online RSC, OR-
PCA, and iROSETA algorithms is shown in Fig. 8. The rank
parameter R was set to 30 for online RSC, 50 for ORPCA,
and 20 for iROSETA, which correspond to the best NMSE
values for the individual algorithms. It is observed that online
RSC achieves the best performance when the false positive
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Fig. 8. Average NMSE for missing entry estimation for IEEE 68-bus system.

Fig. 9. Real PMU data experiment.

rate is smaller than 0.2. It should be noted that operating with
the false positive rate higher than 0.2 is hardly useful as the
true positive rate of all three algorithms already reach 100%
when the false positive rate is as small as 1%. Compared to
the NMSE performance for the 23-bus system shown in Fig. 5,
it is also observed that the NMSE performances for different
algorithms are similar here. We suspect that this is due to the
higher redundancy in the data resulting from a larger number
of channels.
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Fig. 10. Reconstruction performance comparison of missing entries for real
PMU data.

B. Tests with Real PMU Data

The algorithm was tested with real PMU data acquired from
the Texas ERCOT grid [58]. The data set is comprised of the
measurements from four PMU stations, located at the Harris
69 kV Substation, McDonald Observatory, the University of
Texas-Pan American, and Brazos Electric in Waco, taken for
one hour at the rate of 30 samples per second. The data set
contains the voltage magnitudes, phase angles, and frequen-
cies. The voltage magnitudes were preprocessed by subtracting
the mean and also dividing by the mean value. For the phase
angles, the first bus was chosen as a reference, and the angle
differences between other buses and the reference bus were
calculated. Then, the mean of the differences were subtracted.
For the frequencies, the nominal value 60 Hz was subtracted
from the frequency measurements. The resulting data matrix is
repeated once more to construct Z corresponding to a 2-hour
duration.

The second half of Z, containing the voltage magnitudes,
phasor angles, and frequencies, is plotted in the top panel of
Fig. 9. It is seen that the real data contain a few outliers,
which may be due to actual events or corrupt measurements.
The middle panel corresponds to the reconstruction from the
online RSC algorithm using the data with 5% of the entries
randomly missing. The bottom panel shows the sparse errors.
We used λ = 1, µ = 5 × 10−4, δ2 = 10−6, and ρt = 104.
The memory budget was set as M0 = 5 and M = 100. It is
seen that the sparse error captures all the prominent outliers.
It also produces small nonzero values throughout, which may
indicate events worth looking or could simply be ignored
through appropriate thresholding, depending on the detailed
requirements of grid monitoring.

Fig. 10 depicts the performance of recovering incomplete
measurements as the missing percentage varies from 1% to
20%. The three curves correspond to the NMSE performances
of online RSC, ORPCA, and iROSETA, which were obtained
by fixing the false positive rates around 0.1, and varying µ
and λ. The values of R were set to 10 for the online RSC and
ORPCA, and to 5 for iROSETA, respectively, based on the

singular value distribution of Z. As can be seen, the online
RSC algorithm performs much better than others. It can be
noted that the recovered missing entries are quite accurate,
even though the number of PMUs is small and realistic noise
is included in the data.

V. CONCLUSION

A RSC formulation has been proposed that can reconstruct
missing measurements and detect corrupt entries based on a
union-of-subspaces structure present in the data. Both batch
and online algorithms have been derived with convergence
guarantees. The online RSC algorithm enjoys low computa-
tional complexity and small memory footprint—suitable for
real-time processing of large-scale streaming data. To construct
a representative yet compact dictionary for capturing the
subspaces, online sparsification and pruning methods were
also proposed. The algorithms were applied to synchrophasor
measurement data for power grid monitoring. The numerical
tests performed on simulated and real PMU data validated
the effectiveness of the proposed algorithms. In particular,
the online RSC algorithm with sparsification and pruning
strategies was shown to achieve a performance on par with
the batch counterpart using low-complexity updates, faithfully
reconstructing missing entries and accurately capturing distur-
bance events. The performance of the proposed algorithm was
also shown to outperform existing alternatives. Future research
directions include incorporating nonconvex spectral regular-
izers for better performance [47], building event classifiers
based on the reduced-dimensionality features, and distributed
implementation for scalability.

APPENDIX A
PROOF OF PROPOSITION 1

The claim can be proved by the straightforward application
of Proposition 4.2 in [59, Sec. 3.4]. Specifically, it is clear that
(5) can be written in the form of

min
x,z

G1(x) +G2(z)

subject to x ∈ C1, z ∈ C2, Ax = z (35)

by defining

A :=

[
I 0
−D I

]
, x :=

[
C
Θ

]
, z :=

[
C
E

]
, (36)

C1 = RM×T ×{PΩ(Z)}, C2 = R(M+N)×T , G1(x) = 0, and
G2(z) = ‖C‖∗+µ‖PΩ(E)‖1. It is noted that Θ is a variable
constrained to be equal to constant PΩ(Z). Clearly G1 and
G2 are closed and convex, and the optimal solution set of (5)
can be assumed nonempty. �

APPENDIX B
PROOF OF PROPOSITION 3

The convergence can be established by viewing the SGD
update as an instance of the stochastic successive upper-bound
minimization (SSUM) algorithm for solving (28) [60]. To use
the SSUM algorithm, one needs to construct a tight upper-
bound ĝ(A, Ā, zt,Ωt) of g(A, zt,Ωt) at A = Ā. To do this,
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first note that the solution (bt, et) to (27) is unique and thus
Danskin’s theorem can be invoked to assert that the gradient
of g with respect to A is given by

∇Ag(A, zt,Ωt) = −D>(PΩt(zt)−DAbt − et)b
>
t +

λ

T
A.

(37)

Since zt is bounded, ∇Ag is Lipschitz continuous. Let L be
the Lipschitz constant. Then, it can be shown that

ĝ(A, Ā, zt,Ωt) := g(Ā, zt,Ωt)

+ 〈∇Ag(Ā, zt,Ωt),A− Ā〉+
L

2
‖A− Ā‖2F (38)

is a tight upper-bound of g(A, zt,Ωt). That is,

ĝ(Ā, Ā, zt,Ωt) = g(Ā, zt,Ωt) (39)
ĝ(A, Ā, zt,Ωt) ≥ g(A, zt,Ωt) for all A. (40)

Furthermore, it is verified that ĝ is strongly convex in A, g
and ĝ are continuous in A, and g, ĝ, and their derivatives are
bounded. Then, the SSUM iterates are given by

At = At−1 − ρt∇Ag(At−1, zt,Ωt) (41)

where ρt = 1/Lt, which is exactly the update in (29). Thus,
At is guaranteed to converge to the stationary point of (28)
almost surely [60, Theorem 1]. �
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