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ABSTRACT Demand response (DR) aims at improving the reliability and efficiency of the power grids
by shaping the power demand over time. Given that building energy consumption constitutes a significant
portion of the overall grid load, building energy management is a critical component for the DR portfolio.
In this study, DR control policies for lighting and air-conditioner systems for the individual spaces in
buildings are proposed. The policies are designed to achieve the energy reduction amount specified in the
DR request while minimizing the user discomfort. A significant challenge is to cope with the uncertainty
of various environmental factors such as the solar illuminance and ambient temperature, as well as the
psycho-economic factors such as the energy usage preferences of the occupants. We employ a data-
driven machine learning approach to tackle this challenge. Our novel idea is to take advantage of the
structural similarity of the control policies across the spaces in a lifelong multi-task learning framework.
To accommodate significant nonlinearity in efficient policies, a kernel-based learning approach is pursued.
The dual decomposition method is employed to relax the constraint coupled across the spaces, which allows
solving the overall learning problem via a series of unconstrained subproblems. The efficacy of the proposed
method is verified by numerical experiments based on semi-real data sets.

INDEX TERMS Smart grid, demand response, building energy management, multi-task learning, lifelong
learning, kernel-based learning, dual decomposition

I. INTRODUCTION

In recent years, the demand response (DR) has become a
key component of smart grid systems due to its significant
potential for enhancing grid economy and reliability [1]. DR
encourages the energy users to adjust their energy consump-
tion by offering financial rewards or imposing penalties in
order to elicit a desirable balance between the supply and
demand of electrical power. It is worthwhile to note that
the energy consumption of buildings accounts for more than
20% of the global energy consumption, which is expected
to continue to rise. Thus, developing effective energy man-
agement strategies for buildings is a major DR challenge [2],

[3]. A building can be viewed as a collection of numerous
spaces, each of which contains controllable loads. Therefore,
an energy management system (EMS) for buildings should
be capable of controlling a large number of controllable
loads effectively, while meeting the given DR requests from
the utility, saving overall energy costs, and guaranteeing the
comfort of the users occupying the individual rooms and
spaces. Much research effort has been devoted to developing
DR algorithms for controlling building energy consump-
tion [4]–[16].

In this work, our goal is to develop a DR policy capable
of achieving a given amount of reduction in building en-
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ergy consumption, specified in the DR request signal, while
minimizing the dissatisfaction levels of the occupants of
each room. There are many types in commercial buildings
such as offices, schools, hospitals, and so on, and the major
energy consumption appliances can be different highly de-
pending on the type of building. In this work, we consider
the building, where the energy consumption of the lighting
and air conditioning (AC) systems constitutes a dominant
portion of the total building energy usage [17], [18]. A key
challenge is that one must cope with the stochasticity of
various environmental variables such as the ambient sunlight
and temperature. Furthermore, it is desired that the policy
also respects different energy usage preferences of the oc-
cupants. Acquiring the exact distributional information for
such random processes can be challenging, especially when
it is prone to change over time.

To tackle this challenge, a data-driven machine learn-
ing (ML) approach is taken, where the optimal policy is
learned from the collected data. For efficient training and
good generalization performance of the learned policies, one
has to incorporate any prior information in the learning
formulation. Our key idea is to recognize that the policies
for different rooms share certain structural similarities, al-
though there are variations from room to room due to the
particularities of individual spaces. For example, the control
policies for campus classrooms should have a lot in common,
although there would be differences due to varying room
sizes, directions/locations, and usage patterns.

Such shared structures can be captured in a multi-task
learning (MTL) framework. In MTL, the classifiers or re-
gressors are learned to solve multiple related tasks jointly by
leveraging their similarities [19], [20]. Thus, MTL can attain
a performance that exceeds what can be achieved by learning
each of the tasks in isolation. In particular, MTL is useful
when the numbers of data samples for the tasks are relatively
small (or when their distributions are continuously changing
so that the effective numbers for a given state are small), as
the knowledge can be shared across tasks, and thus pooling
all tasks’ data facilitates the learning for the individual tasks.

As the number of tasks increases, the computational bur-
den can become significant for the MTL training, with all
tasks’ data processed together. Furthermore, the classifiers
need to be continuously updated when the data distribution
is non-stationary. In some applications, new tasks can arrive,
or additional data can be collected for existing tasks, after
the classifiers have been trained. In this case, re-training the
entire set of classifiers just to incorporate the new arrivals
is not well justified. These issues can be addressed by the
lifelong learning approach, where the MTL problems are
solved in an online manner [21], [22]. Lifelong learning
can transfer the knowledge acquired from novel tasks/data
to all other tasks by continuously refining the basis of the
shared representation of the classifiers. In our building DR
setup, the framework can exploit the structural similarities
of DR policies for different rooms, while reducing compu-
tational complexity, incorporating sequentially arriving mea-

surements, and tracking slow variations of optimal policies
over time.

For designing ML methods, one needs to specify the space
of functions in which the best approximation of the optimal
policy is searched for. A simplest example would be the space
of linear functions, which map the features linearly to the
target labels. Nonlinear relationship can be accommodated
by adopting a parameterized family of functions, but select-
ing a proper parameterization often requires detailed domain
knowledge and educated guesses. Kernel-based learning al-
lows one to explore very flexible non-parametric classes
of nonlinear functions, namely, reproducing kernel Hilbert
spaces (RKHSs). A kernel-based efficient lifelong learn-
ing algorithm (KELLA) was developed recently, which is
adapted here for our problem [23]. In particular, as our
problem contains a constraint, whereas typical classification
problems are formulated as unconstrained ones, a Lagrange
duality-based method is employed to transform the overall
problem into a series of smaller unconstrained learning prob-
lems.

Summarizing, the main contributions of this work are:

• A DR problem involving major controllable loads in
building EMS is formulated, where the occupants’ dis-
comfort levels are minimized while meeting a specified
DR target.

• The lifelong learning approach is employed to exploit
structural similarities in the control policies for individ-
ual spaces in the building, accommodating the nonlin-
earities in a kernel-based learning framework.

• The coupling DR constraint is relaxed via the dual
decomposition technique so that the lifelong learning
method, originally developed for unconstrained ML
problems, can be readily adapted to the optimization
problem at hand.

• The proposed algorithm is tested by numerical experi-
ments designed partly based on real data sets.

The rest of this paper is organized as follows. Related
works are reviewed in Sec. II. The system model for the
building EMS and the DR problem formulation are given in
Sec. III. The overall solution architecture based on the dual
decomposition method is described in Sec. IV. The proposed
lifelong learning solution is derived in Sec. V. The proposed
method is tested using semi-real data sets in Sec. VI. The
conclusions are provided in Sec. VII.

II. RELATED WORKS
Existing building DR algorithms are summarized here. They
can be categorized as optimization-based and ML-based.

A. OPTIMIZATION-BASED BUILDING DR ALGORITHMS
The building DR problems can be formulated as optimiza-
tion problems of load schedules. A load dispatch model
for residential buildings was formulated as a mixed integer
linear program to achieve peak reduction and to meet DR
requirements [4]. The role of heating, ventilation and air
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conditioning (HVAC) systems in commercial buildings as
DR and ancillary service resources was explored in [5]. The
control strategy for HVAC systems in commercial build-
ings was investigated in [6], where a transactive market
mechanism was employed based on a convex optimization
formulation. A load shedding strategy for lighting systems
was studied, where the dimming levels were adjusted to meet
the DR requirements without violating the minimum illumi-
nance requested by users, through a constrained quadratic
optimization formulation [7]. Based on the predicted load
profiles, an optimal scheduling strategy for HVAC and energy
storage systems was designed using model predictive control
(MPC) to reduce the building energy bill [8]. In these works,
however, the uncertainty due to various stochastic variables
were often neglected by assuming the availability of accurate
sensor readings and/or their predictions.

A number of studies focused on energy management for
DR under uncertainty. A robust commercial building DR
strategy was proposed employing a genetic algorithm un-
der cooling load prediction uncertainty [9]. Limitations of
conventional DR methods designed for individual buildings
were observed and a simple coordinated DR strategy was
developed for demonstrating the need to develop a coordi-
nated DR strategy for improving the building group-level
performance [10].

B. ML-BASED DR ALGORITHMS
Recently, there have been numerous efforts to incorporate
ML techniques to DR algorithms, in order to cope with the
uncertainty present in realistic DR scenarios. They range
from using ML techniques simply to improve the prediction
of stochastic variables [11]–[13] to incorporating ML models
directly to the optimization formulations [14]–[16].

A neural network (NN)-based prediction model for the
energy consumption of air conditioning systems in office
buildings was proposed in [11], where the averaging effect
of the prediction errors was reported for aggregated cur-
tailment for DR. A support vector regression (SVR)-based
building load prediction method was proposed for commer-
cial buildings, where the HVAC set points capturing energy
consumption trend were used as features [12]. A framework
for forecasting the reduction in the individual users’ energy
consumption during the DR period was proposed using var-
ious ML methods including ordinary least-squares (OLS)
regression, K-nearest neighbors (KNN), and support vector
regression (SVR) algorithms [13]. A reinforcement learning
approach was taken for the residential building EMS, where
the running time and energy allocation of each scheduled
device were determined by learning individual consumers’
preferences and price variation [14].

Several studies proposed pricing schemes for DR. A dy-
namic pricing algorithm for DR in a hierarchical energy
market was proposed to simultaneously optimize the profit of
service providers and the costs of consumers, where the un-
certainty in the load demand and the wholesale energy price
was tackled using a reinforcement learning method [15].

. . .
Thermo-
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Regulator

AC

Smart
meter

Room 1 Room I

EMS
UtilityDR requests

Control
signals Records

FIGURE 1: Architecture of the considered building EMS
for DR, where each room is equipped with lighting and AC
systems, a thermometer, and an illuminometer.

An optimal dynamic pricing strategy for retail energy was
developed, where an online learning-based algorithm was
proposed to learn the behaviors of customers by observing
their responses to varying prices [16].

III. SYSTEM MODEL AND PROBLEM FORMULATION
First, the overall architecture of the considered building EMS
is explained. In this work, since we consider the building,
where the dominant electric energy consumption is ascribed
to lighting and AC systems, we focus on controlling these
two appliances for DR. Extensions for including additional
types of appliances are straightforward. Fig. 1 illustrates a
building with each of the I rooms equipped with lighting
and AC systems. An illuminometer and a thermometer in
each room measure the ambient illuminance due to sunlight
and indoor temperature of the room, respectively. The smart
meter records the energy consumption of the controllable ap-
pliances and communicates the information to the processing
unit of the EMS. In addition, the smart meter controls the
power consumption of the appliances according to the control
signals sent from the EMS controller. The building EMS
needs to meet a DR request, which is the overall reduction
in the energy consumption in the building, by controlling the
appliances in the individual rooms.

The energy consumption of the controllable appliances
can be modeled as follows. Let Elight∗

i (Eac∗
i , respectively)

be the energy consumption of the lighting (AC) system for
room i ∈ {1, . . . , I} at the desired user comfort setting.
Let l∗i denote the corresponding desired illuminance in lux,
lsuni the ambient illuminance due to natural sunlight in lux,
ηi the luminous efficacy of the lighting system of room i
in lm/kW, Si the surface area of room i in m2, and τ the
time duration in hour (h). In this paper, it is assumed for

VOLUME x, 20xx 3



simplicity that whenever a DR request arrives, the EMS
makes the control decisions for the next hour, i.e., τ = 1
is used. Similarly, let t∗i represent the desired temperature
setting for room i in °C, tcuri the current indoor temperature
in °C, Ai the energy consumption variation with respect to
the temperature variation during an hour in kWh/°C, and Bi
the minimum energy consumption required to maintain the
current temperature for an hour in kWh. Then, Elight∗

i can be
modeled as [24]

Elight∗
i = η−1i Si(l

∗
i − lsuni )τ (1)

while Eac∗
i can be expressed as [25]–[27]1

Eac∗
i = Bi −Ai(t∗i − tcuri ). (2)

Note that the illuminance due to sunlight, lsuni , and the
current indoor temperature, tcuri , are stochastic variables.
However, they can be measured by an illuminometer and a
thermometer, respectively. Since the desired illuminance and
indoor temperature of each room often depend on the user
preferences and the room type, we assume that l∗i and t∗i
cannot be measured directly. In addition, we assume that ηi,
Ai, and Bi are unknown to the controller as well since they
can be influenced by various factors such as physical charac-
teristics of the lighting and the AC systems, which may be
difficult to estimate and prone to change. Consequently, we
model Elight∗

i and Eac∗
i themselves as stochastic variables.

Let ai := [alighti , aaci ]>, where 0 ≤ alighti ≤ 1 and
0 ≤ aaci ≤ 1, denote the actions that control the energy
consumption of the lighting and the AC systems of room i,
respectively, where [·]> represents the vector/matrix transpo-
sition. Then, the actual energy consumption of the lighting
system, denoted as Elight

i , and the same for the AC system,
denoted as Eac

i , can be expressed as

Elight
i = alighti Elight†

i (3)

and

Eac
i = aaci E

ac†
i (4)

respectively, where Elight†
i and Eac†

i are the baseline energy
consumption of the lighting and AC systems of room i,
respectively, which are determined by the EMS according
to the typical energy consumption of these systems. That is,
alighti and aaci capture the fractions of the energy expended
relative to the baseline energy consumption. When alighti and
aaci are less than 1, reductions in the energy consumption of
the lighting and AC systems from the baseline levels occur.

In this study, the user discomfort level is quantified simply
by the amount of deviation (reduction) in the energy con-

1As our work develops a ML-based DR algorithm, the proposed method
can accommodate a broad range of appliance models. Thus, in this work,
relatively simple yet commonly employed models are adopted to set the
stage for the algorithm development. It is also worth noting that the energy
consumption breakdowns among the loads can depend on the size and
purpose (residential/commercial) of the buildings/rooms. Such variations
can be readily captured by setting the model parameters Si, ηi, Ai, and
Bi appropriately [26].

sumption from the desired comfort setting. By quantifying
the discomfort levels in terms of energy, combining the dis-
comfort for two different systems into a single cost function
becomes straightforward. Specifically, the difference in the
energy consumption for system j ∈ {light, ac} can be
expressed as

∆Eji = Ej∗i − E
j
i = Ej∗i − a

j
iE

j†
i . (5)

Upon defining E∗i := [Elight∗
i , Eac∗

i ]>, the total user discom-
fort can then be modeled simply as the sum of the squared
deviations.

Di(ai,E
∗
i ) =(∆Elight

i )2 + (∆Eac
i )2 (6)

=(Elight∗
i − alighti Elight†

i )2

+ (Eac∗
i − aaci E

ac†
i )2. (7)

The squared deviations are used here based on the intuitive
notion that the user discomfort can increase quickly as the
deviation grows. However, any other discomfort functions
can be employed in our algorithm, as long as they are twice
differentiable. For example, on can alternatively model the
discomfort level to be zero in a certain comfort range, and
outside the range a step or a linear penalty can be assessed.
In such cases, a step function u(x− a) can be approximated
by a twice differentiable function 1

1+e−(x−a)/b , and the hinge
loss function max{0, x − a} by x−a

1+e−(x−a)/b with a small
positive b. Finally, in order to combine the user discomfort
levels for different rooms in a balanced way, the normalized
user discomfort for each room i is defined as

D̂i(ai,E
∗
i ) =

Di(ai,E
∗
i )

‖E∗i ‖22
. (8)

Let EDR be the DR request from the utility, which is
a mandated reduction amount in the total building energy
consumption. The energy reduction amount for room i can
be expressed as

Ered
i (ai) := (1− alighti )Elight†

i + (1− aaci )Eac†
i . (9)

The sum of Ered
i over all rooms must be larger than or equal

to EDR to satisfy the DR request.

Thus, our goal is to come up with a control policy that
determines actions ai based on the available measurements
lsuni and tcuri for each room i = 1, 2, . . . , I so that the DR
request is met and the overall user discomfort levels are
minimized. Upon defining ξi := [lsuni , tcuri ]>, the optimal
control policy for each i is a mapping πi : ξi 7→ ai. Note
that the actions can be dependent on ξi, which is readily
available from sensor readings, but not on E∗i . A stochastic
optimization problem for obtaining the optimal policies can
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FIGURE 2: The structure of the proposed approach for
building DR.

thus be formulated as

minimize
{πi}

I∑
i=1

E[D̂i(πi(ξi),E
∗
i )] (10a)

subject to
I∑
i=1

E[Ered
i (πi(ξi))] ≥ EDR (10b)

where E[·] denotes the expectation with respect to the random
vectors {ξi} and {E∗i }.
Remark: The goal of our building DR is to to implement
the energy reduction in the controllable loads according to
the given DR request at the minimum discomfort for the
occupants. Thus, it is assumed that the background load fluc-
tuations are taken into account by the utility when generating
the DR request signal. On the other hand, it is worth noting
that our ML-based framework can seamlessly incorporate
the background load uncertainty with minor modifications in
the formulation. Specifically, the change in the background
load ∆Li in the i-th room can be augmented in the energy
reduction in (9) as

Ered
i (ai,∆Li) := (1−alighti )Elight†

i + (1−aaci )Eac†
i + ∆Li

where ∆Li is random. Then, formulation (10) can
be modified by replacing Ered

i (πi(ξi)) in (10b) as
Ered
i (πi(ξi),∆Li), where the expectation is now taken with

respect to not only {ξi} and {E∗i }, but also {∆Li}. �

In the following sections, our solution approach for (10)
is described. The structure of our method is shown in Fig. 2,
which consists of three parts. First, the overall problem (10)
is divided to the subproblems involving individual rooms
using a dual decomposition method (Sec. IV-A). Then, the

subproblems are tackled independently via single task learn-
ing (STL), coordinated by the dual variable (Sec. IV-B). The
shared skills from the STL policies are collected in a kernel-
based lifelong learning framework (Sec. V). The algorithm it-
erates these processes based on the sensor measurements and
user preference inputs, and upon convergence, the optimal
DR policy of each room is obtained as the solution to (10).

IV. SINGLE TASK LEARNING BASED SOLUTION

There are a couple of issues associated with solving the
optimization problem (10). First, the optimal policies need to
be found jointly for all rooms due to constraint (10b), which
couples all rooms. For a large building with many rooms,
this may be prohibitively complex. Second, since the prob-
lem involves expectations, the knowledge of the probability
distributions for {ξi} and {E∗i } is required, which may not
be readily available in practice. Even if the distributions can
be estimated, calculating the integrals may significantly add
to the computational complexity.

In the following, the Lagrange relaxation-based dual de-
composition method is employed to decouple the overall
problem into I subproblems for individual rooms. Subse-
quently, the relaxed problem is tackled taking a ML ap-
proach. Thus, one can work with samples of ({ξi}, {E∗i }) to
approximate the expectations. Once the optimal policies are
learned, they can be evaluated very quickly without requiring
complex optimization, facilitating the implementation of the
real-time control in the EMS.

A. DUAL DECOMPOSITION

The constraint in (10b) can be relaxed via the Lagrange
dual method, yielding a decoupled formulation, where each
room’s policy can be optimized separately, coordinated by
the Lagrange multiplier [28]. Given a Lagrange multiplier
ν ≥ 0, the Lagrangian for (10) can be expressed as

L({πi}; ν)

=

I∑
i=1

E[D̂i(πi(ξi),E
∗
i )− νEred

i (πi(ξi))] + νEDR. (11)

The dual function can be obtained by minimizing the La-
grangian as

D(ν) = min
{πi}
L({πi}; ν). (12)

Note that (12) can be split into I subproblems, which can be
solved independently for a given ν. That is, upon defining the
cost function

Ci(ai,E
∗
i ; ν) := D̂i(ai,E

∗
i )− νEred

i (ai), i = 1, 2, . . . , I
(13)

the optimal control policies {π∗i } can be obtained by solving
the following subproblems:

min
πi

E[Ci(πi(ξi),E
∗
i ; ν)], i = 1, 2, . . . , I. (14)
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Now, the optimal dual variable can be found by solving the
dual problem defined as

max
ν≥0
D(ν). (15)

Thus, ν can be updated based on the subgradient method as

νt+1 =

[
νt + γt

(
EDR −

I∑
i=1

E
[
Ered
i (π∗i (ξi))

])]+
(16)

where t denotes the iteration index, γt denotes a small
positive step size, and [·]+ := max{0, ·}.

The overall algorithm iterates the solution of (14) and
dual update (16) until convergence. Upon convergence, the
obtained optimal control policies {π∗i } will satisfy the DR
request given in (10b) and minimize the total average dis-
comfort across the building at the same time.

B. LEARNING-BASED SOLUTION
The remaining issue is to solve the stochastic optimiza-
tion problem in (14). A pragmatic approach to approximate
the expectations would be to collect representative samples
(ξi,n,E

∗
i,n), n = 1, 2, . . . , Ni, from the sensors installed in

each room i and approximate (14) as

min
πi

1

Ni

Ni∑
n=1

Ci(πi(ξi,n),E∗i,n; νt). (17)

Our approach is to search for the optimal policy π∗ in an
appropriate function space using ML tools. To accommodate
the nonlinear class of functions, kernel-based learning is
employed. Given an RKHS H defined by a positive-definite
kernel function κ(·, ·) : R2 × R2 → R, the kernel function
κ determines a nonlinear mapping φ : R2 → H that maps
ξi to a high-dimensional feature space φ (ξi) ∈ H. Let

θlight
i ,θchill

i ∈ H and define θi :=
[
θlight
i

>
,θchill
i

>]>
. Then,

it can be postulated that the control policy πi(ξi) for each
room i can be well approximated by

π(ξi,θi) :=
[
h(〈φ(ξi),θ

light
i 〉), h(〈φ(ξi),θ

ac
i 〉)
]>

(18)

where 〈·, ·〉 represents the inner product on H, and h(x) :=
1/(1 + e−x) ensures that each action is always within [0, 1].
Therefore, the optimal policy for room i can be characterized
by solving (17) with respect to θi as

θ∗i = arg min
θi∈H

1

Ni

Ni∑
n=1

Ci(π(ξi,n,θi),E
∗
i,n; νt). (19)

Upon defining Φ(Ξi) := [φ(ξi,1), . . . ,φ(ξi,Ni
)] ∈ HNi

and a block diagonal matrix Φd
i := diag{Φ(ξi),Φ(ξi)}, the

representer theorem guarantees that the solution to the empir-
ical problem (19) can be represented as a linear combination
of features of the given input samples [29].

θ∗i = Φd
iw
∗
i (20)

where w∗i := [wlight∗
i

>
,wac∗

i
>]> for coefficient vectors

wlight∗
i ∈ RNi and wac∗

i ∈ RNi . The significance of this step
is in converting the optimization problem in (19) formulated
possibly in an infinite-dimensional space to that of finding
vectors in RNi . Note that (19) is a STL problem, viewing
each room i as a task, since the policy for each room is
learned in isolation based on its own input features. An
extension based on the MTL approach is introduced in the
next section.

V. KERNEL LIFELONG LEARNING FOR DR

In the STL formulation, the control policies for the individual
rooms are learned independently. However, it is reasonable
to expect the policies to share intrinsic structures, although
there would be differences as well. For example, the control
policies for campus classrooms would have a lot in common
due to their similarities in sizes and usage patterns. Such
shared structures can be exploited in an MTL framework.

Specifically, a recently developed kernel-based efficient
lifelong learning algorithm, called KELLA, is adapted here
for the building DR problem [23]. The KELLA performs
kernel-based MTL in an online manner for a sequence
of tasks, effectively transferring knowledge across different
tasks, while significantly lowering the computational com-
plexity. It also allows tracking of slow variations in the
optimal policies.

A. KERNEL MTL-BASED DR FORMULATION

One approach to capture the shared structure for MTL is
to adopt a union-of-subspaces model for the learned clas-
sifiers/policies [20]. Specifically, in our setup, given the
libraries of K representative atoms for the lighting and AC
system policies, denoted as Llight := [llight1 , . . . , llightK ] ∈
HK and Lac := [lac1 , . . . , l

ac
K ] ∈ HK , respectively, and the

combined library L := [Llight>,Lac>]>, it is postulated that
for a sparse coefficient vector si

θi = Lsi, i = 1, 2, . . . , I. (21)

The MTL problem for all rooms can then be stated as

min
L∈H2K

1

I

I∑
i=1

min
si

{
1

Ni

Ni∑
n=1

Ci(π(ξi,n,Lsi),E
∗
i,n; νt)

+µ‖si‖1

}
+ λ‖L‖2H

(22)
where ‖si‖1, the `1-norm of si, is a regularizer that promotes
sparsity in si, and ‖L‖2H :=

∑K
k=1[‖llightk ‖2H + ‖lack ‖2H]

controls the complexity of the library. Parameters µ and λ are
positive weights adjusting the strengths of the regularizers.

Solving (22) directly requires processing the samples for
all rooms jointly, which may incur significant computational
and memory requirements, and hinders the online implemen-
tation. To mitigate this issue, a proxy is derived for the cost
function from the second-order Taylor approximation around
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the STL optimal solutions {θ∗i } [23]. That is,

1

Ni

Ni∑
n=1

Ci(π(ξi,n,Lsi),E
∗
i,n; νt) ≈

∥∥∥θi − θ∗i

∥∥∥2
Hi

+ const.

(23)
where Hi := 1

2
∇2

θi,θi

1
Ni

∑Ni
n=1 Ci(π(ξi,n,θi),E

∗
i,n; νt)

∣∣
θi=θ∗i

is the Hessian, and ‖v‖2H := 〈v,Hv〉. Note that the first or-
der term vanishes at θi = θ∗i due to the first-order optimality.

The Hessian can be computed as follows. For each system
j ∈ {light, ac}, let us define mj

i,n := 〈φ(ξi,n),θji 〉. Define
also

Qj
i (m

j
i,n) :=

∂2

∂mj
i,n∂(mj

i,n)>
Ci(π(ξi,θi),E

∗
i,n; νt) (24)

and Qj
i := diag{Qji (m

j
i,1), . . . , Qji (m

j
i,Ni

)}. Then, upon
defining Qd

i := diag{Qlight
i ,Qac

i }, Hi is given by

Hi =
1

Ni
Φd
iQ

d
iΦ

d>
i . (25)

With these, (22) can be approximated as

min
L∈H2K

1

I

I∑
i=1

min
si

{∥∥∥θ∗i − Lsi

∥∥∥2
Hi

+ µ‖si‖1
}

+ λ‖L‖2H.

(26)
Note that (26) is reminiscent of the kernel dictionary learning
formulation [30].

Invoking again the representer theorem, one can show that
(26) can be reduced to a finite dimensional optimization prob-
lem. Define Φ(Ξ) := [Φ(Ξ1), . . . ,Φ(ΞI)] ∈ HN , where
N :=

∑I
i=1Ni, and Φd := diag{Φ(Ξ),Φ(Ξ)}. Then, the

optimal L can be represented as a linear combination

L = ΦdA (27)

where A := [(Alight)>, (Aac)>]> is the coefficient matrix.

B. LIFELONG LEARNING ALGORITHM

As the number of rooms I increases, the law of large numbers
(LLN) starts to kick in for the summation in (26). Thus, one
can pursue the following stochastic optimization problem.

min
L

E
[

min
s
‖θ∗ − Ls‖2H + µ‖s‖1︸ ︷︷ ︸

:=y(L;θ∗,H)

]
+ λ‖L‖2H (28)

where the expectation is taken with respect to θ∗ and H.
This problem can be solved in an online manner based on the
stochastic gradient descent (SGD) method using {θ∗i } and
{Hi} as samples.

Suppose that the input data samples {ξi,n}
Ni
n=1 from

room i are acquired in the i-th iteration. Then, the STL
solution θi is obtained from (19). Given the last iterate of
the library L(i− 1), the sparse coding is performed as

s∗i = arg min
s
‖θ∗i − L(i− 1)s‖2Hi

+ µ‖s‖1. (29)

Then, the instantaneous gradient of the objective of (28) is

given by

∇
{
y(L(i− 1);θ∗i ,Hi) + λ‖L(i− 1)‖2H

}
= Hi(L(i− 1)s∗i − θ∗i )s

∗>
i + 2λL(i− 1). (30)

Using (30), the SGD update for L can be expressed as

L(i) = L(i− 1)− ε∇{y(L(i− 1);θ∗i ,Hi) + λ‖L(i− 1)‖2H}
= (1− 2λε)L(i− 1)− εHi(L(i− 1)s∗i − θ∗i )s

∗>
i (31)

where ε > 0 is a step size. Per (27), the update can be equiv-
alently done in terms of the coefficient matrix A ∈ R2N×K .
Plugging (20), (27), and (25) into (31), one can obtain

ΦdA(i) = (1− 2λε)ΦdA(i− 1)

− ε

Ni
Φd
iQ

d
iΦ

d>
i

(
ΦdA(i− 1)s∗i −Φd

iw
∗
i

)
s∗>i . (32)

Thus, upon defining N1:I′ :=
∑I′

i=1Ni, Φ(Ξ1:i−1) :=
[Φ(ξ1), . . . ,Φ(ξi−1)] ∈ RN1:i−1 , Ki,i := Φ(ξi)

>Φ(ξi) ∈
RNi×Ni , and Ki,1:i−1 := Φ(ξi)

>Φ(Ξ1:i−1) ∈ RNi×N1:i−1 ,
the update rule for Alight and Aac can be written as

Aj(i) =

[
(1− 2λε)Aj(i− 1)

− ε
Ni

Qj
i

(
Ki,1:i−1A

j(i− 1)s∗i −Ki,iw
j∗
i

)
s∗>i

]
∈ RN1:i×K , for j ∈ {light, ac}. (33)

Note that Ki,i and Ki,1:i−1 can be computed without actually
specifying the nonlinear mapping φ, as long as the kernel
function κ is given, which is often called the kernel trick [31].
In fact, the kernel trick is instrumental for the sparse coding
step in (29), as it can be re-written as

s∗i = arg min
s

∥∥∥(Qd
i )

1
2 Kd

i,iw
∗
i − (Qd

i )
1
2 Kd

i,1:i−1A(i− 1)s
∥∥∥2
2

+ µ‖s‖1 (34)

where Kd
i,i := diag{Ki,i,Ki,i} and Kd

i,1:i−1 :=
diag{Ki,1:i−1,Ki,1:i−1}. Problem (34) can be solved ef-
ficiently using various sparse coding solvers such as the
SPAMS package [32].

Finally, θ∗i is computed as

θ∗i = Ls∗i = ΦdAs∗i (35)

from which the policy function for each room i can be
obtained as π(ξi,θ

∗
i ) in (18), again using the kernel trick.

Overall, the lifelong learning is done concurrently with the
dual variable update so that the DR request is satisfied. The
algorithm is listed in Table 1. Matrix A can be initialized
from solving (26) using a data set involving a small number
I0 of rooms. The inner loop in lines 3–8 performs the lifelong
learning for the I rooms sequentially for the given value of
Lagrange multiplier νt. Lines 10–12 represent the polishing
step, in which the sparse codes for all the rooms are updated
based on the most up-to-date library. Line 13 performs the
dual variable update, where the expectation is taken again
from the samples {(ξi,n,E∗i,n)}Ni

n=1 of each room i. The
outer loop is repeated until the algorithm is converged.
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Input: (ξi,n,E
∗
i,n) for n = 1, . . . , Ni, i = 1, . . . , I ,

EDR, A(I0), κ, K, µ, ν0, ε, and {γt}
Output: A and {s∗i }Ii=1

1: Set t = 0
2: Repeat
3: For i = I0, I0 + 1, . . . , I

4: Collect samples {(ξi,n,E∗i,n)}Ni
n=1

5: Obtain w∗i via (19) and (20)
6: Perform sparse coding via (34)
7: Update A(i) via (33)
8: End For
9: Set A = A(I)

10: For i = 1, 2, . . . , I

11: s∗i = arg mins ‖(Qd
i )

1
2 Kd

i,iw
∗
i

−(Qd
i )

1
2 Kd

i,1:IAs‖22 + µ‖s‖1
12: End For
13: νt+1 =

[
νt + γt

(
EDR

−
I∑
i=1

E
[
Ered
i (π(ξi,Φ

dAs∗i ))
])]+

14: Set t← t+ 1
15: Until convergence

TABLE 1: Lifelong learning based building DR algorithm.

VI. NUMERICAL EXPERIMENTS
A. EXPERIMENT SETUP

The performance of the proposed DR algorithm is verified
using numerical experiments. In order to conduct the exper-
iments in a more realistic setup, real data sets are employed
to the extent possible. First, an illuminance data set collected
in a solar-powered house called SML System was used [33],
[34]. We sampled I days’ worth of data of direct sunlight
illuminance levels and scaled them properly to simulate the
ambient illuminance for I different rooms. The temperature
levels were also taken by sampling I days’ records from
the data set in [35], which contains the data for 6 rooms
during 31 days. Using the illuminance and temperature sam-
ples ξi,n = [lsuni,n , t

cur
i,n ]> prepared in this way, the samples

E∗i,n = [Elight∗
i,n , Eac∗

i,n ]> were generated based on (1) and
(2).

Here, the parameters were randomly generated as follows.
For the lighting system, first the mean of the desired illumi-
nance l̄∗i for each room i was selected uniformly from the
interval [500, 700], i.e., l̄∗i ∼ U [500, 700]. Then, l∗i,n for n =
1, 2, . . . , Ni was sampled from a Gaussian distribution with
mean l̄∗i and variance 102, that is, l∗i,n ∼ N (l̄∗i , 102). The
luminous efficacy was sampled from ηi ∼ N (12.5, 0.22).
The surface area was sampled as Si ∼ U [100, 150]. For
the AC system, the mean of the desired temperature t̄∗i
was set randomly from a uniform distribution U [22, 25], and
t∗i,n was sampled as t∗i,n ∼ N (t̄∗i , 0.5

2). Similarly, with
Āi ∼ U [1.5, 1.7] and B̄i ∼ U [0.9, 1.1], the samples for
Ai,n and Bi,n were taken as Ai,n ∼ N (Āi, 0.012) and
Bi,n ∼ N (B̄i, 0.012), respectively. The number of training
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(a) Convergence of the dual variable νt
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100

150

200

Total Energy Reduction

(b) Evolution of the average total energy reduction

FIGURE 3: Convergence of the algorithm.

samples was Ni = 30 for all i.
We experimented with I = 20 rooms. The DR request was

set to EDR = 100. The model parameters K = 6, λ = 10−4

and µ = 2·10−6 were used. The resulting number of nonzero
elements in si was around 3. The learning parameters used
were γt = 10−3 for all t, ε = 10−3, and ν0 = 0.1. A radial
basis kernel function given by κ(ξ, ξ′) = exp(−‖ξ − ξ′‖22)
was adopted.

B. TEST RESULTS
First, the convergence of the proposed algorithm is verified.
Fig. 3(a) shows the convergence of the dual variable νt,
and the corresponding average total reduction in the energy
consumption is plotted in Fig. 3(b). The x-axis represents the
outer iteration index t. Note that the requested DR amount
EDR is satisfied in about 20 iterations.

The convergence of a typical run of the inner SGD update
loop is shown in Fig. 4, where the objective function values
in (26) are plotted at different values of i. In order to ensure
the convergence, here we actually used 5 epochs for the
SGD updates, meaning that the samples of the I rooms were
presented to the learning algorithm 5 times repetitively. Note
that solving for {w∗i } is needed only in the first epoch. It
can be seen that the SGD update converges after processing
around 100 rooms.

To assess the effectiveness of the proposed kernel lifelong
learning-based DR algorithm, its performance is compared

8 VOLUME x, 20xx
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FIGURE 5: Average differences from the ideal actions.

with that of four other methods, namely, the random, para-
metric STL, kernel STL, and parametric lifelong learning
approaches. In the random policy, actions are randomly
chosen among the actions satisfying the DR request. In the
kernel STL approach, the control policy of each room is
obtained solving (19) for individual rooms without leverag-
ing any shared structure. The parametric STL policy is the
STL policy without using the kernel-based learning. It can
be thought of the kernel policy but using the linear kernel
function. Likewise, the parametric lifelong learning policy
can be thought of as the kernel lifelong policy with linear
kernels [21].

Fig. 5 depicts the difference between the action from the
learned policy and the ideal action, for each room. The differ-
ence is calculated as the average Euclidean distance E[‖a∗i −
ai‖2] between the action vector ai = π(ξi,θ

∗
i ) based on

θ∗i learned from the proposed algorithm, and the ideal action
vector a∗i , which is obtained by solving (10) numerically
assuming the full knowledge of {E∗i,n}, which is not avail-
able to the learning algorithm. Note that, for obtaining the
performance metric, we used the test samples (ξi,n,E

∗
i,n)

that are separate from the samples used for training. As can
be seen from the figure, the proposed algorithm achieves
the lowest action difference with an average of around 0.1,
whereas the kernel STL approach yields roughly double the
value. This highlights the benefit of lifelong learning, which
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FIGURE 6: Average absolute deviations from the ideal costs.
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FIGURE 7: User discomfort levels.

exploits the shared structure. Note also that the parametric
approaches yield slightly worse performance compared to
the kernel counterparts, illustrating the advantage of using
nonlinear policies through kernel-based learning. Finally, the
random policy is seen to yield far larger differences.

In Fig. 6, the average absolute difference of the cost
function value due to the learned policy from that of the ideal
actions is depicted. That is, E[|Ci(a∗i ) − Ci(ai)|] is plotted
for all i. A trend similar to what was observed in Fig. 5
emerges. That is, the proposed algorithm achieves the lowest
cost differences compared to the other methods. In fact, the
proposed policy is seen to achieve virtually the same cost as
the ideal actions.

The user discomfort levels obtained from different ap-
proaches are compared in Fig. 7, which shows E[Di] for
all rooms. The minimization of the total discomfort is the
prime objective of our DR formulation. It can be seen that
the proposed algorithm achieves the lowest discomfort levels
across all rooms among the compared five methods, and
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approaches quite close to the ideal discomfort levels. The
discomfort levels obtained from the parametric and the kernel
STL policies are much higher than those from the lifelong
learning counterparts. This is because the STL approaches
occasionally produce actions that reduce the energy con-
sumptions excessively. In such cases, the actions are quite
far from the actions of the proposed policy, which balances
the DR constraint with the user discomfort effectively.

The average user discomfort across all rooms, i.e.,
1
I

∑
i E[Di], is shown in Fig. 8 when the DR request EDR

is varied. It is seen that the average discomfort increases
as EDR increases, regardless of the policies employed. This
is expected since increasing EDR requires larger reduction
in energy consumption, leading to higher discomfort for the
occupants. Again, the proposed algorithm provides superior
performance compared to the other considered methods, and
produces the level closest to the discomfort level achieved by
the ideal actions.

One of the advantages of the lifelong learning approach

is that the library and optimal policy can be continuously
refined based on newly arrived samples. This is particularly
appealing when the distributions of the random variables
change over time, for instance, due to seasonal effects.
On the other hand, the batch MTL solvers would need to
re-compute the library and policies whenever enough new
measurements are obtained, without taking advantage of the
existing solutions. To verify the advantage, we performed an
experiment, where the seasonal variations in the illuminance
and temperature are simulated over a period of 60 days.
The DR requests are assumed to arrive once per day. The
proposed algorithm updates L whenever new samples for all
rooms arrive, whereas the MTL counterpart computes the
new library using the batch of samples from the last 15 or
30 days.

Fig. 9 shows the resulting user discomfort variations. It can
be noticed that the proposed approach can track the variation
of the ideal actions, whereas the MTL approach yields step-
like curves. In fact, it can be seen that the performance gap
between our method and the ideal one gradually decreases,
as the library in the lifelong learning DR algorithm is refined
further using the accumulated knowledge over many days.
On the other hand, the MTL curves are sometimes seen to
slightly worsen before the next update.

VII. CONCLUSION
A ML-based DR algorithm for controlling the adjustable
loads such as the lighting and AC systems in individual
rooms in buildings has been developed. The algorithm seeks
a policy that can set the suitable energy levels for the loads as
a function of the current ambient illuminance and tempera-
ture measurements, such that the discomfort levels of the oc-
cupants are minimized, while the DR requirement in overall
energy reduction is met. The uncertainty in the environmental
variables and user preferences has been tackled in a data-
driven ML approach. Furthermore, an MTL framework has
been adopted to exploit the structural similarities in the
optimal policies across the rooms. In particular, a lifelong
learning method has been derived, which can update the
shared representation of the policies in an online fashion,
for computational efficiency and the tracking capability of
the optimal policies over time. The kernel-based learning
was pursued to accommodate nonlinear policy structures as
well. In order to cope with the DR constraint that couples
all rooms, a dual decomposition technique was employed,
which transformed the overall problem into a series of un-
constrained stochastic optimization problems for individual
rooms. The convergence and the performance advantage of
the proposed method over benchmark policies were verified
via numerical experiments designed based on semi-real data
sets.
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