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ABSTRACT

The radio maps of multiantenna channel state information (CSI)
are constructed using deep learning. The desired CSI is predicted
for arbitrary locations in a geographical area based on the mea-
surements collected at sampling locations. Such maps can be used
to significantly reduce the overhead associated with CSI acquisi-
tion. A novel deep architecture is proposed, consisting of an en-
coder/decoder pair for transforming high-dimensional CSI features
to lower-dimensional embeddings, together with a deep embedding
interpolator for exploiting the spatial dependency of the CSI. Two
important problem classes are tackled in a unified fashion, namely,
CSI interpolation and prediction. Practical scenarios involving miss-
ing information are also considered. The efficacy of the proposed
methods is verified by numerical tests.

Index Terms— Antenna arrays, channel state information, deep
neural networks, spatial interpolation, radio map estimation.

1. INTRODUCTION

Radio environment maps characterize the distribution of quantities
of interest regarding the radio frequency (RF) environment over a
geographical area [1]. Signal strength maps, such as interference
power maps and power spectral density (PSD) maps, reveal regions
of high spectrum usage [2, 3]. Propagation maps, such as channel
gain maps, can predict propagation characteristics between arbitrary
two points in the area [4]. They are instrumental for various deci-
sion making and resource allocation tasks in the PHY/MAC/network
layers, including interference mitigation, opportunistic spectrum ac-
cess, and unmanned aerial vehicle (UAV) deployment.

Constructing radio maps based on the physical principles re-
quires detailed modeling of obstacles with their electromagnetic
properties and demands high computational power. A viable al-
ternative is a data-driven approach, where map estimation entails
interpolation of the RF descriptors for arbitrary locations where
measurements may not be available, based on the samples taken in
a set of locations. Thus, effective signal processing and machine
learning exploiting underlying spatial correlation are critical.

An early work used a linear parametric model with spatial spar-
sity of transmissions to construct a power map [5]. To aid device-to-
device communication in TV white space, low-rank matrix comple-
tion was employed to interpolate crowdsourced measurements [6]. A
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Kriging linear spatial interpolator was adopted to predict the chan-
nel gain between arbitrary locations [7]. A deep completion autoen-
coder (DCAE) was employed to construct PSD maps in [8]. A signal
strength map with uncertainty quantification was constructed incor-
porating 3D maps of the area [9]. However, these works did not
address the problem of estimating multiantenna channel maps.

To maximally exploit multiantenna transmission, channel state
information (CSI) must be acquired, using pilot transmissions or
blind estimation techniques. As the number of antennas and the
mobility of terminals grow, the overhead associated with CSI ac-
quisition becomes a significant factor. Our goal is to construct mul-
tiantenna CSI maps, allowing prediction of multiantenna CSI at ar-
bitrary locations, significantly reducing the CSI estimation burden.

Research shows that multiantenna CSI prediction is feasible
via machine learning. Coordinated downlink beamforming vectors
were predicted based on uplink pilots using a deep neural network
(DNN) [10]. The feasibility of inferring remote site CSI from local
site CSI was studied in [11]. Lower-dimensional embeddings of
multiantenna CSI were shown to be highly correlated with geo-
graphic locations [12]. However, the spatial correlation structure of
multiantenna CSI has not been exploited for map estimation.

In this work, spatial dependency of multiantenna CSI is captured
by a DCAE, a deep spatial interpolator. However, instead of per-
forming interpolation directly in the high-dimensional CSI space, an
encoder/decoder pair shared for all locations is trained to produce a
low-dimensional embedding space, where the interpolation is done.
Thus, the burden of the DCAE is reduced and the embeddings con-
tain only the information relevant for map estimation. Using this
useful architecture, two important problem classes can be tackled in
a unified fashion. First, the CSI of a given base station (BS) is in-
terpolated in space. Secondly, the CSI of a remote BS is predicted
based on the CSI of local BSs. Furthermore, the proposed architec-
ture provides natural remedial strategies in the inference stage even
when the location or the local BS CSI feature are missing.

The rest of the paper is organized as follows. The problem state-
ments are given in Sec. 2. The proposed map estimation architecture
and machine learning formulations are given in Sec. 3. Numerical
test results are presented in Sec. 4, and conclusions in Sec. 5.

2. PROBLEM STATEMENT

Our radio map estimation problem is to predict the CSI between
a target BS equipped with an antenna array and a user equipment
(UE) at arbitrary locations in the deployment area X , based on the



CSI of one or more anchor BSs acquired at sampling locations S :=
{xn}n∈N ⊂ X , where N := {1, 2, . . . , N}. To facilitate the im-
plementation,X is assumed to consist of regular grid points covering
the deployment area. Two classes of map estimation problems (P1)
and (P2) are considered.

2.1. Problem (P1): Multiantenna CSI Interpolation

In (P1), the target BS is the same as the anchor BS, and the objec-
tive is to interpolate the CSI for a BS at arbitrary UE locations in
X based on the CSI measurements of the same BS at sample UE
locations S. Suppose that the BS has an M -element antenna array
and the UE a single-element antenna. Then, the instantaneous chan-
nel vector between the BS and the UE at location x can be denoted
as hx ∈ CM . Since the instantaneous channel may vary too fast
for a mapping application, here we adopt the channel covariance as
the CSI, which is given as Rx := E{hxhHx } ∈ CM×M , where
·H denotes Hermitian transpose. Thus, (P1) can be stated formally
as follows. Given a training set {(xn,Rxn)}n∈N , construct a map
M1 : X → CM×M such thatM1(x) ≈ Rx for arbitrary x ∈ X .

2.2. Problem (P2): Multiantenna CSI Prediction

In (P2), the goal is to predict the CSI of a target (remote) BS at
an arbitrary UE location in X based on the CSI of anchor (local)
BSs at the same UE location. Denote the set of B anchor BSs as
B. Consider a target BS that does not belong to B. For simplicity,
assume that all BSs are equipped withM -element antenna arrays. At
each location xn, n ∈ N , the anchor CSI matricesRxn := {R(b)

xn :
b ∈ B} and the target-BS CSI Rxn are acquired. Then, (P2) can
be stated as follows. Given a training set {(xn,Rxn ,Rxn)} for
n ∈ N , construct a map M2 : X × (CM×M )B → CM×M such
thatM2(x,Rx) ≈ Rx for all x ∈ X .

Note thatM2 requires both the location x and the anchor CSI
Rx as the input features for prediction. In practice, there may be
cases where only either of them is available. When only the loca-
tion is available, a location-based map Mloc

2 : X → CM×M is
desired, withMloc

2 (x) ≈ Rx for any x ∈ X . On the other hand, if
only the anchor CSI features are available, a CSI-based mapMCSI

2 :
(CM×M )B → CM×M will be useful, withMCSI

2 (Rx) ≈ Rx.

3. MAP ESTIMATION VIA DEEP INTERPOLATION

To address both (P1) and (P2) in a unified fashion, our architectural
approach is to employ three key components in the DNN, which
will be jointly trained. First, an encoder maps the input feature per
location to an embedding in a low-dimensional space. Then, the
embeddings are interpolated over the geographical area via a spatial
interpolator. Finally, a decoder brings the embeddings to the target
space, yielding the predictions. This process is illustrated in Fig. 1.

3.1. Method for (P1)

The channel covariance Rx can be viewed as the product of the
channel gain Gx and the normalized covariance R̃x given by

Gx := tr{Rx}/M and R̃x := Rx/Gx (1)

respectively. Gx depends on large- and medium-scale fading, while
R̃x is akin to small-scale fading. Thus, it is prudent to treat them
separately. For each sample location x ∈ S, collect in a feature vec-
tor vx ∈ RL the gain GdB

x := 10 log10 Gx and the upper-triangular
part of Hermitian matrix R̃x. The complex entries are separated to
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Fig. 1. Proposed map estimation architecture.

real and imaginary parts. Therefore, the dimension L of vx becomes
L := 1−M +M2. Let us denote this feature extraction operation
as vx = F(Rx), and the inverse operation as F−1. A DNN-based
encoder Eφ with parameters φ transforms vx to a low-dimensional
embedding

ψx = Eφ(vx) ∈ RK , x ∈ S (2)

where K < L. The encoding reduces the dimension of the input
features, capturing only the information useful for the interpolation
task and suppressing noise and uninformative signals.

Based on the tuples {(x,ψx)}x∈S , spatial interpolation is per-
formed using a DCAE Aθ with parameters θ [8]. To do this, first
construct a tensor Ψ : X → RK such that

Ψ(x) =

{
ψx if x ∈ S
0 otherwise

(3)

which is an embedding map with non-zero values only at the sample
locations. The DCAE yields an interpolated embedding map through

Ψ̂ = Aθ(Ψ) (4)

which satisfies Ψ̂(x) ≈ ψx for x ∈ S, but also contains estimates
ψ̂x := Ψ̂(x) for locations x ∈ Sc, where c denotes set complement.

To obtain the CSI for an arbitrary point x ∈ X , pass the inter-
polated embedding ψ̂x through a decoder Dφ to get

v̂x := Dφ(ψ̂x) ∈ RL (5)

from which the gain estimate ĜdB
x can be read off and the normal-

ized covariance estimate ˆ̃Rx is constructed. Their product yields the
covariance estimate R̂x. Thus,M1 can be compactly expressed as

M1(x) := F−1
(
Dφ

(
Ψ̂(x)

))
, x ∈ X . (6)

To train the DNNs, the locations {xn}n∈N in the training set
is randomly partitioned to S and V with S ∩ V = ∅ and S ∪ V =
{xn}n∈N . The training problem is then formulated as

min
φ,θ

E

{
N∑

n=1

[
λ1

(
ĜdB

xn
−GdB

xn

)2

+ λ2

∥∥∥ ˆ̃Rxn − R̃xn

∥∥∥2

F

+λ3

∥∥∥Ψ̂(xn)−Ψ(xn)
∥∥∥2

2

]}
(7)

where ‖ · ‖2 and ‖ · ‖F are the `2-norm of a vector and the Frobenius
norm of a matrix, respectively, and the expectation is w.r.t. the ran-
dom partition S and V . Inside the sum in (7), the first and the second
terms ensure that the gain and the normalized covariance matrix are
reconstructed well, respectively, and the third term encouragesAθ to
be trained as an autoencoder, keeping the input and the output close
to each other. Positive parameters λ1, λ2, λ3 balance these three
training objectives.
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Fig. 2. DNN architecture.

3.2. Method for (P2)

For Problem (P2), the input features at each location x consist of the
CSI setRx of the anchor BSs. The feature vector can be constructed
from Rx by collecting the dB-scale gains and the upper-triangular
parts of the normalized covariance matrices of R

(b)
x for b ∈ B. With

some abuse of notation, let us denote this feature vector by vx ∈
RL′

, where L′ = BL. Furthermore, the feature extraction operation
is again denoted byF , i.e., vx = F(Rx). Also supplied for training
is the CSI of the target BS R′x, from which the dB-scale gain G′dB

x

and the normalized covariance R̃′x are obtained.
The feature vectors {vx}x∈S are mapped by an encoder into

embeddings {ψx} via (2). Then, the embeddings are interpolated
over X using the DCAE through (3)–(4). To estimate the CSI of the
target BS at arbitrary x ∈ X , the interpolated embedding ψ̂x :=

Ψ̂(x) is passed through the decoder as (5). Note that the decoded
feature v̂x has dimension L as it is for the CSI of a single BS. From
the decoder output v̂x, the gain Ĝ′

dB

x and the normalized covariance

matrix ˆ̃R′x for the target BS are constructed. The training for (P2)
is done via (7) with ĜdB

xn
, GdB

xn
, ˆ̃Rxn , and R̃xn replaced by Ĝ′

dB

xn
,

G′
dB
xn

, ˆ̃R′xn
, and R̃′xn

, respectively.
Once the training is done, in the operational phase,M2(x̄,Rx̄)

for arbitrary x̄ ∈ X can be evaluated as follows. Define the input
tensor Ψ̄ as

Ψ̄(x) :=


ψx, if x ∈ S
Eφ(F(Rx̄)), if x = x̄

0, otherwise.
(8)

Then, the interpolated tensor is obtained as ˆ̄Ψ = Aθ(Ψ̄), from
which the target-BS CSI can be estimated as

M2(x̄,Rx̄) := F−1
(
Dφ

(
ˆ̄Ψ(x̄)

))
. (9)

When the UE does not have the anchor CSI Rx̄ available, the inter-
polated embedding can be read off from Ψ̂ (cf. (4)) using the loca-
tion information only. Thus,Mloc

2 can be defined as

Mloc
2 (x̄) := F−1

(
Dφ

(
Ψ̂(x̄)

))
. (10)

Finally, when the UE has only the anchor CSIR and not the location
information x̄, the DCAE can simply be omitted. That is,MCSI

2 (R)
can be evaluated as

MCSI
2 (R) := F−1 (Dφ(Eφ(F(R)))) . (11)

It is emphasized that in (10)–(11), the same network trained on the
CSI samples with locations is used without separate training.
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Fig. 3. A top view of the tested propagation environment.

3.3. DNN Architecture

Fig. 2 depicts the DNN architecture for encoder Eφ, decoder Dφ,
and DCAE Aθ . The DNN for the encoder consists of three fully-
connected layers. In the first two layers, parametric leaky rectified
linear units (PLReLUs) are used as nonlinearities, whose leaky pa-
rameters can be trained [13]. The input dimension, L for (P1) or L′

for (P2), is gradually reduced over the layers to the output dimension
K of the embedding. The DNN for the decoder similarly contains
three fully-connected layers, with the dimension increased to L in
the output. In the output layer, tanh is used to maintain the entries
of the embedding vector normalized to the interval (−1, 1), as we
preprocess (scale) the data.

The DCAE itself is based on a convolutional encoder/decoder ar-
chitecture as shown in the lower part of Fig. 2. First, the input tensor
Ψ is augmented with a binary mask channel that indicates whether
CSI measurements are available at each location x ∈ X . Our im-
plementation is based on a 2D grid X . Thus, the augmented tensor
is processed by three 2D convolutional layers with PLReLU activa-
tions using κ× κ kernels (κ = 3 for (P1) and 5 for (P2)) with stride
1 to generate an internal code, which is then fed to the decoder, simi-
larly consisting of three 2D transposed convolutional layers. The 2D
max pooling operators with pool size 2 and stride 2 are added to the
first two layers of the encoder, and factor-2 2D upsampling operators
are employed in the first two layers of the decoder.

4. NUMERICAL TESTS

4.1. Test Setup

The proposed method is tested using the DeepMIMO data set, a pub-
lic data set constructed from a ray-tracing channel simulator in the
3.5 GHz band [14]. A top view of the propagation environment com-
prising cross streets with buildings is depicted in Fig. 3. The BS
locations and the heights of the buildings are also indicated. The
UEs are located on the streets. Two scenarios are considered for our
tests. In the first scenario, dubbed the “O1” scenario, a square area
of size 36 m× 36 m (shown as a magenta square in Fig. 3) with a 2D
grid having a spacing of 10 cm is considered for X . In the second
“O1B” scenario, a strip of size 36 m × 324 m (shown as a red rect-
angle in the figure) with a grid of a 20 cm-spacing is used. In O1B,
two reflectors and one blockage are present. It is assumed that each
BS is equipped with an 8-element cubic array antenna, resulting in
L = 57. Up to 6 multipaths are traced. The embedding dimension
K was set to 10. The DNNs were implemented via PyTorch and
trained using Adam optimizer [15].
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Fig. 4. Map estimation performance for (P1). (Left) NMSE of gain
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4.2. Results for (P1)

The CSI interpolation method was tested in the O1 and the O1B sce-
narios. In O1, the CSI for BS 2 in Fig. 3 was targeted, and in O1B,
the CSI for BS 9. Fig. 4 shows the map estimation performances in
the O1 and O1B scenarios. In the left panel, the gain estimation error
is depicted in terms of the normalized mean-square error (NMSE),
defined as 10 log10

(
1
|X|
∑

x∈X (Gx − Ĝx)2/G2
x

)
, where Ĝx :=

10ĜdB
x /10. In the right panel, the MSE of the normalized covariance

estimates, computed as 10 log10

(
1
|X|
∑

x∈X
1

M2 ‖R̃x − ˆ̃Rx‖2F
)

,
is shown. The x-axes of the graphs represent the training set size N ,
normalized by the total number of grid points |X |. For comparison,
the performance of Gaussian process (GP) regression is also shown.
An isotropic squared exponential function and an isotropic ratio-
nal quadratic function were adopted for the GP kernels for the gain
and the covariance estimation, respectively. Their hyper-parameters
were optimized by maximizing the marginal likelihood [16]. It can
be seen that the errors for the O1 scenario is smaller than those for
the O1B scenario. This is expected as the latter scenario exemplifies
a more complex propagation environment than the former. In either
scenario, the estimation performance of the proposed method is su-
perior to that of GP regression, except the gain estimation in the O1
scenario, where both methods perform closely and extremely well.
It is also seen that the errors for covariance estimation are influenced
more by the training set size than the gain estimation errors. In fact,
the covariance estimation errors decrease at a slower rate in O1B
than in O1 as the training set size increases. These seem to indicate
that covariance estimation is more challenging than gain estimation.

4.3. Results for (P2)

For (P2), the target BS in the O1 scenario is BS 3 (cf. Fig. 3), and
the anchor BS set B = {BS 2} when B = 1, B = {BSs 2,4,8}
when B = 3, and B = {BSs 1,2,4,7,8} when B = 5. For O1B, the
target BS is BS 9, and B = {BS 5} when B = 1, B = {BSs 4,5,6}
when B = 3, and B = {BSs 4,5,6,8,10} when B = 5. Fig. 5(a)
shows the map prediction performance when B = 5. In addition
to the performances ofM2,Mloc

2 , andMCSI
2 , the performance of

the case when no spatial interpolation is employed (that is, the DNN
is trained without a DCAE) is also depicted. Among the proposed
methods, the performances ofM2 andMloc

2 turn out to be the best
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Fig. 5. Map estimation performance for (P2).

and almost identical. This suggests that incorporating the spatial
structure plays a crucial role in multiantenna CSI prediction. The
performance ofMCSI

2 is seen to be very close to or slightly better
than that of the no DCAE case. This indicates that when the location
information is not available, the simple fallback strategy of using
just the trained encoder/decoder pair can provide the performance as
good as the DNN specifically trained without location information.
Fig. 5(b) presents the performance with varying number of anchor
BSs and 3% sampling. It is seen that fusing the CSI from multiple
anchor BSs can indeed improve the performance.

5. CONCLUSION

Map estimation techniques for the multiantenna CSI have been pro-
posed using deep learning. Two problem classes were tackled. First,
the CSI of a BS was interpolated for arbitrary UE locations based
on the CSI collected at sample UE locations. Secondly, the CSI of
a target BS was predicted over space based on the CSI of anchor
BSs collected at sample locations. Both problem classes were tack-
led using a novel DNN architecture consisting of an encoder/decoder
pair, which transforms the high-dimensional CSI features to a lower-
dimensional embedding, and a DCAE, which performs spatial in-
terpolation in the embedding space. Numerical tests performed on
ray-tracing data sets verified the effectiveness of the methods, and
indicated that incorporating spatial correlation structure is critical.
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