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Abstract—In heterogeneous ultra-dense networks with millime-
ter wave macro cells and small cells, base stations (BSs) and
mobile user equipments (UEs) perform beamforming operations
to establish highly directional links. In spite of the spatial
diversity achieved through directional links, as a number of BSs
are densely deployed, inter-cell interference caused by concur-
rent directional transmissions of adjacent BSs becomes severe,
resulting in downlink performance degradation in the network.
However, it is very difficult to manage inter-cell interference
because of the nature of the time-varying wireless fading envi-
ronment, the dynamic changes in beam propagation directivity,
and unpredictable UEs’ locations. In this paper, we propose
an online learning-based transmission coordination algorithm
based on the framework of multi-armed bandits to learn the
unknown characteristics of inter-BS interference and exploit
learned data to derive an optimal policy for maximizing the
number of successful downlink transmissions. Through numerical
simulations, we verify the effectiveness of the proposed online
learning-based inter-BS interference management scheme.

Index Terms—Millimeter-wave wireless network, beamforming
transmission, downlink coordination, affectance, onlinelearning.

I. I NTRODUCTION

W ITH the explosive growth in the wireless traffic de-
mands of a variety of wireless devices in the last

decade, future wireless networks are expected to support
the massive connectivity requirements of a large number of
devices requiring multi-gigabit data rates by utilizing limited
spectrum resources. As a solution that increases the reuse per
unit area of the spectrum, the ultra-dense network (UDN) has
received considerable attention as one of the most promising
innovations for future wireless network systems.

The UDN concept refers to the dense deployment of a
number of base stations (BSs) with small-cell sizes in order
to enhance the spatial-spectral efficiency in an area with high
wireless service demands. However, as more BSs with small
cell coverage are densely deployed, the inter-BS distance
may decrease, which may increase inter-cell interference (ICI)
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when multiple BSs transmit their downlink packets simultane-
ously. As a result, the spatial-spectral efficiency is unlikely to
increase even as more small cells are deployed. Therefore,
it is necessary to enhance the spatial-spectral efficiency of
the BSs in UDNs by applying various cutting-edge wireless
communication and networking technologies.

Millimeter-wave (mmWave) small-cell deployment is con-
sidered a promising solution to this problem. The character-
istics of the mmWave spectrum, such as high near-field path
loss and low penetration capability, make mmWave small-cell
deployment appealing for use in UDNs. In mmWave small-cell
networks, the BSs and user equipments (UEs) have antenna
arrays that can be integrated into small areas. They perform
beamforming operations to establish highly directional links
in order to enhance the spatial-spectral efficiency.

In this paper, we consider two-tier heterogeneous mmWave
UDNs where small-cell BSs (SBSs) are densely deployed
within a macro-cell BS (MBS) coverage area and share a
single channel for downlink transmissions. In two-tier het-
erogeneous mmWave UDNs, the MBS provides downlink
connectivity to large coverage area with high transmission
power, while the SBSs with low transmission power provide
multi-gigabit downlink services by exploiting broadband band-
width capacity. This two-tier mmWave UDN architecture helps
offload the MBS’s traffic load to the SBSs geographically
distributed over the network, thus resulting in significant
improvement in spatial-spectral efficiency. Here, it is assumed
that both MBS and SBS exploit antenna-array beamforming
technology to establish directional downlink to their associated
UEs. Although the beamforming-based downlink transmis-
sions suppress the interference caused by neighboring BS
transmissions, inter- and intra-tier interferences may occur
in ultra-dense scenarios with multiple SBSs and MBS, when
the BSs perform beamforming transmissions simultaneously.
Because the interference among directional beams results in a
significant level of packet delivery failure, managing inter-BS
interference is important.

Recently, the 3GPP proposed the almost blank subframe
(ABSF) method to resolve the co-channel ICI problem in LTE
heterogeneous network (HetNet) environments where MBS
and SBSs interfere with each other [1]. The concept of ABSF-
based ICI coordination is to prohibit the channel access of
MBS to a portion of the downlink subframes periodically to
alleviate the inter-tier interference to the SBS’s transmissions.
This may enhance network downlink performance by allowing
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SBSs to transmit their downlink packets without experiencing
significant interference from MBS transmissions. The ABSF
method is highly effective when BSs and UEs operate in an
omnidirectional mode for data transmissions. On the other
hand, in mmWave HetNets where BSs and UEs establish
directional links through beamforming, unless the beam di-
rections of the UEs associated with the SBSs are aligned with
the MBS’s beam, the UEs can receive the downlink packets
transmitted from their associated SBSs. Therefore, it is desir-
able to devise a new ICI coordination approach compatible
with beamforming-capable mmWave HetNets where the ICI
depends heavily on antenna-array beamforming directions.

In this paper, we introduce a new ICI coordination frame-
work for beamforming-capable ultra-dense mmWave HetNets
and propose a transmission coordination scheme for maxi-
mizing the number of successful downlink transmissions.In
general, the network throughput performance can be evaluated
by the aggregate amount of data transmitted from the BSs to
UEs in a unit time interval. Therefore, the average downlink
performance is approximately given by the average number of
successful downlink transmissions multiplied by their average
transmission link rate, which is a function of the signal to
interference-plus-noise ratio (SINR) between the BSs and
UEs. Here, we assume that the average downlink performance
is maximized when the transmission link rates between the
BSs and UEs are sufficiently high with high SINR and the
transmissions are completed in a short time. In this case, the
network throughput maximization can be simply formulated
to maximize the number of successful downlink transmissions
under the condition that the SINR of downlink transmissions
should be greater than a certain high SINR threshold. Note
that the SINR threshold is a controllable parameter for further
optimization of the network throughput performance in prac-
tice. In order to characterize the ICI, which varies over inter-
BS beam directions, we introduce the concept of inter-beam
affectance, which is the amount of normalized interference
per beam pair for all BSs in the network. Based on the
inter-beam affectance, we propose a transmission coordination
scheme that allows the SBSs to perform downlink beamform-
ing transmissions while suppressing packet reception failures
at the UEs, which are caused by the interference among
directional links. In addition, because inter-beam interference
also depends on the time-varying wireless fading environment
and unpredictable mobile UEs’ locations, it is essential to
characterize the inter-beam interferences stochastically. To
deal with such a problem in practice, a novel self-learning
approach is needed. Thus, we propose an online learning-based
transmission coordination algorithm to maximize the average
network downlink performance by gradually learning and then
exploiting the unknown inter-beam interference.

The main contributions of this paper are as follows:
• We propose the inter-beam affectance, which is a new

interference metric to quantify the amount of inter-beam
interference in two-tier HetNets, where the BSs and UEs
perform beamforming operations to establish directional
links.

• We devise an inter-beam affectance-based transmission
coordination framework for downlink packet delivery in

ultra-dense mmWave HetNets. This metric can be applied
for ICI coordination without requiring the computation of
SINR in beamforming-capable mmWave HetNets.

• In order to take into account the nature of time-varying
wireless fading and the unpredictable mobility of UEs, we
devise an online learning-based transmission coordination
algorithm based on the framework of multi-armed bandits
(MABs), to gradually learn the stochastic characteristics
of the inter-beam affectance and to exploit learned infor-
mation to derive optimal transmission coordination.

The rest of this paper is organized as follows. In Sec-
tion II, a survey of related work is presented, and then
the problem statement and system model are provided in
Section III. In Section IV, a transmission coordination problem
that maximizes the average number of successful downlink
transmissions is formulated and an online learning algorithm
that gradually converges to optimal transmission policy is
proposed. In Section V, numerical simulation results are
presented, followed by conclusions in Section VI.

II. RELATED WORK

We have categorized the existing machine learning (ML)-
based interference management methods implemented in wire-
less network systems. Table I summarizes the different inter-
ference management methods along with their ML techniques
and management objects.

A. Neural Network-based Approaches

In ML literature, neural networks (NNs) are well-known
mathematical tools used to learn the relationships between
the input and output data of systems whose models are
unknown. The NN consists of numerous nodes (called neu-
rons) positioned in input, hidden, and output layers, and the
weighted connections between the nodes, extending from the
input layer to the output layer. During the training phase,
the weighted connections between the neurons are trained to
extract unknown features from data sets, and afterwards, the
output of the NN is obtained using the learned weights in
multiple layers for input data.

Wijaya et al. [2] proposed an ICI management scheme that
performs both interference cancellation at the UEs and NN-
based transmit-power optimization at the BSs in multiple-input
and multiple-output (MIMO) channels. If the channel state
information (CSI) is known for all pairs of UEs and BSs,
and if the NN is successfully trained, each BS obtains its
own transmit-power independently by importing CSI as input
to its dedicated NN. To boost the convergence speed in the
training phase, they applied a restricted Boltzmann machine
(RBM)-based pretraining phase. Adeelet al. [3] proposed a
random NN-based power controller for uplink ICI coordination
in LTE networks. They evaluated the proposed RNN algorithm
with respect to four learning algorithms (gradient descent,
adaptive-inertia-weight particle swarm optimization, differen-
tial evolution, and genetic algorithm) in terms of training
speed, prediction accuracy, and computational complexity. In
[4], the authors extended their research by integrating the
RNN-based algorithm with a genetic algorithm to reduce the
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TABLE I
SUMMARY OF ML- BASED ICI MANAGEMENT SCHEMES.

References Technology Interference Object ML approach Learning paradigms Online
type learning

[2] MIMO channel Intra-tier Transmit power control Neural network Supervised learning No

[3], [4] LTE-UL Intra-tier Resource block allocation Random neural network Supervised learning No
cognitive radio transmit power control

[5] LTE HetNets Intra-/inter-tier Cell range extension Neural network Supervised learning Notransmit power control

[6]
OFDMA

Intra-/inter-tier Transmit power control Q-learning Reinforcement learning Yestwo-tier network

[7] Two-tier HetNets Intra-/inter-tier
Cell range extension

Q-learning Reinforcement learning Yestransmit power control

[8] Dense Intra-/inter-tier Transmit power control Q-learning Reinforcement learning Yes
small cell networks

[9] Dense LTE Intra-/inter-tier Resource block allocation Multi-armed bandit Reinforcement learning Yes

[10] OFDMA Intra-tier Resource block allocation Multi-armed bandit Reinforcement learning Yes

ICI further. This hybrid method performs radio resource block
(RB) allocation and power control, simultaneously, where an
RB corresponds to the smallest resource allocated to users,in
the time, space, and frequency domains. Liet al. [5] proposed
an NN-aided ICI coordination algorithm in LTE HetNets
with mobile UEs. The proposed ANN algorithm learns the
relationship between the SINR and the UE location, in order
to find the optimal ABSF and cell range extension (CRE)
patterns from historical data. After ANN training is completed,
the ICI coordination problem is decomposed into a single-
cell resource allocation problem. Thus, the computational
complexity caused by information exchange among intra- and
inter-tier BSs is reduced considerably.

However, most ICI management systems using the NN
approach need an offline training phase to converge to a steady
state. This disadvantage becomes severe as the wireless net-
work environment becomes complicated, as in heterogeneous
UDNs. Furthermore, if the environment changes dynamically,
the NNs may not converge.

B. Q-learning-based Approaches

Q-learning, which is one of reinforcement learning (RL)
methods, finds an optimal action policy that maximizes the
long-term reward for a given Markov decision process (MDP)
by exploring and exploiting the reward feedback with respect
to actions in states. It gradually learns the cost of the state-
action combination by continuously updating a Q-table in an
iterative fashion. By controlling the learning rate and discount
factor, the Q-learning based approach can manage the trade-
off between exploration and exploitation. Moreover, the Q-
learning algorithm can be applied without requiring a prior
model for describing the system environment. Therefore, it
is widely applied to ICI coordination in dynamic wireless
networks in which the environment changes dynamically.

Galindo-Serranoet al. [6] proposed a decentralized Q-
learning based interference control algorithm in an orthogo-
nal frequency-division multiple access (OFDMA)-based two-
tier HetNet consisting of a macro-cell and femto-cells. The
proposed algorithm allows each BS in a femto-cell to find

its optimal transmit-power with respect to its allocated RBs
in order to maximize the overall femto-cell capacity. The
proposed algorithm is a multi-agent system (MAS) because
each femto-cell BS acts as an independent agent, without
knowledge about the decisions of the other agents. The system
state of each agent is designed to ensure that the SINRs at
the macro-cell UEs are greater than a given threshold (for
guaranteeing the quality of service (QoS) requirements of the
macro UEs) and that the total transmit power does not exceed
the maximum power. Simseket al. [7] proposed two-stage Q-
learning based ICI coordination algorithms for both the time
and frequency domains in a two-tier HetNet consisting of
macro-cells and pico-cells. In the first stage, each pico-cell BS
selects a bias value for CRE and determines the transmit-power
by considering the QoS requirement of its UE. In the second
stage, the macro-cell BSs consider the pico-cell BSs’ actions
in the first stage, to select their transmit-power. Luet al. [8]
proposed a power control algorithm for coordinating time-
domain ICI in dense small-cell networks while guaranteeing
the QoS requirements of small-cell UEs. First, the proposed
algorithm classifies interfering neighboring cells as aggressor
cells if the interference power they caused is greater than
a predefined threshold. Then, each aggressor cell determines
its own transmit-power using the Q-learning algorithm at the
ABSF.

However, if a wireless network system can be described
using a stochastic model with unknown parameters, it would
be better to characterize the stochastic parameters directly,
rather than attempting to learn the relationships among the
actions and rewards with respect to the system states. Assum-
ing that the number of parameters with unknown stochastic
properties is invariant in the system, as the number of actions
and states increases, the computational complexity increases
exponentially owing to the increasing number of elements
listed in the Q-table.

C. Multi-Armed Bandit-based Approaches

Multi-armed bandit (MAB) is used to derive optimal so-
lutions for combinatorial optimization problems with random
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Fig. 1. Inter-cell interference scenarios in two-tier heterogeneous mmWave
UDNs.

variables present in the cost function. The MAB gradually
learns the characteristics of the random variables with un-
known distributions, instead of learning the rewards with
respect to the actions. Afterward, it exploits the learned
characteristics of the cost function, in order to find an optimal
policy that minimizes the system cost in an average sense.
Because of its self-learning ability, MABs have been applied
to a variety of wireless networking problems recently.

Feki et al. [9] proposed an MAB-based autonomous re-
source allocation algorithm to coordinate the ICI in dense
LTE networks. The algorithm is divided into two phases: the
cell RB selection phase and the per-user scheduling phase,
where the MAB-based online learning approach is applied
to the selection of optimal RBs for each cell. However, this
algorithm is applicable only when the user’s location and
traffic load condition are static. Coucheneyet al. [10] proposed
an MAB-based frequency-time resource selection process to
coordinate the ICI in an OFDMA wireless network. In general,
the EXP3 (Exponential-weight algorithm for Exploration and
Exploitation) in [11] is commonly used to find the optimal
policy from an MAB problem. However, as the number of UEs
associated with BSs increases, the computational complexity
increases exponentially. To resolve such a drawback, they
devised a Q-EXP3 algorithm, which allows each BS to choose
RBs one by one until a predefined number of RBs are chosen,
rather than enumerating all possible RB subsets.

In comparison with the NN- and Q-learning-based ap-
proaches, the main advantage of the MAB isthe ability to
learn the unknown stochastic characteristics of the random
variables in the system model directly. In this paper, we pro-
pose an MAB-based online learning algorithm to coordinate
the ICI in two-tier heterogeneous mmWave UDNs.

III. M OTIVATION AND SYSTEM MODEL

A. Motivation

Consider a downlink scenario in a heterogeneous mmWave
UDN consisting of MBS and a vast number of SBSs. Because
both the mmWave BSs and UEs steer their antenna array
phases to transmit and receive signals in specific directions—
unlike conventional networks where ICI is incurred by the
omni-directional transmission of the BSs—the ICI in mmWave

heterogeneous UDNs depends heavily on the direction and
width of the antenna array beams. Figure 1 illustrates cases
of downlink ICI in a heterogeneous mmWave UDN scenario
with directional beamforming. In spite of the enhanced spatial
diversity through beamforming, as the density of BSs in
the network increases, the intra- and inter-tier ICI becomes
severe and results in network performance degradation. This
emphasizes the necessity of intra- and inter-tier ICI manage-
ment capable of improving network performance by alleviating
interference.

In this paper, we focus our attention on centralized downlink
transmission coordination as a method to manage intra- and
inter-tier ICI in heterogeneous mmWave UDNs. It is possible
to attempt to determine the BSs’ transmissions by estimating
the SINR and comparing it with the SINR threshold to ensure
that the downlink packets are successfully delivered to the
UEs before transmitting the packets. However, if there exist Ns

interfering SBSs andNm interfering MBSs, which are capable
of performingBs andBm directional beams, respectively, it
will be necessary to investigate cases ofBNs

s × BNm
m inter-

beam collisions. This incurs tremendous time overhead to
measure and update all possible collision cases.

To solve this problem, we propose using an inter-beam
interference matrix for allpairs of beams among the BSs
in the network as a metric to estimate the average SINR
without investigating all cases in every transmission phase.
Because of the nature of time-varying wireless fading and the
unpredictable mobility of UEs, it is preferable to deal with
the elements of the inter-beam interference matrix as random
variables, because their stochastic characteristics are unknown
in practice. To capture and exploit the unknown stochastic
characteristics of inter-beam interferences, we adopt theMAB
framework to derive an online learning-based transmission
coordination algorithm. The proposed algorithm learns an
inter-beam interference matrix gradually and determines the
optimal policy that allows the BSs to transmit their downlink
packets only when the aggregate sum of interferences is less
than the thresholds. Instead of using the power of the inter-
beam interference in the decibel (dB) scale during the learning
process, we propose using the inter-beam affectance, which
corresponds to the amount of normalized interference. This
affectance-based approach makes it easier to take into account
the impact of inter-beam interference from individual BSs on
successful packet reception at UEs in an average sense.

B. System Model

Consider a downlink scenario in a two-tier heterogeneous
UDN composed of one MBS, (N − 1) SBSs, and their
associated UEs. LetnM denote the MBS andnS,i denote
the i-th SBS for i = {1, · · · , N − 1}. Further, letNSBS =
{nS,1, · · · , nS,N−1} denote a set of SBSs,N = NSBS∪ {nM}
denote a set of all the BSs, andUn denote a set of UEs
associated with the BSn ∈ N . The BSs and UEs are
equipped with antenna arrays that perform a beamforming
operation to establish directional links between them. We
assume that a codebook-based beamforming technology is
used to establish directional links. In the codebook-based
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beamforming technology, the transmitter and receiver carry out
sector-sweep-based beam selection operations to select beams
directed toward each other from a predefined set of beams in
order to maximize the received signal strength (RSS) at the
UE. Assume that the BSs and UEs are capable of performing
M directional beamforming. Further, we assume that the BSs
are wired through a backbone network and are synchronized
with each other. In order to provide the downlink beamforming
information to the UDN manager attached to the backbone
link, each BS broadcasts its scheduling information through
the backbone network.

We consider an SINR model for describing the successful
delivery of a downlink packet. Here, a downlink packet is
successfully delivered to its destination UE only when the
SINR at the UE is greater than a specified threshold. We
consider that the signal attenuation in the mmWave band
follows a close-in reference distance path loss model as
follows:

PL(d)[dB] = PL(d0) + 10α log10

(
d

d0

)

+Xn, (1)

where PL(d0) = 20 log10(
4π
λc
) is the path loss at the reference

distanced0, λc is the wavelength in meters,α is the path loss
exponent, andXn is a Gaussian random variable with zero
mean and standard deviationσ in the dB scale.1 Using the
path loss model, the RSS at a UEu for the signal from the
BS n ∈ NSBS∪ {nM} can be obtained asPn,u

r = κPn
t d

−α
n,u,

wherePn
t is the transmission power of the BSn, dn,u is the

Euclidean distance between the BSn and UE u, and κ =
10PL(d0)/10 is a scaling factor. LetΓn(u) denote the SINR at
u ∈ Un; Γn(u) is given by

Γn(u) =

κPn
t d

−αn,u
n,u

b(
∑

n′∈{nM}\{n}

κPn′

t d
−αn′,u

n′,u

︸ ︷︷ ︸

MBS interference

+
∑

n′′∈NSBS\{n}

κPn′′

t d
−αn′′,u

n′′,u )

︸ ︷︷ ︸

SBS interference

+N0W
,

(2)
whereb is the multi-user interference (MUI) factor,αn,u is the
path loss exponent between the BSn and UEu that changes
depending on the dynamics of channel environment,N0 is the
noise power spectral density, andW is the channel bandwidth.
Let βu denote the SINR threshold for successful packet recep-
tion at u. Then,u can successfully receive downlink packets
only when the SINR is greater thanβu (i.e., Γn(u) ≥ βu).

IV. MAB- BASED INTER-CELL INTERFERENCE

MANAGEMENT SCHEME

A. Affectance-based transmission coordination optimization
problem

In this paper, we use the affectance as a measure of
normalized interference at UEs, resulting from the signalsfrom

1According to the real-life measurement campaign for small cell mmWave
channel modeling in [12], the average pathloss exponent (PLE) values with
respect to the line-of-sight (LOS)- and non-line-of-sight(NLOS)-propagation
under the mobile receiver scenario are2 and 3.3, respectively, where the
standard deviationσ also varies from5.2 to 7.6 depending on the propagation
condition.

their neighboring BSs. Under the SINR equation in (2), the
affectancevi,j(u) from thej-th MBS to u ∈ Ui is defined as

vi,j(u) = min







b
κP j

t

κP i
t

(
d
−αj,u
j,u

d
−αi,u
i,u

)

1
βu

− N0W

κP i
t d

−αi,u

i,u

, 1







, wherej ∈ N \ {i}.

(3)
Here, if the sum of affectance from all BSs inN is less than
or equal to1 (i.e.,

∑

j∈N\{i} vi.j(u) ≤ 1), the SINR atu will
be greater than or equal to the threshold (i.e.,Γi(u) ≥ βu).
Note that ifb, βu, κ, P i

t , N0, andW are given, the affectance
depends on the locations of the UEs and BSs.The affectance
in (3) includes all the intra- and inter-tier interferences.

We extend the concept of affectance to the case where the
BSs and UEs perform beamforming operations for downlink
transmissions. In this case, the level of interference among
the downlink transmissions of the BSs depends heavily on the
beams selected from the codebook for downlink transmission.
Let fi,u(k) denote a binary beamforming boresight function
for thei-th BS using thek-th beam and UEu. Here,fi,u(k) =
1 if the k-th beam direction of thei-th BS and the beam
direction ofu point toward each other; otherwise,fi,u(k) = 0.
We adopt the beamforming gain model in [13], where the main
lobe and side lobe gains of directional beamforming are1− ǫ
and ǫ, respectively. Iffi,u(k) = 1, the beamforming gain is
(1 − ǫ)2; otherwise, the beamforming gain is either(1 − ǫ)ǫ
or ǫ2. Under the assumption that the the side lobe gain is
sufficiently small, i.e.,0 ≤ ǫ ≪ 1, the beamforming gain
is given by either1 or 0 depending on the beam boresight
function. We define an inter-BS affectance matrix (IBAM)
Ai,j = (ai,j(k, l))M×M to specify the inter-beam interference
for all pairs of beamforming transmissions between thei-th
andj-th BSs.

Definition 1: ai,j(k, l) is the affectance between BSs when
a UE atu ∈ Ui is served by thek-th beamforming of thei-th
BS, and experiences interference from thel-th beamforming
transmission of thej-th BS. It can be obtained by

ai,j(k, l) = E[vi,j(u)|fi,u(k) = 1, fj,u(l) = 1], (4)

where the distribution ofvi,j(u) depends on the distributions
of di,u, dj,u, αi,u, andαj,u, i.e., the distributions of the UE
mobility and wireless channel characteristics. It is difficult to
computeai,j(k, l) from the expectation in (4) because the
distribution of vi,j(u) is unknown and difficult to obtain.
Therefore, we adopt an online learning framework to learn
the IBAMs ai,j(k, l) through consecutive measurement and
update phases. The proposed online learning-based approach
makes the IBAM-based interference management framework
applicable regardless of the wireless channel and UE mobility
models.

It is worth noting that the IBAM-based interference manage-
ment framework is capable of quantifying both intra- and inter-
tier interferences. Under the two-tier heterogeneous network
scenario, the MBS’s transmission brings more critical inter-
ference than SBS’s transmissions because the transmission
power of the MBS is higher than that of the SBSs. The
affectance takes into account the different transmission power
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levels byP i
t andP j

t in (3). Consequently, the proposed IBAM-
based interference management framework can distinguish the
amount of interference brought by heterogeneous BSs with
different transmission power level.

Under the proposed IBAM concept,we formulate an opti-
mization problem to find the optimal transmission policy for
both of an MBS and SBSs. Here, the optimal transmission
policy maximizes the number of successful downlink trans-
missions, of which the aggregate affectance is less than or
equal to1. Letδ = [δ1, · · · , δN−1, δN ] denote the transmission
decision vector, whereδi’s for all i = {1, · · · , N − 1} denote
the transmission decision variable of thei-th SBS andδN
denotes the transmission decision variable of the MBSs. For
all i = {1, · · · , N − 1}, if δi = 1, the i-th SBS is allowed to
transmit its downlink packet; otherwise, it is zero. Similarly, if
the MBS is allowed to transmit its downlink packet,δN = 1;
otherwise, it is zero.The optimal transmission decision vector
δ∗ is obtained by solving the binary maximization problem
over δ ∈ {0, 1}N×1 as follows:

δ∗ = arg max
δ∈{0,1}N×1

∑

i∈N

δi · I

[
∑

j∈{nM}\{i}

δjmiAi,jm
T
j

︸ ︷︷ ︸

MBS affectance

+
∑

j′∈NSBS\{i}

δj′miAi,j′m
T
j′

︸ ︷︷ ︸

SBS affectance

≤ 1

] (5)

whereI[x] is an indicator function defined asI[x] = 1 if x
holds true; otherwise, it is zero. In addition,mi = {0, 1}1×M

indicates the beamforming index vector to be used for thei-th
BS’s transmission. If thek-th beam is scheduled to be used,
the k-th element ofmi will be 1; otherwise, it will be zero.

The optimization in (5) attempts to find the transmission
decision vectorδ∗ that maximizes the function. However,
Ai,j is a function of the transmission power at the BSs (P i

t

and P j
t ) and mi is a function of beamforming vector. The

optimization can be formulated as a higher dimensional form
to find the optimal transmission power levels of BSs, their
beamforming vectors, and transmission decision vectors. How-
ever, this causes an exponential increase in the computational
complexity. For this reason, we focus on the scenario where
the transmission power at a BS and the beamforming vector are
known and have fixed values, and the multi-level transmission
power selection and beamforming vector control remain as
future work.

Remark 1:It is evident that if the SINR-based interference
management framework is adopted, the downlink transmission
coordination may achieve better network performance than
the IBAM-based framework. However, the SINR-based frame-
work requires tremendous time and computational complexity
to estimate the SINR for all the UEs at every downlink
transmission session, and the complexity increases exponen-
tially with respect to the number of BSs. This means that
the SINR-based interference management framework approach
becomes infeasible, especially in the two-tier mmWave UDN
environment. On the other hand, once the IBAMs are measured
and stored, the IBAM-based framework does not need to

estimate SINR for the UEs at each downlink transmission
session. In fact, the IBAM is used as a metric to quantify the
interference for all pairs of directional downlink transmissions
in an average sense, even though there exists a certain levelof
accuracy loss. The low complexity brought by the expectation-
based inter-beam affectance makes the IBAM-based frame-
work appealing in the two-tier heterogeneous mmWave UDN
considered in this paper.

B. Greedy algorithm and its approximation factor

The optimal transmission decision vector in (5) can be
obtained by a combinatorial algorithm. One method to solve
this problem is to enumerate all possible candidates. How-
ever, its complexity grows exponentially with respect to the
dimension ofδ, and thus it is inefficient for application in
UDNs where a vast number of BSs are densely deployed. To
make this problem more tractable, we propose the use of an
approximation algorithm that finds a suboptimal solution in
polynomial time with a guaranteed worst-case performance.
The optimal solutionδ∗ in (5) can be obtained by solving
a multidimensional knapsack problem, which is known to be
NP-complete, given as follows:

maximize
∑

i∈N

δi

subject to
∑

j∈{nM}\{i}

wi,jδiδj +
∑

j′∈NSBS\{i}

wi,j′δiδj′ ≤ b, ∀i ∈ N

δi ∈ {0, 1}, ∀i ∈ N ,
(6)

where wi,j is a constant given bywi,j = miAi,jm
T
j for

∀i, j ∈ N , and b is 1. Here, we note that the multidimen-
sional knapsack problem described above can be transformed
into a single knapsack problem according to the following
proposition:

Proposition 1:Let
∑

j∈N\{i} wi,jδiδj ≤ bi, ∀i ∈ N de-
note the maximum weight constraint of the multidimensional
knapsack problem. If the maximum weight capacitiesbi of the
multidimensional knapsack problem are equal to a constantb
for all i ∈ N , then the problem can be simplified into a single
knapsack problem with a one-dimensional maximum weight
constraint.

Proof: Under the assumption thatbi = b for all i ∈ N , the
maximum weight capacity constraint in (6) can be rewritten
asmaxi∈N

∑

j∈N\{i} wi,jδiδj ≤ b, wherewi,j is a constant.
Let Aδ = {i|δi = 1, i ∈ N} denote the index set for
δi = 1 and 1N ∈ R

N denote an all-ones column vector.
Let us assume that an elementδk ∈ δ is 0, and that
Da(Aδ) = maxi∈N

∑

j∈N\{i} wi,jδiδj is a set function of
the maximum weight constraint. Whenδk is changed from
0 to 1, the variation of the set function with respect toδk
is always greater than or equal to0. In other words, for all
Aδ1

⊆ A1N
and for allδk ∈ A1N

\Aδ1
, if Aδ2

= Aδ1
∪Aδk ,

then Da(Aδ2
) is always greater than or equal toDa(Aδ1

).
Because the maximum weight constraint functionD(Aδ) is
a nondecreasing function with respect toδ, it is possible to
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transform the multidimensional knapsack problem in (6) into
a single knapsack problem as follows:

maximize
∑

i∈N

δi

subject to max
i∈N




∑

j∈{nM}\{i}

wi,jδiδj +
∑

j′∈NSBS\{i}

wi,j′δiδj′



 ≤ b

δi ∈ {0, 1}, ∀i ∈ N .
(7)

Based on the above proposition, we devise a greedy algo-
rithm that iteratively finds the suboptimal solution by setting
one element ofδ to 1. First, the algorithm enumerates all
feasibleδ’s with |Aδ| = 3 and starts with theδ∗

g that gives
the minimum weight capacity, from among the feasibleδ’s,
i.e.,δ∗g = arg minδ∈{δ|δ∈{0,1}N×1,|Aδ|=3} Da(Aδ). Then, the
algorithm picks one elementδk ∈ A1N

\Aδ∗

g
, minimizing the

increment of the maximum weight capacity as follows:

k = arg min
k∈A1N

\Aδ∗g

Da(Aδ∗

g
∪ {k}). (8)

This algorithm terminates when the maximum weight capacity
exceeds1.

As the greedy algorithm may fail to find the global optimal
solutionδ∗, it is better to check the worst-case performance of
the proposed greedy algorithm to guarantee its effectiveness,
by deriving its approximation factor. Ifǫ denotes the approxi-
mation factor, the worst-case performance of the greedy algo-
rithm will be bounded byf(δ∗

g) ≥ ǫf(δ∗), wheref(·) is the
objective function of a maximum optimization problem. If the
approximation factor is a constant value, the greedy algorithm
can find the suboptimal solution in polynomial time. Based on
the above proposition, the optimization problem in (5) can be
transformed into a submodular maximization problem (SMP),
which achieves the1−e−1 approximation factor. The detailed
procedure to derive the approximation factor of the proposed
greedy algorithm is described in Appendix A.

C. Policy design

In our downlink transmission coordination problem,Ai,j is
unknown in advance, and the online learning process estimates
Ai,j . Let t denote the iteration index representing a decision
period for online learning. The proposed MAB-based transmis-
sion coordination algorithm updates the estimated affectance
Âi,j for each decision period and finds the optimal solution
that maximizes the cost function in (4) witĥAi,j . The detailed
procedure is described in Algorithm 1. This algorithm is
inspired by the linear rewards (LLR) approach in [14], which
exploits the learned information from the operation of each
action to make decisions about the next action under the
assumption that the same random variable can be observed
from the operation of different actions.

In Algorithm 1, the initial learning process is performed
for each element in̂Ai,j , so that every inter-beam affectance
is updated at least once. In lines 3–9, an arbitrary binary
transmission decision vector is chosen, and the estimated
affectanceÂi,j is observed and updated. Based onÂi,j , an

Algorithm 1 Proposed online learning approach

1: while min ci,j(k, l) = 0 do
2: t := t+ 1;
3: Play an armδ such that at least one unexplored element

âi,j(k, l) is observed, i.e.,δi(mi(t))k(mj(t))lδj = 1.
4: Measure the instantaneous affectancev′i,j(u)

5: âi,j(k, l) =
ci,j(k,l)×âi,j(k,l)+v′

i,j(u)×δi(mi(t))k(mj(t))lδj
ci,j(k,l)+δi(mi(t))k(mj(t))lδj

;
6: ci,j(k, l) = ci,j(k, l) + δi(mi(t))k(mj(t))lδj ;
7: end while
8: // Main loop
9: while 1 do

10: t := t+ 1;
11: Play any armδ ∈ {0, 1}N×1, which solves the follow-

ing problem:

max
δ∈{0,1}N×1

∑

i∈N

δi · I





∑

j∈N\{i}

(ŵi,j(t)− ηi,j(t))δj ≤ 1



 ;

(9)
12: Measure the instantaneous affectancev

′

i,j(u).

13: âi,j(k, l) =
ci,j(k,l)×âi,j(k,l)+v′

i,j(u)×δi(mi(t))k(mj(t))lδj
ci,j(k,l)+δi(mi(t))k(mj(t))lδj

;

14: ci,j(k, l) = ci,j(k, l) + δi(mi(t))k(mj(t))lδj ;
15: end while

optimal transmission policy is determined as described in
(9), in line 13. Let mi(t) denote the beamforming index
vector of thei-th BS at thet-th iteration. In (9),ŵi,j(t) =
mi(t)Âi,jmj(t)

T and ηi,j(t) = mi(t)ηi,jmj(t)
T , where

ηi,j = (ηi,j(k, l))M×M is the linear reward matrix that
controls the tradeoff between exploration and exploitation.

It can be expressed byηi,j(k, l) =
√

(N(N−1)+1) ln t
ci,j(k,l)

where
ci,j(k, l) is the observation time up to the current iteration for
ai,j(k, l).

Note that the proposed learning algorithm follows acontex-
tual learning strategy, in which the learning rate varies over
the learning situation. When the exploration is more important
than exploitation, the algorithm operates on highly explorative
behavior and vice versa. In Algorithm 1, the linear reward
matrix is used as a contextual learning control component that
determines the learning behavior. In (9),ηi,j(k, l) is inversely
proportional to the observation timeci,j(k, l). This indicates
that as more observations are performed, the elements of the
linear reward matrix decrease. When the linear reward matrix
becomes an all0’s matrix, the algorithm finds the solution
based on the learned data without any exploration behavior.
This implies that after a sufficient observation process, the
learning rate of the proposed algorithm may become0. There-
fore, the learning rate of the proposed algorithm is contextually
determined by the linear reward matrix.

The proposed algorithm iteratively finds a global optimal
binary transmission decision vector that maximizes the number
of successful downlink transmissions in an average sense.
We assume that the UE observes the instantaneous affectance
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v′i,j(u) and reports it to the BS.2 Afterward, the accumulated
mean affectancêAi,j is updated as follows:

âi,j(k, l) =
ci,j(k, l)× âi,j(k, l) + v′i,j(u)× δi(mi(t))k(mj(t))lδj

ci,j(k, l) + δi(mi(t))k(mj(t))lδj
.

(10)
As the estimated affectancêAi,j is updated over time, it grad-
ually converges to theactual affectanceAi,j . The proposed
algorithm requires two storage units of sizeN(N − 1)×M2

to storeÂi,j andCi,j = (ci,j(k, l))M×M .

D. Regret analysis

To verify the feasibility of the solution to the proposed
online learning algorithm, it is necessary to analyze theregret,
which is the difference accumulated between the maximum
rewards obtained by the optimal decision and those obtained
by the proposed MAB over time. Theregret afterT iterations
is given by

R(T ) =
T∑

t=1

g(δ∗(t))− g(δ(t)), (11)

whereg(δ∗(t)) =
∑

i∈N I

[
∑

j∈N\{i} wi,j(t)δ
∗
j (t) ≤ 1

]

δ∗i (t)

is the aggregate number of successful downlink
transmissions by the optimal transmission coordination
δ∗(t) = [δ∗1(t), · · · , δ

∗
N (t)] and t is the iteration index.If

the regret of the proposed online learning algorithm grows
logarithmically over time, the online learning algorithm finds
the optimal solution exponentially more often as time passes
[18].

The regret analysis is performed by deriving an upper
bound for the regret, in terms of the number of iterations.
Let CNO(T ) denote the number of times, where a non-
optimal transmission decision vector is selected for the first
T iterations. To derive the upper bound ofCNO(T ), we
define Ci,j,k,l(T ) as a counter forai,j(k, l). Once the on-
line learning algorithm selects a non-optimal transmission
decision vector, the index{i, j} ⊆ Aδ such that{i, j} =
arg min{i,j}∈Aδ

ci,j(k, l) is selected, and the corresponding
counter is increased by 1. Then, it is evident that when the
non-optimal transmission decision vector is selected, only one
counter will increment its value. As a result, the following
equation must hold:

CNO(T ) =
N∑

i=1

N∑

j=1
j 6=i

M∑

k=1

M∑

l=1

Ci,j,k,l(T ).

Then, the upper bound of theregret is given by

R(T ) = ∆max×







N∑

i=1

N∑

j=1
j 6=i

M∑

k=1

M∑

l=1

Ci,j,k,l(T )







, (12)

2As described in (3), the affectance can be derived by measuring RSS of
the served BS and interfering BSs. Under the assumption thatall the BSs
periodically broadcast their beacon messages toward all available directions,
the UEs are able to measure the RSS of the beacon packets transmitted by
its neighboring BSs. After successfully receiving the downlink packet, the
UEs compute the affectance through the measured RSS and thenreport the
affectance to their served BSs through the acknowledgementpacket.

TABLE II
SIMULATION PARAMETERS FOR MMWAVE HETEROGENEOUS NETWORK.

Parameter Value

MBS Tx power [15] 40 dBm (10 W)
MBS Tx range 1000 m
SBS Tx power [15] 20 dBm (100 mW)
SBS Tx range 100 m
Bandwidth [16] 1200 MHz
Noise power [16] −134 dBm/MHz
path loss exponent [12] 2

Number of Tx and Rx beam sectors 4 (90◦ per beam)

where∆max = maxt=1,··· ,T g(δ∗(t)) − minδ∈F g(δ(t)). The
upper bound of theregret functionR(T ) is derived from the
upper bound of the counterCi(T ). It is given by

E [Ci,j,k,l(T )] ≤
(N(N − 1) + 1) lnT

ζ2min
+ 1 +

π2

3
N, (13)

whereς2min is a constant less than or equal to1. The detailed
derivation of the upper bound forE [Ci,j,k,l(T )] is described
in Appendix B.

The above equations show that the upper bound for the
regret of the proposed online learning algorithm increases
logarithmically. This implies that as time goes, the proposed
algorithm finds an optimal solution3 more frequently where
the optimal solution maximizes theexpectedreward [17].
To verify this, we derive the reward discrepancy between
the optimal solution and the solution given by the proposed
algorithm. Based on (11),R(T ) − R(T − 1) becomes the
reward discrepancy between the optimal solution and the
solution given by the proposed algorithm at theT -th decision
period, i.e.,R(T )− R(T − 1) = g(δ∗(T )) − g(δ(T )). As T
approaches infinity, the reward discrepancy betweeng(δ∗(T ))
andg(δ(T )) converges to0 as follows:

lim
T→∞

R(T )−R(T − 1) ≤

lim
T→∞

ln
T

T − 1

(

∆maxN(N − 1)M2 (N(N − 1) + 1)

ζ2min

)

= 0.

(14)
This implies that the proposed online learning algorithm finds
the optimal solution by exploiting the learned information
rather than exploring more information as time passes [18].
This is an interesting behavior of thecontextual learning
strategy where the learning rate varies over the learning
situation.

V. PERFORMANCEEVALUATION

A. Simulation environment

We performed numerical simulations to evaluate the effi-
ciency of the proposed transmission coordination algorithm.
In the simulation, the SBSs were randomly deployed in the
network over an area ofA = 500 × 500m2 and their UEs
were uniformly distributed over the transmission range. In
addition, a single MBS was deployed in the center of the
network area. It was assumed that the BSs always have data

3Here, the optimal solution represents the solution given bythe optimization
problem in (5) where all the stochastic characteristics areassumed to be known
in advance.
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Fig. 2. Aggregate number of successful downlink transmissions with respect to a) the number of SBSs and b) the number of Tx/Rx beam sectors.

packets to transmit to their UEs. For comparison, a naı̈ve
method without coordination control and enhanced-ABSF (e-
ABSF) method were considered. The naı̈ve method without
coordination control allows all BSs to always perform their
downlink transmissions. In addition, the e-ABSF method is
an enhanced version of the ASBF method [1] by taking into
account the directional inter-tier interference, and it allows the
SBSs to perform their downlink transmission only when the
downlink transmission of the MBS does not incur interference
owing to the directional mmWave beam propagation charac-
teristics. The detailed simulation parameters are listed in Table
II while numerical simulations with respect to the Tx power
and number of Tx/Rx beam sectors variations were performed.

B. Simulation results for deterministic case

In this subsection, we evaluate the performance of the
proposed transmission coordination method under the de-
terministic case where the IBAMs are perfectly known in
advance.

Figure 2(a) shows the aggregate number of successful
downlink transmissions with respect to the number of SBSs
in the network. The figure shows that as the density of
the SBSs increases, the performance of the naı̈ve and e-
ABSF methods gradually decreases owing to the increase
in inter-beam interference caused by both intra- and inter-
tier concurrent downlink transmissions. On the other hand,
as the density of the SBSs increases, the performance of
the proposed algorithm gradually increases and levels off.
As a result, the performance difference between the pro-
posed method and other methods becomes significant. This
is because the proposed algorithm successfully learns the
IBAMs and exploits them to avoid packet collisions when
the BSs transmit their downlink packets. Thus, the proposed
algorithm achieves an optimal transmission policy capableof
fully exploiting the high spatial diversity of beamformingin
the two-tier heterogeneous mmWave UDN scenario.

Figure 2(b) shows the aggregate number of successful
downlink transmissions with respect to the number of Tx and

Rx beam sectors when the number of SBSs in the network is
150. The figure shows that, as the number of the beam sectors
increases, the performances of all methods increase. This
is because the capability to exploit spatial diversity through
directional beamforming is enhanced, resulting in alleviation
of the inter-beam interference incurred by concurrent intra-
and inter-tier transmissions. The figure also shows that theper-
formance difference between the proposed method and other
methods increases as the number of beam sectors decreases
(i.e., the inter-beam interference becomes severe). This implies
that the proposed method coordinates concurrent transmissions
of the BSs in the network to minimize the downlink packet
reception failure caused by intra- and inter-tier interferences
in order to improve the downlink performance. In the e-ABSF
method, all the SBSs that interfered with the MBS’s downlink
transmission are prohibited from performing their downlink
transmission regrardless of the level of interference. Although
the e-ABSF allows the SBSs to avoid inter-tier interference,
it is unable to prevent the intra-tier interferences incurred by
concurrent transmissions of the SBSs.

It is evident that if the number of beam sectors becomes
sufficiently large, the effectiveness of the proposed method will
decline because of negligible inter-beam interference. How-
ever, the increase in the number of beam sectors may result
in increased costs for the antenna array infrastructure and
beam alignment overhead. This implies that there is a trade-off
between the infrastructure expenditure for antenna arraysand
the inter-beam interference in beamforming capable downlink
scenarios in ultra-dense HetNets. Note that when the number
of beam sectors is1 (i.e., omni-directional Tx/Rx scenario),
the probability of successful transmissions for all methods is
almost 0. In the naı̈ve method, the SBSs’ transmissions are
significantly affected by the concurrent transmissions of the
MBS because the MBS transmits its downlink packets with
100 times higher transmission power than that of the SBSs.
On the other hand, the e-ABSF and proposed methods prohibit
all SBSs from transmitting their packets because all SBSs in
the networks cannot to avoid the inter-tier interference incurred
because of the MBS’s transmission under the omni-directional
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Fig. 3. Aggregate number of successful downlink transmissions with respect
to the transmission power ratio between the MBS and SBS when the number
of SBSs is 150.

Tx/Rx scenario.
Figure 3 shows the aggregate number of successful down-

link transmissions with respect to the transmission power ratio
between the MBS and SBSs when the number of SBSs is
150. The figure shows that asPnM

t increases, the performance
discrepancy between both methods increases and levels off.In
general heterogeneous networks, an MBS transmits downlink
packets with higher transmission power than that of SBSs;
hence, the proposed method is an appropriate solution to co-
ordinate concurrent downlink transmissions in heterogeneous
mmWave UDNs by taking into account the impact of intra-
and inter-tier interferences.

Figure 4 shows the aggregate number of successful down-
link transmissions with respect to the downlink traffic loadat
the MBS and SBSs when the number of SBSs is150. Fig.
4(a) shows that as the amount of MBS downlink traffic load
increases, the performance of all methods decreases gradually.
Nevertheless, the proposed method achieves better perfor-
mance than the other methods. In addition, as depicted in Fig.
4(b), the proposed method achieves better performance than
the other methods as SBS traffic load increases. The simulation
results verify that the proposed method enhances the network
performance of the two-tier heterogeneous mmWave UDN
under the various traffic load scenarios.

C. Simulation results for stochastic case

In this subsection, we evaluate the performance of the
proposed method under the stochastic case, where inter-beam
interferences are gradually learned and exploited to coordinate
transmissions. For the simulation, we set the number of SBSs
to 5, in which the SBSs are densely deployed in an area of
200×200 m2. We randomly generated the location of the UEs
from homogeneous Poisson point process in the transmission
range of their associated BSs. The proposed online learning
algorithm iteratively measures and updates the elements inthe
IBAMs Ai,j for all i, j ∈ N . For comparison purposes, a
naive online learning approach using UCB1 policy in [18]
was considered. The UCB1 policy is designed to learn the

aggregate number of successful downlink transmissions for
all possible beam transmission sets.

Figure 5(a) shows the simulation results of theregretdivided
by the number of iterations. This is the average difference
between the maximum rewards obtained by the optimal de-
cision and those obtained by the online learning approaches.
The figure shows that for both online learning approaches,
the results of theregret divided by the number of iterations
decrease as the iteration increases. This implies that the
both approaches learn the unknown stochastic characteristics
gradually and exploit them to find an optimal transmission
policy. In comparison with the results of the UCB1 policy, the
simulation results of the proposed algorithm converges rapidly
to 0. This shows that the proposed algorithm achieves better
transmission coordination performance than UCB1 in terms of
convergence speed.

In addition, as the number of beam sector (M ) increases,
the convergence speed for both online learning approaches
decreases. In particular, the performance degradation of the
UCB1 policy becomes worse than the proposed online learning
algorithm in terms of learning convergence. The proposed
online learning algorithm learns the inter-beam affectances
directly and exploits the learned inter-beam affectances to find
the optimal transmission policy. Therefore, as the number of
beam sectors increases, the number of unknown objects to be
learned by the proposed online learning approach increases
linearly. On the other hand, the UCB1 policy is designed
to learn the aggregate number of successful transmissions
for all beam combinations of the BSs in the network; as a
result, as the number of beam sectors increases, the number
of unknown objects increases exponentially. Moreover, as the
number of SBSs (N ) in the network increases, the performance
of the UCB1 policy becomes worse. This implies that the
UCB1 policy is infeasible for applications to mmWave UDN
scenarios where a number of directional beamforming-capable
SBSs exist.

Figure 5(b) shows theregret divided by the number of iter-
ations in a dynamically changing scenario, where the IBAMs
are completely changed owing to the re-deployment of SBSs
in the network at the10, 000th iteration. The simulation results
show that the averageregret of the online learning algorithm
rapidly decreases after the10, 000th iteration, and then levels
off after the 12, 000th iteration. For example, if a single
downlink session time is1 ms, the proposed online learning
algorithm requires only2 s to converge. This shows that even
though the environment dynamically changes, the proposed
online learning algorithm is able to converge consistently.

Figure 6 shows the aggregate number of successful down-
link transmissions with respect to the iterations. The simula-
tion results show that the proposed online learning algorithm
gradually converges as time passes regardless of the amount
of downlink traffic load. However, the learning speed of the
proposed algorithm to converge to an optimal solution depends
on the network traffic load. As shown in the simulation
results, as the amount of downlink traffic loads at the BSs
increases, the proposed online learning algorithm converges to
the optimal solution more rapidly. The reason is that as more
downlink transmissions are performed, the proposed algorithm
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Fig. 4. Aggregate number of successful downlink transmissions with respect to the amount of downlink traffic generated when the number of SBSs is 150.
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Fig. 5. Regret divided by the number of iterations when the SINR threshold is10.6 dB: a) static case and b) dynamic case when the locations of all BSs
are abruptly changed at the 10,000th iteration.
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Fig. 6. Aggregate number of successful downlink transmissions with respect
to the iteration when the number of SBSs is5.

gathers more measurement data used for learning IBAMs.
Therefore, the learning speed of the proposed online learning
algorithm is directly proportional to the traffic in the network.
The simulation results in various mmWave HetNet scenarios
indicate that the proposed method is applicable to downlink
transmission coordination in beamforming-capable mmWave
UDNs.

VI. CONCLUSION AND FUTURE WORK

In this paper, we considered online learning-aided ICI
management in heterogeneous mmWave UDNs. Given the
downlink scheduling of BSs in the network, the proposed
online learning-based transmission coordination method could
find an optimal transmission policy that maximized the number
of successful downlink transmissions. The proposed algorithm
adopted the MAB framework to learn and exploit the unknown
characteristics of ICI to decide which BSs were to be allowed
to transmit their downlink packets. The results of the nu-
merical simulations verified that the proposed online learning
algorithm significantly improved the downlink performance.
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In future work, we will transform the proposed transmission
coordination algorithm into a distributed online learning-based
transmission decision algorithm that will be applicable for self-
organization networks.

APPENDIX A
APPROXIMATION FACTOR DERIVATION FOR THE PROPOSED

GREEDY ALGORITHM

In this appendix, we derive the worst-case performance of
the greedy algorithm described in Section IV-B by mathemat-
ically analyzing the approximation factor. Letfa(Aδ) = |Aδ|
andDa(Aδ) = maxi∈N

∑

j∈N\{i} wi,jδiδj . Then, the prob-
lem in (7) can be re-written by

max
δ∈{0,1}N×1

|Aδ| subject to Da(Aδ) ≤ 1. (15)

Because the objective functionfa(·) is an increasing and
modular set function; for an arbitrary setsS and T , the
following condition must hold:

fa(S) = fa(T ) +
∑

i∈T\S

(fa(S ∪ {i}) − fa(S)). (16)

Assume thatδ∗ is an globally optimal solution of the problem
in (15) andδt

g is a solution obtained by the proposed greedy
algorithm after thet-th steps. We sort the index set of{ki} ∈
Aδ∗ such that

Da(k1, · · · , ki) =

min
ki∈Aδ∗\{k1,··· ,ki−1}

Da({k1, · · · , ki−1} ∪ {ki}), ∀i ∈ {1, · · · i∗},

wherei∗+1 is the first step of the greedy algorithm for which
the algorithm dose not update the solution, i.e.,Da(Aδi

∗+1
g

) >

1 > Da(Aδi∗g
). Let V = {k1, k2, k3} denote the set of first

three elements of the index setAδ∗ . Then, for any element
ki ∈ Aδ∗ , i ≥ 4, and any setW ∈ A1N

\ {V ∪ {ki}}, the
following equality hold:

fa(V ∪W ∪ {ki}) − fa(V ∪W ) =
1

3
fa(V ) = 1. (17)

We define a new set functionga(S) = fa(S) − fa(V ),
which is also an increasing and modular set function. Then,
the following inequalities also hold:

ga(Aδ∗) ≤ ga(Aδi
g
) +

∑

k∈Aδ∗\A
δig

ga(Aδi
g
∪ {k})− ga(Aδi

g
)

= ga(Aδi
g
) +

∑

k∈Aδ∗\A
δig

fa(Aδi
g
∪ {k}) − fa(Aδi

g
)

≤ ga(Aδi
g
) + (1−Da(V ))× θi+1, 0 ≤ i ≤ i

∗ − 1,
(18)

whereθi represents the inverse of the minimum increase of
the maximum weight constraint set functionDa(·) at thei-th
steps as follows:

θi = max
k∈A1N

\A
δ
i−1
g

fa(Aδ
i−1
g

∪ {k}) − fa(Aδ
i−1
g

)

Da(Aδ
i−1
g

∪ {k}) −Da(Aδ
i−1
g

)
. (19)

Let ci = mink∈A1N
\A

δ
i−1
g

Da(Aδi
g
∪ {k}) − Da(Aδi

g
),

then
∑i

j=1 cj = Da(Aδi
g
) for all i = {1, · · · , i∗}. Let

Di = ⌈γ
∑i

j=1 cj⌉ and D0 = 0, where γ is an arbitrary

scale-up factor to ensure that the difference betweenDi and
Di+1 become a positive integer for alli = {1, · · · , i∗}. Then,
we define positive integerŝD and D̄ such that the following
inequality hold:D̂ = Di∗+1 ≥ ⌈γ×(1−Da(V ))⌉ = D3 = D̄.
For j = {1, · · · , D̂}, we also defineρj = θi/γ if j =
{1, · · · , i∗}.

To derive the approximate factor of the greedy algorithm,
we use the Wolsey inequality in [19]: IfP andQ are arbitrary
positive integers,ρis are arbitrary nonnegative reals fori =
{1, · · · , P}, andρ1 ≥ 0, then

∑P
i=1 ρi

mint=1,··· ,P (
∑t−1

i=1 ρi +Qρt)
≥ 1−

(

1−
1

Q

)P

> 1− e
P/Q

.

(20)

Based on (18) and (20), the following inequalities hold:

ga(A
δ
i∗−1
g

∪ {ki∗})

ga(Aδ∗)
≥

∑D̂
j=1 ρj

minl={1,··· ,D̂}

{

∑l−1
j=1 ρj + D̄ρl

}

≥ 1− e
−D̂/D̄

> 1− e
−1

.

(21)

By combining (17) and (21),

fa(Aδi∗
g
) = fa(V ) + ga(Aδi∗

g
)

= fa(V ) + ga(Aδi∗
g

∪ {ki∗+1})

− (ga(Aδi∗
g

∪ {ki∗+1})− ga(Aδi∗
g
))

= fa(V ) + ga(Aδi∗
g

∪ {ki∗+1})

− (fa(Aδi∗
g

∪ {ki∗+1})− fa(Aδi∗
g
))

≥ fa(V ) + (1− e
−1)ga(Aδ∗)−

1

3
fa(V )

≥ (1− e
−1)fa(Aδ∗).

Consequently, we derive that the proposed greedy algorithm
achieves a constant approximation factor1− e−1.

APPENDIX B
UPPER BOUND OF THE COUNTERCi,j,k,l(T )

We derive the upper bound of the counterCi(T ). Let

ηi,j,ci,j(t) denote
√

(N(N−1)+1) lnni,j

ci,j(t)
and It denote the in-

dicator of the counter selected at thet-th iteration. Then, the
upper bound of the counterCi(T ) can be derived as follows:

E[Ci(T )] =
T
∑

t=1

P{It = i} ≤ κ+
T
∑

t=1

P {It = i, Ci(t− 1) ≥ κ}

≤ κ+

T
∑

t=1

P

{

∑

i∈N

δ
∗
i (t) · I





∑

j∈N\{i}

(

w̄i,j(t)− ηi,j,ci,j(t)
)

δ
∗
j (t) ≤ 1





≤
∑

i∈N

δi(t) · I





∑

j∈N\{i}

(

w̄i,j(t)− ηi,j,ci,j (t)
)

δj(t) ≤ 1



 ,

Ci(t− 1) ≥ κ

}

≤ κ+
T
∑

t=1

P

{

min
1<c1,2,··· ,cN,N−1<t

∑

i∈N

δ
∗
i (t)
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· I





∑

j∈N\{i}

(

w̄i,j(t)− ηi,j,ci,j
)

δ
∗
j (t) ≤ 1





≤ max
1<c1,2,··· ,cN,N−1<t

∑

i∈N

δi(t)

· I





∑

j∈N\{i}

(

w̄i,j(t)− ηi,j,ci,j
)

δj(t) ≤ 1



 ,

Ci(t− 1) ≥ κ

}

≤ κ+

T
∑

t=1

t−1
∑

c1,2=1

· · ·

t−1
∑

cN,N−1=1

t−1
∑

c̄1,2=1

· · ·

t−1
∑

c̄N,N−1=1

P

{

min
1<c1,2,··· ,cN,N−1<t

∑

i∈N

δ
∗
i (t)

· I





∑

j∈N\{i}

(

w̄i,j(t)− ηi,j,ci,j
)

δ
∗
j (t) ≤ 1





≤ max
1<c̄1,2,··· ,c̄N,N−1<t

∑

i∈N

δi(t)

· I





∑

j∈N\{i}

(

w̄i,j(t)− ηi,j,c̄i,j
)

δj(t) ≤ 1



 ,

Ci(t− 1) ≥ κ

}

, (22)

whereκ is an arbitrary positive integer. To hold the inequality
in (22), at least one of the three inequalities (23)–(25) must
hold.

∑

i∈N

δ
∗
i (t) · I





∑

j∈N\{i}

(

w̄i,j(t)− ηi,j,ci,j (t)
)

δ
∗
j (t) ≤ 1



 ≤ f(δ∗(t)),

(23)

∑

i∈N

δi(t) ·



2I





∑

j∈N\{i}

w̄i,j(t)δj(t) ≤ 1





−I





∑

j∈N\{i}

(

w̄i,j(t)− ηi,j,ci,j (t)
)

≤ 1







 ≥ f(δ(t)),

(24)

f(δ(t)) + 2
∑

i∈N

[δi(t)

·



I





∑

j∈N\{i}

(

w̄i,j(t)− ηi,j,ci,j(t)
)

δj(t) ≤ 1





− I





∑

j∈N\{i}

w̄i,j(t)δj(t) ≤ 1











 > f(δ∗(t)). (25)

The upper bound for (23) is given by

P {(23)}

≤
∑

i∈N

δ
∗
i (t)P







I





∑

j∈N\{i}

(

w̄i,j(t)− ηi,j,ci,j(t)
)

δ
∗
j (t) ≤ 1





≤ I





∑

j∈N\{i}

wi,j(t)δ
∗
j (t) ≤ 1











≤
∑

i∈N

δ
∗
i (t)P







I





∑

j∈N\{i}

(

w̄i,j(t)− ηi,j,ci,j(t)
)

δ
∗
j (t)

≥
∑

j∈N\{i}

wi,j(t)δ
∗
j (t)











≤
∑

i∈N

δ
∗
i (t)

∑

j∈N\{i}

δ
∗
j (t)P

{

w̄i,j(t)− ηi,j,ci,j (t) ≥ wi,j(t)
}

≤ N(N − 1)× P
{

w̄i,j(t)− ηi,j,ci,j (t) ≥ wi,j(t)
}

. (26)

Here, we apply the Chernoff-Hoeffding bound in (26) to
derive its upper bound. LetX1, · · · , Xn be random variables
in the range[0, 1] such thatE[Xt|X1, · · · , Xt−1] = µ, and
Sn = X1 + · · ·+Xn. Then, for alla ≥ 0

P{Sn ≥ nµ+ a} ≤ e
−2a2/n andP{Sn ≤ nµ− a} ≤ e

−2a2/n
.

(27)
Then, the upper bound of the probability
P
{
w̄i,j(t)− ηi,j,ci,j(t) ≥ wi,j(t)

}
is given by

P
{

w̄i,j(t)− ηi,j,ci,j (t) ≥ wi,j(t)
}

≤ e
−2(N(N−1)+1) lnni,j

= (ni,j)
−2(N(N−1)+1)

≤ t
−2(N(N−1)+1)

. (28)

Similarly, the upper bound of the probability for (28) is also
given by

P
{

w̄i,j(t) + ηi,j,ci,j (t) ≤ wi,j(t)
}

≤ e
−2(N(N−1)+1) lnni,j

≤ t
−2(N(N−1)+1)

. (29)

Last, we consider the inequality in (25). Let
f(δ,w) =

∑

i∈N hi(δ,wi) denote the aggregate number
of successful downlink transmission function where
hi(δ,wi) = δi

∑

i∈N I

[
∑

j∈N\{i} wi,j(t)δ
∗
j (t) ≤ 1

]

andwi = [wi,1, · · · , wi,N ]. Note that the aggregate number
of successful downlink transmission functionhi(δ,wi) is
increasing function with respect towi.

f(δ∗(t))− f(δ(t))−

2
∑

i∈N



δi(t) ·



I





∑

j∈N\{i}

(

w̄i,j(t)− ηi,j,ci,j (t)
)

δj(t) ≤ 1





−I





∑

j∈N\{i}

w̄i,j(t)δj(t) ≤ 1













= f(δ∗(t))− f(δ(t))−

2
∑

i∈N



δi(t) ·



I





∑

j∈N\{i}

(

w̄i,j(t)−

√

N lnni,j

ci,j(t)

)

δj(t) ≤ 1





−I





∑

j∈N\{i}

w̄i,j(t)δj(t) ≤ 1













≥ f(δ∗(t))− f(δ(t))

− 2
∑

i∈N

{hi(δ, w̄i − ζ
2
min(δ, w̄))− hi(δ, w̄i)}

≥ θδ(t) − 2
∑

i∈Nδ(t)

θmin

2N
≥ θδ(t) − θmin

≥ 0. (30)

Then, under the givenδ and wi, there exist ζi =
[ζi,1, · · · , ζi,N ] for all i ∈ N such that the following holds:

hi(δ,wi − ζi)− hi(δ,wi) =
θmin

2N
, (31)
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where θδ = f(δ∗,w) − f(δ,w) and θmin =
minδ∈A1N

\Aδ∗
θδ. Let ζmin(δ,w) = mini∈N ,j∈N\{i} ζi,j .

Then, for alli ∈ N , the following holds:

hi(δ,wi − ζmin)− hi(δ,wi) ≤
θmin

2N
. (32)

If we choose the integerκ ≥ ⌈ (N(N−1)+1) lnn
ζ2
min(δ,w)

⌉, the in-
equality in (25) does not hold due to the followings: Based
on the above condition, the inequality in (25) dose not hold
whenκ ≥ ⌈ (N(N−1)+1) lnn

ζ2
min

⌉ whereζ2min = ζ2min(δ, w̄). As a
result, based on (26), (29), and (30), the upper bound of the
counterCi(T ) is given by

E [Ci(T )]

≤

⌈

(N(N − 1) + 1) lnn

ζ2min

⌉

∞
∑

t=1





t−1
∑

c1,2=1

· · ·

t−1
∑

cN,N−1=1

t−1
∑

c̄1,2=1

· · ·

t−1
∑

c̄N,N−1=1

2Nt
−2(N(N−1)+1)





≤
(N(N − 1) + 1) lnn

ζ2min

+ 1 +N

∞
∑

t=1

2t−2

≤
(N(N − 1) + 1) lnn

ζ2min

+ 1 +
π2

3
N.
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