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Abstract—In heterogeneous ultra-dense networks with millime- when multiple BSs transmit their downlink packets simuttan
ter wave macro cells and small cells, base stations (BSs) andously. As a result, the spatial-spectral efficiency is wliiko
mobile user equipments (UEs) perform beamforming operatios j,crease even as more small cells are deployed. Therefore,

to establish highly directional links. In spite of the spatal it i ¢ h th tial tral efficier
diversity achieved through directional links, as a number ¢ BSs It1S necessary 10 enhance the spatial-spectral efliciency o

are densely deployed, inter-cell interference caused by oour- the BSs in UDNs by applying various cutting-edge wireless
rent directional transmissions of adjacent BSs becomes sere, communication and networking technologies.

resulting in downlink performance degradation in the netwark. Millimeter-wave (mmWave) small-cell deployment is con-
However, it is very difficult to manage inter-cell interference  gjqareq g promising solution to this problem. The character
because of the nature of the time-varying wireless fading e . fi f th Wi t h hiah field path
ronment, the dynamic changes in beam propagation directiy, IStics or the mm avg spec I‘UI’T'.I,. such as high near-ieid pa
and unpredictable UEs’ locations. In this paper, we propose l0SS and low penetration capability, make mmWave small-cel
an online learning-based transmission coordination algathm deployment appealing for use in UDNs. In mmWave small-cell
based on the framework of multi-armed bandits to learn the networks, the BSs and user equipments (UEs) have antenna
unknown characteristics of inter-BS interference and expbit arrays that can be integrated into small areas. They perform

learned data to derive an optimal policy for maximizing the . . . . . . .
number of successful downlink transmissions. Through numecal beamforming operations to establish highly directionaksi

simulations, we verify the effectiveness of the proposed tine in order to enhance the spatial-spectral efficiency.
learning-based inter-BS interference management scheme. In this paper, we consider two-tier heterogeneous mmWave
Index Terms—Millimeter-wave wireless network, beamforming UDNs where small-cell BSs (SBSs) are densely deployed

transmission, downlink coordination, affectance, onlindearning. V\{ithin a macro-cell BS (_MBS) Cove_zrage area and .share a
single channel for downlink transmissions. In two-tier -het

erogeneous mmWave UDNSs, the MBS provides downlink
connectivity to large coverage area with high transmission
power, while the SBSs with low transmission power provide
ITH the explosive growth in the wireless traffic de-multi-gigabit downlink services by exploiting broadbarehil-
mands of a variety of wireless devices in the lagvidth capacity. This two-tier mmWave UDN architecture rselp
decade, future wireless networks are expected to suppeifioad the MBS’s traffic load to the SBSs geographically
the massive connectivity requirements of a large number @ftributed over the network, thus resulting in significant
devices requiring multi-gigabit data rates by utilizingnified improvement in spatial-spectral efficiency. Here, it isumsed
spectrum resources. As a solution that increases the reusethat both MBS and SBS exploit antenna-array beamforming
unit area of the spectrum, the ultra-dense network (UDN) htgchnology to establish directional downlink to their asated
received considerable attention as one of the most progiisiEs. Although the beamforming-based downlink transmis-
innovations for future wireless network systems. sions suppress the interference caused by neighboring BS
The UDN concept refers to the dense deployment of teansmissions, inter- and intra-tier interferences maguoc
number of base stations (BSs) with small-cell sizes in ord@é} ultra-dense scenarios with multiple SBSs and MBS, when
to enhance the spatial-spectral efficiency in an area wigh hithe BSs perform beamforming transmissions simultaneously
wireless service demands. However, as more BSs with sm@cause the interference among directional beams resuts |
cell coverage are densely deployed, the inter-BS distar@gnificant level of packet delivery failure, managing MBS
may decrease, which may increase inter-cell interferei@ ( interference is important.
Recently, the 3GPP proposed the almost blank subframe
This work was supported in part by the NRF (2017R1A2B20194@sded (ABSF) method to resolve the co-channel ICI problem in LTE

by the Korea government (MSIT) and the GRI funded by the GI$2018.  heterogeneous network (HetNet) environments where MBS
(Corresponding author: H. Lim.) . .
IR, Kim, Y. Kim, N. Y. Yu, and H. Lim are with the School of Eleital @Nd SBSs interfere with each other [1]. The concept of ABSF-

Engineering and Computer Science, Gwangju Institute oér®& and Tech- based ICI coordination is to prohibit the channel access of
nology (GIST), Gwangju 61005, Republic of Korea. Emailni@gistackr  \BS to a portion of the downlink subframes periodically to
2S.-J. Kim is with the Computer Science and Electrical Engjimgy (CSEE) . . L , ..
Department, University of Maryland, Baltimore County, 008illtop Circle, alleviate the inter-tier interference to the SBS'’s trarssiains.
Baltimore, MD 21250, USA. This may enhance network downlink performance by allowing

I. INTRODUCTION



SBSs to transmit their downlink packets without experiagci ultra-dense mmWave HetNets. This metric can be applied
significant interference from MBS transmissions. The ABSF for ICI coordination without requiring the computation of
method is highly effective when BSs and UEs operate in an  SINR in beamforming-capable mmWave HetNets.
omnidirectional mode for data transmissions. On the othere In order to take into account the nature of time-varying
hand, in mmWave HetNets where BSs and UEs establish wireless fading and the unpredictable mobility of UEs, we
directional links through beamforming, unless the beam di- devise an online learning-based transmission coordimatio
rections of the UEs associated with the SBSs are aligned with algorithm based on the framework of multi-armed bandits
the MBS’s beam, the UEs can receive the downlink packets (MABS), to gradually learn the stochastic characteristics
transmitted from their associated SBSs. Therefore, it rde of the inter-beam affectance and to exploit learned infor-
able to devise a new ICI coordination approach compatible mation to derive optimal transmission coordination.

with beamforming-capable mmWave HetNets where the ICI The rest of this paper is organized as follows. In Sec-

depends heavily on antenna-array beamforming directions.tion 1I, a survey of related work is presented, and then
In this paper, we introduce a new ICI coordination framehe problem statement and system model are provided in

work for beamforming-capable ultra-dense mmWave HetNeggction I1. In Section IV, a transmission coordination fplem

and propose a transmission coordination scheme for magat maximizes the average number of successful downlink

mizing the number of successful downlink transmissidns. transmissions is formulated and an online learning alguorit

general, the network throughput performance can be ewluaghat gradually converges to optimal transmission policy is

by the aggregate amount of data transmitted from the BSsg@posed. In Section V, numerical simulation results are

UEs in a unit time interval. Therefore, the average downlinresented, followed by conclusions in Section VI.

performance is approximately given by the average number of

successful downlink transmissions multiplied by theirrage Il. RELATED WORK

transmission link rate, which is a function of the signal to . . : :

interference-plus-noise ratio (SINR) between the BSs a%dWe have categorized the existing machine learning (ML)-

UEs. Here, we assume that the average downlink performangesed interference management methods implemented in wire

is maximized when the transmission link rates between theeSS network systems. Table | summarizes the different-inte

BSs and UEs are sufficiently high with high SINR and th]éerence management methods along with their ML techniques

transmissions are completed in a short time. In this case, %nd management objects.
network throughput maximization can be simply formulated
to maximize the number of successful downlink transmissio- Neural Network-based Approaches
under the condition that the SINR of downlink transmissions In ML literature, neural networks (NNs) are well-known
should be greater than a certain high SINR threshold. Nateathematical tools used to learn the relationships between
that the SINR threshold is a controllable parameter fotfent the input and output data of systems whose models are
optimization of the network throughput performance in pracinknown. The NN consists of numerous nodes (called neu-
tice. In order to characterize the ICI, which varies over interrons) positioned in input, hidden, and output layers, ared th
BS beam directions, we introduce the concept of inter-beameighted connections between the nodes, extending from the
affectance, which is the amount of normalized interferendgput layer to the output layer. During the training phase,
per beam pair for all BSs in the network. Based on thte weighted connections between the neurons are trained to
inter-beam affectance, we propose a transmission codiaina extract unknown features from data sets, and afterwareés, th
scheme that allows the SBSs to perform downlink beamformutput of the NN is obtained using the learned weights in
ing transmissions while suppressing packet receptionrisl multiple layers for input data.
at the UEs, which are caused by the interference amongwijaya et al.[2] proposed an IClI management scheme that
directional links. In addition, because inter-beam irgeghce performs both interference cancellation at the UEs and NN-
also depends on the time-varying wireless fading envirarimeased transmit-power optimization at the BSs in multiplsit
and unpredictable mobile UES’ locations, it is essential @nd multiple-output (MIMO) channels. If the channel state
characterize the inter-beam interferences stochasticdth information (CSI) is known for all pairs of UEs and BSs,
deal with such a problem in practice, a novel self-learnirgnd if the NN is successfully trained, each BS obtains its
approach is needed. Thus, we propose an online learniregtbaswn transmit-power independently by importing CSI as input
transmission coordination algorithm to maximize the agerato its dedicated NN. To boost the convergence speed in the
network downlink performance by gradually learning anchtheraining phase, they applied a restricted Boltzmann machin
exploiting the unknown inter-beam interference. (RBM)-based pretraining phase. Adesl al. [3] proposed a
The main contributions of this paper are as follows: random NN-based power controller for uplink ICI coordioati
o We propose the inter-beam affectance, which is a newLTE networks. They evaluated the proposed RNN algorithm
interference metric to quantify the amount of inter-beamith respect to four learning algorithms (gradient descent
interference in two-tier HetNets, where the BSs and UEalaptive-inertia-weight particle swarm optimizationffetien-
perform beamforming operations to establish directiontial evolution, and genetic algorithm) in terms of training
links. speed, prediction accuracy, and computational complebity
o We devise an inter-beam affectance-based transmissjdh the authors extended their research by integrating the
coordination framework for downlink packet delivery inRNN-based algorithm with a genetic algorithm to reduce the



TABLE |
SUMMARY OF ML-BASEDICI MANAGEMENT SCHEMES.

Interference . . . Online
References Technology type Object ML approach Learning paradigms learning
[2] MIMO channel Intra-tier Transmit power control Neural network Supervised learning No
[3], [4] LTE-UL Intra-tier Resource block allocation Random neural networ  Supervised learning No
cognitive radio transmit power control
[5] LTE HetNets Intra-/inter-tier Cell range extension Neural network Supervised learning No
transmit power control
OFDMA . . . . . .
[6] two-tier network Intra-/inter-tier | Transmit power control Q-learning Reinforcement learning|  Yes
[71 Two-tier HetNets | Intra-/inter-tier Cell range extension Q-learning Reinforcement learning Yes
transmit power control
Dense . . . . . .
[8] small cell networks Intra-/inter-tier | Transmit power control Q-learning Reinforcement learning|  Yes
[9] Dense LTE Intra-/inter-tier | Resource block allocatiof  Multi-armed bandit Reinforcement learning|  Yes
[10] OFDMA Intra-tier Resource block allocatiory  Multi-armed bandit Reinforcement learning|  Yes

ICI further. This hybrid method performs radio resourcecklo its optimal transmit-power with respect to its allocatedskRB
(RB) allocation and power control, simultaneously, wheme @n order to maximize the overall femto-cell capacity. The
RB corresponds to the smallest resource allocated to usersproposed algorithm is a multi-agent system (MAS) because
the time, space, and frequency domainsetal. [5] proposed each femto-cell BS acts as an independent agent, without
an NN-aided ICI coordination algorithm in LTE HetNetsknowledge about the decisions of the other agents. Thersyste
with mobile UEs. The proposed ANN algorithm learns thetate of each agent is designed to ensure that the SINRs at
relationship between the SINR and the UE location, in orddre macro-cell UEs are greater than a given threshold (for
to find the optimal ABSF and cell range extension (CRE)uaranteeing the quality of service (QoS) requirementéef t
patterns from historical data. After ANN training is comiglé, macro UEs) and that the total transmit power does not exceed
the ICI coordination problem is decomposed into a singléhe maximum power. Simsedt al. [7] proposed two-stage Q-
cell resource allocation problem. Thus, the computationl@glarning based ICI coordination algorithms for both theetim
complexity caused by information exchange among intra- aadd frequency domains in a two-tier HetNet consisting of
inter-tier BSs is reduced considerably. macro-cells and pico-cells. In the first stage, each pidbB&
However, most ICI management systems using the N8¢lects a bias value for CRE and determines the transmigpow
approach need an offline training phase to converge to aysteag considering the QoS requirement of its UE. In the second
state. This disadvantage becomes severe as the wireless stage, the macro-cell BSs consider the pico-cell BSs’ astio
work environment becomes complicated, as in heterogenedushe first stage, to select their transmit-power. étual. [8]
UDNSs. Furthermore, if the environment changes dynamicaliyroposed a power control algorithm for coordinating time-

the NNs may not converge. domain ICI in dense small-cell networks while guaranteeing
the QoS requirements of small-cell UEs. First, the proposed
B. Q-learning-based Approaches algorithm classifies interfering neighboring cells as aggor

Q-learning, which is one of reinforcement learning (RL ells if t_he interference power they caused is greater th_an
methods, finds an optimal action policy that maximizes tHa predefined threshold. Then, each aggressor cell detesmine

long-term reward for a given Markov decision process (MDF5S own transmit-power using the Q-learning algorithm a th

. e . BSF.
by exploring and exploiting the reward feedback with respec However if a wireless network svstem can be described
to actions in states. It gradually learns the cost of theestat ' y

action combination by continuously updating a Q-table in ‘,%smg a stochastic model with unknown parameters, it would

: . . : : . e better to characterize the stochastic parameters Igirect
iterative fashion. By controlling the learning rate andcdisnt . . .
rglther than attempting to learn the relationships among the

factor, the Q-learning based approach can manage the trade- .
Q 9 bproacn g Ce[IOHS and rewards with respect to the system states. Assum
off between exploration and exploitation. Moreover, the qa

learning algorithm can be applied without requiring a prioPg thaF th? F‘“"”F’er qf parameters with unknown StOCha.St'C
{opertles is invariant in the system, as the number of astio

model for describing the system environment. Therefore,q : . o
. . ) L L and states increases, the computational complexity inesea
is widely applied to ICI coordination in dynamic wireless . . . .
. . . . exponentially owing to the increasing number of elements

networks in which the environment changes dynamically. listed in the O-table

Galindo-Serrancet al. [6] proposed a decentralized Q- '
learning based interference control algorithm in an orthog ) )
nal frequency-division multiple access (OFDMA)-based twd=- Multi-Armed Bandit-based Approaches
tier HetNet consisting of a macro-cell and femto-cells. The Multi-armed bandit (MAB) is used to derive optimal so-

proposed algorithm allows each BS in a femto-cell to finllitions for combinatorial optimization problems with ramd



interference

@) Macro cell BS EEE Inter-BS heterogeneous UDNs depends heavily on the direction and

(@) , management width of the antenna array beams. Figure 1 illustrates cases
A" smallcelles e UDN manager of downlink ICI in a heterogeneous mmWave UDN scenario
s (@ D)) with directional beamforming. In spite of the enhanced igpat
inter-Tier A (@) smatcn diversity through beamforming, as the density of BSs in
Interfererg;)) ((R))(“"’) [ S the network increases, the intra- and inter-tier ICl become
@} g‘ @ @48 g '/\ severe and results in network performance degradatiors. Thi
@ Q@ ) ‘% g((ﬂ’)g ((w)) emphasizes the necessity of intra- and inter-tier ICI manag
BB () ((R)) o) ‘(K)) - A ment capable of improving network performance by allewigti
s A Eg B erierene inter-Beom interference.

In this paper, we focus our attention on centralized dovinlin
Heterogeneous mmWave Ultra-Dense Network transmission coordination as a method to manage intra- and
inter-tier ICI in heterogeneous mmWave UDNSs. It is possible
Fig. 1. Inter-cell interference scenarios in two-tier hegeneous mmwWave to attempt to determine the BSs’ transmissions by estimatin
UDNS. the SINR and comparing it with the SINR threshold to ensure
that the downlink packets are successfully delivered to the

variables present in the cost function. The MAB gradually/ES before transmitting the packets. However, if thereteXis
learns the characteristics of the random variables with uierfering SBSs andv,,, interfering MBSs, which are capable
known distributions, instead of learning the rewards witAf performing B, and B,, directional beams, respectively, it
respect to the actions. Afterward, it exploits the learnetill be necessary to investigate casesf« x By inter-
characteristics of the cost function, in order to find an ropati beam collisions. This incurs tremendous time overhead to
policy that minimizes the system cost in an average senf§easure and update all possible collision cases.
Because of its self-learning ability, MABs have been amplie TO solve this problem, we propose using an inter-beam
to a variety of wireless networking problems recently. interference matrix for allpairs of beams among the BSs
Feki et al. [9] proposed an MAB-based autonomous rdh the network as a metric to estimate the average SINR
source allocation algorithm to coordinate the ICI in dens#ithout investigating all cases in every transmission phas
LTE networks. The algorithm is divided into two phases: thBecause of the nature of time-varying wireless fading aed th
cell RB selection phase and the per-user scheduling phad@predictable mobility of UEs, it is preferable to deal with
where the MAB-based online learning approach is appliége elements of the inter-beam interference matrix as rando
to the selection of optimal RBs for each cell. However, thi4ariables, because their stochastic characteristicsrdaeown
algorithm is applicable only when the users location ané! Practice. To capture and exploit the unknown stochastic
traffic load condition are static. Couchenstyal. [10] proposed Ccharacteristics of inter-beam interferences, we adophMAg&
an MAB-based frequency-time resource selection processfq@mework to derive an online learning-based transmission
coordinate the ICI in an OFDMA wireless network. In generagoordination algorithm. The proposed algorithm learns an
the EXP3 (Exponential-weight algorithm for Exploratiordaninter'beam interference matrix gradually and determirnes t
Exploitation) in [11] is commonly used to find the Optimapptimal policy that allows the BSs to transmit their dowAlin
policy from an MAB problem. However, as the number of UEBackets only when the aggregate sum of interferences is less
associated with BSs increases, the computational contplexhan the thresholds. Instead of using the power of the inter-
increases exponentially. To resolve such a drawback, the§am interference in the decibel (dB) scale during the legrn
devised a Q-EXP3 algorithm, which allows each BS to chooBEOCESS, We propose using the inter-beam affectance, which

RBs one by one until a predefined number of RBs are chosé€RIresponds to the amount of normalized interference. This
rather than enumerating all possible RB subsets. affectance-based approach makes it easier to take intaiaicco

In comparison with the NN- and Q-learning-based apbe impact of inter-beam interference from individual B$s o

proaches, the main advantage of the MABth& ability to successful packet reception at UEs in an average sense.
learn the unknown stochastic characteristics of the random
variables in the system model directly this paper, we pro- g System Model

pose an MAB-based online learning algorithm to coordinate ) ) o ]
the ICI in two-tier heterogeneous mmWave UDNS. Consider a downlink scenario in a two-tier heterogeneous

UDN composed of one MBS,N — 1) SBSs, and their
associated UEs. Let,; denote the MBS andig, denote
o the i-th SBS fori = {1,---, N — 1}. Further, letNsgs =
A. Motivation {ns1,---,ns.n_1} denote a set of SBSA/ = NsgsU {nas}
Consider a downlink scenario in a heterogeneous mmWadenote a set of all the BSs, aidd, denote a set of UEs
UDN consisting of MBS and a vast number of SBSs. Becauassociated with the B$: € N. The BSs and UEs are
both the mmWave BSs and UEs steer their antenna arequipped with antenna arrays that perform a beamforming
phases to transmit and receive signals in specific diregtion operation to establish directional links between them. We
unlike conventional networks where ICI is incurred by thassume that a codebook-based beamforming technology is
omni-directional transmission of the BSs—the ICl in mmWaveased to establish directional links. In the codebook-based

IIl. M OTIVATION AND SYSTEM MODEL



beamforming technology, the transmitter and receiveycaut their neighboring BSs. Under the SINR equation in (2), the
sector-sweep-based beam selection operations to sekatisbeaffectancev; ;(v) from the j-th MBS tou € U; is defined as
directed toward each other from a predefined set of beams in

order to maximize the received signal strength (RSS) at the b’;i{ (dw(;]:)
UE. Assume that the BSs and UEs are capable of performiqgj(u) — min ¢\ 1% wherej e A\ (i)
M directional beamforming. Further, we assume that the BSs’ ﬂ% - %

tYi,u

are wired through a backbone network and are synchronized 3
with each other. In order to provide the downlink beamforgnin it th ¢ aff ¢ I BSSA is | g} )
information to the UDN manager attached to the backbor%ere’ If the sum of affectance from a SM is less than

link, each BS broadcasts its scheduling information thl‘ouggr equal tol (i.e., > cpn (4} vij (u) < 1), the SINR atu will
the backbone network. e greater than or equal to the threshold (i&(u) > S.).

We consider an SINR model for describing the successgpte that ifb, 5., %, P/, No, andWV" are given, the affectance

delivery of a downlink packet. Here, a downlink packet ig epends on the locations of the UEs and BB affectance

successfully delivered to its destination UE only when tH8 (3) includes all the intra- and inter-tier interferences
SINR at the UE is greater than a specified threshold. WeVe extend the concept of affectance to the case where the
consider that the signal attenuation in the mmwWave bafiPS @nd UEs perform beamforming operations for downlink

follows a close-in reference distance path loss model §ansmissions. In this case, the level of interference gmon
follows: the downlink transmissions of the BSs depends heavily on the

d beams selected from the codebook for downlink transmission
PL(d)[dB] = PL(dp) + 10alog;, <_) +X,, (1) Letf;.(k) denote a binary beamforming boresight function
do for thei-th BS using thek-th beam and UE. Here, f; , (k) =
where Pl(dy) = 20 10g10(§\_ﬂ) is the path loss at the referencel if the k-th beam direction of the-th BS and the beam
distancedy, \. is the wavelength in meters, is the path loss direction ofu point toward each other; otherwisg,, (k) = 0.
exponent, andX,, is a Gaussian random variable with zerdVe adopt the beamforming gain model in [13], where the main
mean and standard deviationin the dB scalé. Using the lobe and side lobe gains of directional beamforminglaree
path loss model, the RSS at a UEfor the signal from the ande, respectively. Iff; (k) = 1, the beamforming gain is
BS n € NsgsU {na} can be obtained a™* = xPd; (1 — €)?; otherwise, the beamforming gain is eithdr— ¢)e

n,u’

WherePt” is the transmission power of the BS dn,u is the Or €. Under the assumption that the the side lobe gain is

Euclidean distance between the BSand UEw, andx = Sufficiently small, i.e.,0 < e < 1, the beamforming gain
10PL(40)/10 s a scaling factor. Lef', (u) denote the SINR at is given by eitherl or 0 depending on the beam boresight
u € Uy; Ty (u) is given by function. We define an inter-BS affectance matrix (IBAM)
A, ; = (ai;(k,1)) mxn to specify the inter-beam interference
Li(u) = for all pairs of beamforming transmissions between #ibk
kPl and j-th BSs.
b( Z nPt"/d;,ag"“ N Z Kptn”d;ffz//,u) TNW Definition 1:_ai7j(k7l) is the affectance betvx_/een BSs when
e lma I\ () ’ N\ () ' a UE atu € U; Is serve_d by thé:-th beamforming of the‘-_th
BS, and experiences interference from thia beamforming
MBS interference SBS interference (2) transmission of thg-th BS. It can be obtained by
whereb is the multi-user interference (MUI) factat,, ,, is the ai; (k1) = Blog (W) fiak) =1, fiu() =1], (4

path loss exponent between the B&nd UEw that changes
depending on the dynamics of channel environmaitijs the where the distribution of; ;(u) depends on the distributions
noise power spectral density, afd is the channel bandwidth. of d; ., dj ., i, andea; ., i.e., the distributions of the UE
Let 8, denote the SINR threshold for successful packet recapobility and wireless channel characteristics. It is diffico
tion atw. Then,u can successfully receive downlink packetsomputea; ;(k,l) from the expectation in (4) because the
only when the SINR is greater thah, (i.e.,I',,(u) > Su). distribution of v; ;(u) is unknown and difficult to obtain.
Therefore, we adopt an online learning framework to learn
IV. MAB-BASED INTER-CELL INTERFERENCE the IBAMS «; ;(k,1) through consecutive measurement and
MANAGEMENT SCHEME update phases. The proposed online learning-based approac
A. Affectance-based transmission coordination optirropat MaKes the IBAM-based interference management framework
problem appOII|c|abIe regardless of the wireless channel and UE ntybili
models.

In tT.IS dp_:’:lrtlerf, we us?UtEe aﬁe<|:tt_ancfe astha r_n?rai:;re Ot is worth noting that the IBAM-based interference manage-
normalized interierence a s, resulting from the sigha ment framework is capable of quantifying both intra- anéiint
1According to the real-life measurement campaign for smelll mmWave tier 'nt?rferences' Under the‘. tvyo-tler. heterOgeneqL_'S WW
channel modeling in [12], the average pathloss exponenE(Ralues with scenario, the MBS’s transmission brings more critical rinte
resdpemﬁo theg,fl‘e'Of'Sith (LOS)- and ”O”Qine'Of'Si‘!?N‘-O_S)I'Pmpr?gaﬁor:‘ ference than SBS’s transmissions because the transmission
t ar 3.3, tively, t R
dnde? the moblie recever scenario erean respecively, where e power of the MBS is higher than that of the SBSs. The

standard deviation also varies fron®.2 to 7.6 depending on the propagation - | >
condition. affectance takes into account the different transmissawep



levels by P} andPtj in (3). Consequently, the proposed IBAM-estimate SINR for the UEs at each downlink transmission
based interference management framework can distinguésh $ession. In fact, the IBAM is used as a metric to quantify the
amount of interference brought by heterogeneous BSs wittierference for all pairs of directional downlink transsions
different transmission power level. in an average sense, even though there exists a certairofevel
Under the proposed IBAM conceptje formulate an opti- accuracy loss. The low complexity brought by the expeatatio
mization problem to find the optimal transmission policy fobased inter-beam affectance makes the IBAM-based frame-
both of an MBS and SBSs. Here, the optimal transmissievork appealing in the two-tier heterogeneous mmWave UDN
policy maximizes the number of successful downlink trangonsidered in this paper.
missions, of which the aggregate affectance is less than or
equal tol. Letd = [d1, -+ ,dn—1,0n] denote the transmission
decision vector, wherg;’s for all i = {1,--- , N — 1} denote
the transmission decision variable of tli¢h SBS anddy
denotes the transmission decision variable of the MBSs. Forthe 0ptima| transmission decision vector in (5) can be
all i ={1,---,N —1}, if §; = 1, thei-th SBS is allowed to obtained by a combinatorial algorithm. One method to solve
transmit its downlink packet; otherwise, it is zero. Simlifaif  this problem is to enumerate all possible candidates. How-
the MBS is allowed to transmit its downlink packéty = 1; ever, its complexity grows exponentially with respect te th
otherwise, it is zero.The optimal transmission decision vectogimension ofd, and thus it is inefficient for application in

" is obtained by solving the binary maximization problemypNs where a vast number of BSs are densely deployed. To

B. Greedy algorithm and its approximation factor

overd € {0,1}V*! as follows: make this problem more tractable, we propose the use of an
approximation algorithm that finds a suboptimal solution in
8" = arg max » §;- ]Il > 6mA; m] polynomial time with a guaranteed worst-case performance.
Se{0, 1}V x oy jefnar P\ {i} The optimal solutiond™ in (5) can be obtained by solving

a multidimensional knapsack problem, which is known to be

MBS affectance .
(5) NP-complete, given as follows:

+ Z 5j/miAi,j/mJT, < 1‘|
J1ENsBs\{i} maximize Z 0;

iEN

whereI[z] is an indicator function defined dgz] = 1 if »  Subjectto Z wi,j0i0j + Z wij10idj < b, VieN
holds true; otherwise, it is zero. In additiam; = {0, 1}** Jefna i} Jr€NsBs\{i}
indicates the beamforming index vector to be used foriitre 6 € {0,1}, Vie N,
BS’s transmission. If thé-th beam is scheduled to be used, _ ) 6
the k-th element ofm; will be 1; otherwise, it will be zero. Wheréw ; is a constant given byv; ; = miAi,jmgT_ for
The optimization in (5) attempts to find the transmissiofi-J € N, andb is 1. Here, we note that the multidimen-
decision vectors* that maximizes the function. However Sional knapsack problem described above can be transformed
A, is a function of the transmission power at the B% ( into a single knapsack problem according to the following

and P/) and m; is a function of beamforming vector. TheProposition:
optimization can be formulated as a higher dimensional formProposition 1:Let }° .. \n ;3 wi;0:0; < b;, Vi € N de-
to find the optimal transmission power levels of BSs, theffote the maximum weight constraint of the multidimensional
beamforming vectors, and transmission decision vectara-H knapsack problem. If the maximum weight capacitigsf the
ever, this causes an exponential increase in the compuaétionultidimensional knapsack problem are equal to a constant
complexity. For this reason, we focus on the scenario whe@ all i € AV, then the problem can be simplified into a single
the transmission power at a BS and the beamforming vector §f@psack problem with a one-dimensional maximum weight
known and have fixed values, and the multi-level transmissiéonstraint.
power selection and beamforming vector control remain as Proof: Under the assumption that = b for all : € \V, the
future work. maximum weight capacity constraint in (6) can be rewritten
Remark 1:t is evident that if the SINR-based interferenc@smaxicn D e (4} Wi j0i0; < b, Wherew; ; is a constant.
management framework is adopted, the downlink transnmissibet A5 = {i|5; = 1,7 € N} denote the index set for
coordination may achieve better network performance thdn = 1 and 15 € R"™ denote an all-ones column vector.
the IBAM-based framework. However, the SINR-based framéet us assume that an elemetf € 6 is 0, and that
work requires tremendous time and computational complexiD, (As) = max;cn Zj@v\{i} w; ;0,65 is a set function of
to estimate the SINR for all the UEs at every downlinkhe maximum weight constraint. Whef, is changed from
transmission session, and the complexity increases erpong to 1, the variation of the set function with respect dp
tially with respect to the number of BSs. This means th& always greater than or equal o In other words, for all
the SINR-based interference management framework approats, C Ay, and for allé;, € Aq,, \ As,, if As, = As, UAs,,
becomes infeasible, especially in the two-tier mmWave UDten D,(As,) is always greater than or equal 10,(As, ).
environment. On the other hand, once the IBAMs are measui@elcause the maximum weight constraint functibi4s) is
and stored, the IBAM-based framework does not need #&onondecreasing function with respectdpit is possible to

SBS affectance



transform the multidimensional knapsack problem in (6p intAlgorithm 1 Proposed online learning approach

a single knapsack problem as follows: 1: while min¢; ;(k,7) =0 do
. 5 2. ti=t+1;
maximize Z i 3. Play an army such that at least one unexplored element

ieN a; j(k,1) is observed, i.e.d;(m; (1)) (my(t)),6; = 1.

_ 4:  Measure the instantaneous affectanp;;( u)
subject to max Zwi,jéiéj + Z w;,j10:05 | <b 5 (k1) = ci s (k, z)Xa”(k l)+v 4 ()% 8; (s (1)) (my (£))16 |
F€{nar Y\ {4} j1€Nsps\{i} ' 6J R85, (o () (my ()13, ’
5 el0.1). vienN. © i (k. 1) = 50, 1) 6500y (1) (g 1)) B,
¢ b (7') 7: end while
m & /I Main loop
Based on the above proposition, we devise a greedy algg—:‘ WT'? 1t 101_
rithm that iteratively finds the suboptimal solution by sejt . ’ Nx1 .
one element of§ to 1. First, the algorithm enumerates all** ::r)llgalyp?onlgllear:lr'm € {0,137, which solves the follow-

feasibled’s with |As| = 3 and starts with thé; that gives
the minimum weight capacity, from among the feasiblg,
i.e.0, = arg minge (550,135 x1,|45)=3} Da(As). Then, the Je{lg%Xle Z G L | Y (i) —miy(1)d; <1
algorithm picks one elemeny; € A; \A(s;, minimizing the ' JEN\{i}

increment of the maximum weight capacity as follows: ©)

: Measure the instantaneous affectang:;;( u).
k= arg min D (A5* U {k}) (8) 13: Py (k l) _ G (kD) Xas (K, l)+"’1 ](U)X5 (m; (t)) s (my (£)):6;
ke Ay \Ass : i.J (D) 07 (o, (6)) 1 (1, (£))19; )
14 ey (1) = ciy (1) 5 Su(mm () (my ()10
This algorithm terminates when the maximum weight capacitys: end while
exceedsl.
As the greedy algorithm may fail to find the global optimal
solutiond™, it is better to check the worst-case performance of

the proposed greedy algorithm to guarantee its effectsgne

by deriving its approximation factor. f denotes the approxi- optimal transmission policy is determined as described in
mation factor, the worst-case performance of the greedy—alqg) in line 13. Letm;(¢) denote the beamforming index
rithm will be bounded byf(5,) > ¢f(d"), wheref() is the yecior of thei-th BS at thet-th iteration. In (9),d;(f) —
objective function of a maximum optimization problem. I&th m-(t)A m; ()T and () = m(t)n, m,(t)T there
approximation factor is a constant value, the greedy algori J(mj,-(k l))MxMwls e Ilnéar rléiiva?d m:';\trlx it

can find the suboptimal solution in polynomial time. Based o ntrols the tradeoff between exploration and exploitatio
the above proposition, the optimization problem in (5) can b (N(N—1)+1) Int
transformed into a submodular maximization problem (SMIJ)t can be expressed by ;(k,1) = V NI where
which achieves the — e~ approximation factor. The detailedC:. ;(k,1) is the observation time up to the current iteration for
procedure to derive the approximation factor of the progosé:.; (k,1).

greedy algorithm is described in Appendix A.

Note that the proposed learning algorithm followsantex-
. . tual learning strategy, in which the learning rate varies over
C. Policy design the learning situation. When the exploration is more imgatt

In our downlink transmission coordination problefy; ; is  than exploitation, the algorithm operates on highly exative
unknown in advance, and the online learning process esiénasehavior and vice versa. In Algorithm 1, the linear reward
A; ;. Lett denote the iteration index representing a decisiGfiatrix is used as a contextual learning control componeit th
period for online learning. The proposed MAB-based trassmidetermines the learning behavior. In (8),;(k, 1) is inversely
S|on coordination algorithm updates the estimated aff@eta proportional to the observation time ;(k,!). This indicates

A, ; for each decision period and finds the optimal solutiofhat as more observations are performed the elements of the
that maximizes the cost function in (4) with; ;. The detailed |inear reward matrix decrease. When the linear reward matri
procedure is described in Algorithm 1. This algorithm i®ecomes an all’s matrix, the algorithm finds the solution
inspired by the linear rewards (LLR) approach in [14], whichased on the learned data without any exploration behavior.
exploits the learned information from the operation of eachhis implies that after a sufficient observation process, th
action to make decisions about the next action under thgrning rate of the proposed algorithm may becomehere-
assumption that the same random variable can be obseri@, the learning rate of the proposed algorithm is comnilkt

from the operation of different actions. determined by the linear reward matrix.
In Algorithm 1, the initial learning process is performed

for each element irAi,j, so that every inter-beam affectance The proposed algorithm iteratively finds a global optimal

is updated at least once. In lines 3-9, an arbitrary binabynary transmission decision vector that maximizes thelmemm
transmission decision vector is chosen, and the estimatd#dsuccessful downlink transmissions in an average sense.
affectanceA, ; is observed and updated. Based An;, an We assume that the UE observes the instantaneous affectance
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mean affectancé; ; is updated as follows:

v} ;(u) and reports it to the BS. Afterward, the accumulated TABLE II

SIMULATION PARAMETERS FOR MMWAVE HETEROGENEOUS NETWORK

sk D) Civi (k1) X g (K 1) + v) 5 (w) x 6 (g (£)) 5 (my (£) )15 [_Parameter | Value |
i (R, ) = — - - - . MBS Tx power [15] 40 dBm (10 W)
Cig (B, 1) + 0:(mi(£)) (1 (£) 193 (10) MBS Tx range 1000 m

. f : . SBS T 15 20 dBm (100 mW
As the estimated affectanc¥; ; is updated over time, it grad- SBS Ti f;r‘]'vgir 5] 180 mm (100 mW)
ually converges to thactual affectanceA; ;. The proposed Bandwidth [16] 1200 MHz
algorithm requires two storage units of si2g N — 1) x M? Noisel power [16] — —134 dBm/MHz

AL . path loss exponent [12 2

to storeA;; and Gy = (cij(k, l))MXM' Number of Tx and Rx beam sectolis 4 (90° per beam)

D. Regret analysis

To verify the feasibility of the solution to the proposedvhereAmax = max;—p,... 7 g(d"(t)) — minge 7 g(6(t)). The
online learning algorithm, it is necessary to analyzertgget Upper bound of theegret function R(T) is derived from the
which is the difference accumulated between the maximu#pper bound of the counter;(T'). It is given by
rewards obtained by the optimal decision and those obtained (N(N=1)+1)InT
by the proposed MAB over time. Thegretafter T iterations ~ E[Cijx,1(T)] <
is given by

r 13
Cr%in T 3 N’ ( )
. whereg?;, is a constant less than or equalltoThe detailed
_ N derivation of the upper bound fdk [C; ; »,:(T")] is described
R(T) = 9(8" (1)) — 9(8(1), A1) Appondix B. J
The above equations show that the upper bound for the
whereg(6*(t)) = > ,cn I {ZjeN\{i} w; ()05 (t) < 1} 67(t) regret of the proposed online learning algorithm increases
is the aggregate number of successful = downlinkgarithmically. This implies that as time goes, the pragubs
transmissions by the optimal transmission coordinatiagorithm finds an optimal solutiSnmore frequently where
o*(t) = [05(¢), - ,05(¢)] and ¢ is the iteration indexIf the optimal solution maximizes thexpectedreward [17].
the regret of the proposed online learning algorithm growJo verify this, we derive the reward discrepancy between
logarithmically over time, the online learning algorithmds the optimal solution and the solution given by the proposed
the optimal solution exponentially more often as time passelgorithm. Based on (11)R(7T) — R(T — 1) becomes the
[18]. reward discrepancy between the optimal solution and the
The regret analysis is performed by deriving an uppesolution given by the proposed algorithm at theh decision
bound for the regret, in terms of the number of iterationperiod, i.e.,R(T) — R(T — 1) = g(6"(T)) — g(6(T)). As T
Let Cno(T) denote the number of times, where a norapproaches infinity, the reward discrepancy betwg@ri(T))
optimal transmission decision vector is selected for thet firand g(6(7")) converges td as follows:
T iterations. To derive the upper bound 6fxo(T), we .
define C; ; x,(T) as a counter fow; ;(k,1). Once the on- Am B(T) - R(T —1) <

t=1

line learning algorithm selects a non-optimal transmissio _. s (N(N-1)+1)\
decision vector, the indexi,j} C As such that{i,j} = Th_{réolnT_ 1 AmaxdV (N —1)M & =0.
arg ming; e 4, Cij(k, 1) is selected, and the corresponding (14)

counter is increased by 1. Then, it is evident that when tAdis implies that the proposed online learning algorithnagin
non-optimal transmission decision vector is selectedy one the optimal solution by exploiting the learned information
counter will increment its value. As a result, the followingather than exploring more information as time passes [18].

equation must hold: This is an interesting behavior of theontextuallearning
N N M M strategy where the learning rate varies over the learning
Cno(T) = Z Z Cijna(T). situation.
i=1 j=1k=1I=1
J#i V. PERFORMANCE EVALUATION
Then, the upper bound of thregretis given by A. Simulation environment
NN M M We performed numerical simulations to evaluate the effi-
ciency of the proposed transmission coordination algorith
R(T) = Amax X Cijki(T 12 . ! .
(T) max ;Zﬁ;; k()] (12) In the simulation, the SBSs were randomly deployed in the
P network over an area afl = 500 x 500m? and their UEs

2As described in (3), the af be derived b £s of were uniformly distributed over the transmission range. In
As described in (3), the affectance can be derived by measRES o o ; ;
the served BS and interfering BSs. Under the assumptionathahe BSs addition, a smgle MBS was deployed in the center of the
periodically broadcast their beacon messages toward allasle directions, Network area. It was assumed that the BSs always have data
the UEs are able to measure the RSS of the beacon packetsiittadsby
its neighboring BSs. After successfully receiving the dimkn packet, the SHere, the optimal solution represents the solution givethbyoptimization

UEs compute the affectance through the measured RSS andeperi the problem in (5) where all the stochastic characteristicsaaseimed to be known
affectance to their served BSs through the acknowledgeperket. in advance.



100

90 | without control (3=3.6 dB) —&— /é
e-ABSF (B=3.6 dB) —&—

80 | proposed algorithm (3=3.6 dB) —6— ]
without control (3=10.6 dB) - {3 -

70 e-ABSF (=106 dB) - & -~ J
proposed algorithm (3=10.6 dB) - -G -

60 | / |

50 r /8/ LB

20 | | 40 t /9/ A&

O o 30 f -8 :

PP I SR R BPIC P

o} T o ]

T

0 J L | | | 0 gé - | L L L L

0 50 100 150 200 250 1 2 3 4 5 6 7 8
number of SBSs number of Tx/Rx beam sectors

(@ (b)

Fig. 2. Aggregate number of successful downlink transmissiwith respect to a) the number of SBSs and b) the number /&XTieam sectors.
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packets to transmit to their UEs. For comparison, a nai®x beam sectors when the number of SBSs in the network is
method without coordination control and enhanced-ABSF (&50. The figure shows that, as the number of the beam sectors
ABSF) method were considered. The naive method withontreases, the performances of all methods increase. This
coordination control allows all BSs to always perform theiis because the capability to exploit spatial diversity tigio
downlink transmissions. In addition, the e-ABSF method directional beamforming is enhanced, resulting in alléeia
an enhanced version of the ASBF method [1] by taking intof the inter-beam interference incurred by concurrentaintr
account the directional inter-tier interference, andlivas the and inter-tier transmissions. The figure also shows thapéne
SBSs to perform their downlink transmission only when thisrmance difference between the proposed method and other
downlink transmission of the MBS does not incur interfeeenanethods increases as the number of beam sectors decreases
owing to the directional mmWave beam propagation charag-., the inter-beam interference becomes severe). irfpkas
teristics. The detailed simulation parameters are ligtethble that the proposed method coordinates concurrent transmsss
Il while numerical simulations with respect to the Tx poweof the BSs in the network to minimize the downlink packet
and number of Tx/Rx beam sectors variations were performedception failure caused by intra- and inter-tier intezferes
in order to improve the downlink performance. In the e-ABSF
method, all the SBSs that interfered with the MBS’s downlink
transmission are prohibited from performing their dowklin

In this subsection, we evaluate the performance of tli@nsmission regrardless of the level of interferencehduligh
proposed transmission coordination method under the dbe e-ABSF allows the SBSs to avoid inter-tier interference
terministic case where the IBAMs are perfectly known iit is unable to prevent the intra-tier interferences inedrby
advance. concurrent transmissions of the SBSs.

Figure 2(a) shows the aggregate number of successfult is evident that if the number of beam sectors becomes
downlink transmissions with respect to the number of SBSsifficiently large, the effectiveness of the proposed ne:thid
in the network. The figure shows that as the density aecline because of negligible inter-beam interferencew-Ho
the SBSs increases, the performance of the naive andeeer, the increase in the number of beam sectors may result
ABSF methods gradually decreases owing to the increaseincreased costs for the antenna array infrastructure and
in inter-beam interference caused by both intra- and intdseam alignment overhead. This implies that there is a todfde-
tier concurrent downlink transmissions. On the other hanbletween the infrastructure expenditure for antenna amags
as the density of the SBSs increases, the performancettd inter-beam interference in beamforming capable dmknli
the proposed algorithm gradually increases and levels ddtenarios in ultra-dense HetNets. Note that when the number
As a result, the performance difference between the prof beam sectors i (i.e., omni-directional Tx/Rx scenario),
posed method and other methods becomes significant. Tihis probability of successful transmissions for all methéxi
is because the proposed algorithm successfully learns #imost0. In the naive method, the SBSs’ transmissions are
IBAMs and exploits them to avoid packet collisions whesignificantly affected by the concurrent transmissionshef t
the BSs transmit their downlink packets. Thus, the propos#BS because the MBS transmits its downlink packets with
algorithm achieves an optimal transmission policy capalble 100 times higher transmission power than that of the SBSs.
fully exploiting the high spatial diversity of beamformirig On the other hand, the e-ABSF and proposed methods prohibit
the two-tier heterogeneous mmWave UDN scenario. all SBSs from transmitting their packets because all SBSs in

Figure 2(b) shows the aggregate number of successfioé networks cannot to avoid the inter-tier interferenceliined
downlink transmissions with respect to the number of Tx argkcause of the MBS'’s transmission under the omni-direation

B. Simulation results for deterministic case
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60 ‘ aggregate number of successful downlink transmissions for
WU e (B = all possible beam transmission sets.
& ool Figure 5(a) shows the simulation results of thgretdivided
= - by the number of iterations. This is the average difference
- @ between the maximum rewards obtained by the optimal de-
cision and those obtained by the online learning approaches
The figure shows that for both online learning approaches,
the results of theegret divided by the number of iterations
decrease as the iteration increases. This implies that the
both approaches learn the unknown stochastic charaaterist
gradually and exploit them to find an optimal transmission
policy. In comparison with the results of the UCBL1 policyeth
0 ‘ simulation results of the proposed algorithm convergeslhap
0.01 0.1 1 10 . . .
transmission power of MBS (Watts) to 0. Thls_shows that t_he proposed algorithm achlgves better
transmission coordination performance than UCBL in terfns o
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Fig. 3. Aggregate number of successful downlink transrrssiwith respect converggljce speed. )
to the transmission power ratio between the MBS and SBS whemumber In addition, as the number of beam sectdr)(increases,

of SBSs is 150. the convergence speed for both online learning approaches
decreases. In particular, the performance degradatiomeof t
Tx/Rx scenario. UCB1 policy becomes worse than the proposed online learning

Figure 3 shows the aggregate number of successful do/@orthm in terms of learning convergence. The proposed
link transmissions with respect to the transmission powtior ONlin€ learning algorithm learns the inter-beam affecésnc
between the MBS and SBSs when the number of SBSsdkectly and exploits the learned inter-beam affectancdmt
150. The figure shows that @& increases, the performancethe optimal tra\_nsmission policy. Therefore, as the nymtber 0
discrepancy between both methods increases and levels off?€am SECtors increases, the number of unknown objects to be
general heterogeneous networks, an MBS transmits downl{§R™Med by the proposed online learning approach increases
packets with higher transmission power than that of sagiiearly. On the other hand, the UCBL policy is designed

hence, the proposed method is an appropriate solution to £d-€am the aggregate number of successful transmissions
ordinate concurrent downlink transmissions in heterogage f0F @ll beam combinations of the BSs in the network; as a

mmWave UDNSs by taking into account the impact of intrar_esult, as the number of beam sectors increases, the number

and inter-tier interferences of unknown objects increases exponentially. Moreoverhas t

Figure 4 shows the aggregate number of successful doviiyimber of SBSSN) in the network increase.s, t_he performance
link transmissions with respect to the downlink traffic leatd ©f the UCBL policy becomes worse. This implies that the
the MBS and SBSs when the number of SBSg46. Fig. UCB1 _pohcy is infeasible for apphc_atlons to mmWave UDN
4(a) shows that as the amount of MBS downlink traffic loagc€narios where a number of directional beamforming-dapab
increases, the performance of all methods decreases gyadug 5SS EXISt: . _
Nevertheless, the proposed method achieves better perfofzi9ure 5(b) shows theegretdivided by the number of iter-
mance than the other methods. In addition, as depicted in FjONs in @ dynamically changing scenario, where the IBAMs
4(b), the proposed method achieves better performance ti&f COMPletely changed owing to the re-deployment of SBSs
the other methods as SBS traffic load increases. The simmlatin the network at the0, 000th iteration. The simulation results
results verify that the proposed method enhances the netw8{!0 that the averagegret of the online learning algorithm

performance of the two-tier heterogeneous mmWave ypipidly decreases after thé, 000th iteration, and then levels
under the various traffic load scenarios. off after the 12,000th iteration. For example, if a single

downlink session time i3 ms, the proposed online learning

) ) ) algorithm requires only® s to converge. This shows that even

C. Simulation results for stochastic case though the environment dynamically changes, the proposed
In this subsection, we evaluate the performance of tlaline learning algorithm is able to converge consistently

proposed method under the stochastic case, where inter-beaFigure 6 shows the aggregate number of successful down-
interferences are gradually learned and exploited to ¢oatel link transmissions with respect to the iterations. The $amu
transmissions. For the simulation, we set the number of SBi&m results show that the proposed online learning allgorit
to 5, in which the SBSs are densely deployed in an area gfadually converges as time passes regardless of the amount
200 x 200 m?. We randomly generated the location of the UEsf downlink traffic load. However, the learning speed of the
from homogeneous Poisson point process in the transmisspoposed algorithm to converge to an optimal solution ddpen
range of their associated BSs. The proposed online learnmgy the network traffic load. As shown in the simulation
algorithm iteratively measures and updates the elemeritein results, as the amount of downlink traffic loads at the BSs
IBAMs A;; for all i,j € N. For comparison purposes, aincreases, the proposed online learning algorithm comgsiq
naive online learning approach using UCB1 policy in [18jhe optimal solution more rapidly. The reason is that as more
was considered. The UCBL1 policy is designed to learn tld®wnlink transmissions are performed, the proposed dlgari
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gathers more measurement data used for learning IBAMs.
Therefore, the learning speed of the proposed online legrni
algorithm is directly proportional to the traffic in the netk.

The simulation results in various mmWave HetNet scenarios
indicate that the proposed method is applicable to downlink
transmission coordination in beamforming-capable mmWave
UDNES.

VI. CONCLUSION AND FUTURE WORK

In this paper, we considered online learning-aided ICI
management in heterogeneous mmWave UDNSs. Given the
downlink scheduling of BSs in the network, the proposed
online learning-based transmission coordination mettoadde
find an optimal transmission policy that maximized the numbe
of successful downlink transmissions. The proposed dlyori
adopted the MAB framework to learn and exploit the unknown
characteristics of ICI to decide which BSs were to be allowed
to transmit their downlink packets. The results of the nu-
merical simulations verified that the proposed online legn
algorithm significantly improved the downlink performance
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In future work, we will transform the proposed transmissioscale-up factor to ensure that the difference betwBgrand

coordination algorithm into a distributed online learnipgsed D;.; become a positive integer for alk= {1,--- ,i*}. Then,
transmission decision algorithm that will be applicabledelf- we define positive integer® and D such that the following
organization networks. inequality hold:D = D;. ;1 > [yx (1—D,(V))] = D3 = D.
For j = {1,---,D}, we also definep; = 6,/v if j =
APPENDIX A {1,---,i*}
APPROXIMATION FACTOR DERIVATION FOR THE PROPOSED  To derive the approximate factor of the greedy algorithm,
GREEDY ALGORITHM we use the Wolsey inequality in [19]: B and@ are arbitrary

sitive integersp;s are arbitrary nonnegative reals foe=

In this appendix, we derive the worst-case performance B
-+, P}, andp; > 0, then

the greedy algorithm described in Section IV-B by mathematd:-

ically analyzing the approximation factor. L¢éf(As) = | As| S s N 1 P o
Err\g ?,“((;;52;; tr:;a;r(ée_xr%éﬁ/\éyi} w; ;0;0;. Then, the prob- w5 Q) - ( - @) >1—c¢ (2.0)
L |As| subject to D, (As) < 1. (15) Based on (18) and (20), the following inequalities hold:
Because the obje_ctive functio@(-_) is an increasing and ga(A«s;"*l U {ki-}) Zle P
flowing conditon must oid o e (e D) g
fol8) = L)+ Y (W(SUG) ~ fu(5). (16) S

ieT\S

Assume thas* is an globally optimal solution of the problemBY combining (17) and (21),
in (15) andég is a solution obtained by the proposed greedy e ) = Fo(V) 4+ G (Axin

algorithm after the-th steps. We sort the index set £f;} € fa( % )= fal ga( s )
As+ such that fa(V +ga(-/45}‘]* U{kix41}

)

) )
ga(Asix U{ki-+1}) — gal

)

(

Do(ky, - ki) = —( Asy))
min Dag{kh'" ,kifl}u{ki}), Vi e {177/*}’ :fa(V +g“(A6? U{ki*Jrl})

ki€ A= \{kn, ki = (fa(Agpr U{kin11}) = fa(Agsi))

wherei* 4 1 is the first step of the greedy algorithm for which _1 1

the algorithm dose not update the solution, i, (A1) > 2 foV) + (A =€ )ga(As+) = 3/u(V)

1 > Dy(Agi+). Let V. = {ki, k2, k3} denote the set of first > (1—e ") fa(Ase).
three elements of the index sets-. Then, for any element
k; € As«, i > 4, and any setV € Ay, \ {V U{k;}}, the
following equality hold:

Consequently, we derive that the proposed greedy algorithm
achieves a constant approximation factor e—!.

fa(VUWU{k}) = fu(VUW) = 2 fu(V) =1 (17) APPENDIXB

We define a new set function,(S) = f.(S) — fa(V), UPPER BOUND OF THE COUNTERY j 1.1 (T)

which is also an increasing and modular set function. Then,ywe derive the upper bound of the count€f(T). Let

the following inequalities also hold: Thdews (0 denote\/(N(Nj);:)) linis and 7, denote the in-

ga(As+) < ga(As:) + Z ga(Asi U {k}) — 9a(As:) dicator of the counter selected at th¢h iteration. Then, the

KEAs\Ag; upper bound of the countér;(7") can be derived as follows:
= ga(Asi) + fa(Asi U{k}) — fa(As:) a )
g keg;% g g E[C/(T) =Y P{li=i} <rx+» P{L;=i,Ci(t—1) >k}
g t=1 t=1
< ga(Asi) + (1= Da(V)) X Oip1, 0<i<i’ —1, < Kt
(18) -
where 0; represents the inverse of the minimum increase of \~ p SE ) -1 @ (1 5
‘. . . . i(t) - i, — Mijie; s (1) <1
the maximum weight constraint set functi@n,(-) at thei-th ; g/;/’ " je/\zf\:{i}( 0 )50
steps as follows:
, folgy URD — folAgit) <Y a1 [ S @es () =M 0) 35() < 1] ,
" heaiy Vg1 DAy UTRD = DalAy )’ (19) i~ N}
. Ci(t—1) >
Let c;, = mlnkEAlN\Aswl Da(.A(;:i7 U {k}) — Da(A(;z), ( ), :‘f}

min Z 5 (t)

1<ci 2, ,eN,N—1<t *

then Z;Zlcj = Da(A%) for all ¢ = {1,---,i*}. Let T {
iEN

: H . <
D; = [v>75_1¢j] and Dy = 0, where~ is an arbitrary ~ K+ P

t=1



D (@) = Miges;) 65 (1) < 1]
LTEN\{i}
> 6

iEN

IN

1<cy 2, CNN 1<t

LD (Wi (8) = Miges ;) 05(8) < 1] :

LieN\{i}

Ci(t — 1) > H}

SH—!—ET:S... ti:l ti:l ti:l

t=1cy2=1 cN,N—1=1¢C1,2=1 cN,N-1=1

P min Sr(t
{ 1<C1,27“‘70N,N—1<tz ( )

iEN

I Z (3,5 (t) = Migie; ;) 07 (1) < 1}
Ljen i}
> )

iEN

< max

1<é1,2,,eN,N-1<t

(22)

wherex is an arbitrary positive integer. To hold the inequality
in (22) at least one of the three inequalities (23)—(25)tm

hold

ST T ST (@i (8) = Mo 0) 51 1| < FE7 (1),

ieN LN\{z‘}

) - (211 [ > wi(t)d;(t) < 1]
JjeEN\{i}
-1 [ Z (i (8) = Nijes ;1) < 1]) > f(6(1)),
JeEN\{i}

(24)

(23)

> ot

iEN

8(1)+2) [6:(t)
iEN

' (H [ Z (i3 (8) = Nijie, ;) 05 () < 1]
JEN\{i}

—11[ S wi,j@)aj(t)g])] > f(6° (). (25)
JEN\{i}

The upper bound for (23) is given by

P{(23)}
< Z 6 ()P {]I [ Z (@i () = Nije, ;) 65 () < 1]
iEN JEN\{i}

<I [ Y w55 (t) < 1] }
JEN\{i}
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< Z & ()P {]I [ Z (@i (8) = i jes ;1)) 05 (t)

iEN JEN\{i}
> > wi,j(t)5?(t)]}
JEN\{i}

<D0 Y 5

€N GeN\{i}
< N(N —1) x P {wi;(t)

P{wlj 771]‘:1](15)>le(15)}
—Mijes ;1) = Wig (1)} - (26)

Here, we apply the Chernoff-Hoeffding bound in (26) to
derive its upper bound. LeXy,--- , X,, be random variables
in the range[0, 1] such thatE[X;| Xy, -+, X;—1] = u, and

S, = X1+ -+ X,. Then, for alla > 0
P{Sy > np+a} <e /" and P{S, < np—a} <e 2/,
(27)
Then, the upper bound_ of the  probability
P{w” —Mijes, (1) = Wit )} is given by

P {wm_ e, (1) > Wi (t)} < e 2N(N=D+1) Inng 5

_ (nij)72(N(N71)+1)
< t72(N(N71)+1). (28)
Similarly, the upper bound of the probability for (28) is@ls
given by

P{wz] +77LJc L® < wz] }S 672(N(N71)+1)1nni’j
S A 1)
Last we consider the inequality in (25). Let
ulf:, (0,w) = > .\ hi(d,w;) denote the aggregate number
"successful " downlink”_transmission function where
Moy = 4 Sien L[ Tieny  wia (0550 <1]

andw; = [w;1, - ,w; n|. Note that the aggregate number
of successful downlink transmission functidn(d, w;) is
increasing function with respect ;.

F(&7@®) = f(8(1)—

2y léi(t)~ (11[ > (@i () =i ;) 5 t)<1]
iEN JEN\{i}

<[5 o)
= f(67(t) -

JEN{i}

Nlnm
22[&-@)( [ <wu = ) }
iEN JEN\{i} i (

F(8(8)—

JEN\{i}
> f(87(t)) — f(o(1))
— 2> {hi(8, Wi — Crin (8, W) — hi(J, i)}
iEN
>050) =2 D Sxr 2 0s(0) — Omin
€N (1)
> 0. (30)

Then, under the givend and w;, there exist{, =
[Cias -+, Gon] for all i € A such that the following holds:

amin

2N’

hi(8, wi — ¢;) — hi(8, wi) = 31



where 05 f(0",w) — f(d,w) and Oumin

minge 4, \Az. 0. LEL Cuin(d, w) = minjen jean (i} Gij-
Then, for alli € N, the following holds:

= = [14]

[15]

emin

2N’

hi(8, wi — Cmin) — hi(8, wi) < (32

If we choose the integer. > (W} the in- (16
equality in (25) does not hold due to 'E'he followings: Based
on the above condition, the inequality in (25) dose not hold
whenx > [WWNDEDINT where¢2, = (2, (8, @). As a
result, based on (26), (29), and (30), the upper bound of the
counterC,(T') is given by (18]

E[Ci(T)] (19]
"(N(N— 1) +1)1nn-‘
< 2
0 t—1 t—1 t—1 t—1
31 DSRD DD DESID SEICRLL
t=1 \c1,2=1 ¢y N-1=1C12=1 ¢cnN-1=1

(N(N—-1)+1)Inn
= P

oo
+1+N22t’2

t=1
_ 2
_(N(N i)—!—l)lnn 1+ TN
min 3
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