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Abstract—A novel dictionary learning method is proposed for analyz-
ing multi-subject multiset functional magnetic resonance imaging (fMRI)
data. It is assumed that the subjects are grouped based on subject-specific
attributes, and multiple fMRI data sets are available for each subject.
The proposed algorithm can identify four types of neural activation maps
from such data sets. First, the maps shared across groups and those that
are discriminative of group differences are estimated by incorporating the
group attribute labels. Furthermore, the maps that are common across
data sets and those unique to a data set are extracted using group sparsity
constraints. Notably, the map types can be flexibly determined without
pre-specifying the numbers of the maps of different types. Numerical tests
on synthetic and real data verify the benefit of the proposed method.

I. INTRODUCTION

Functional magnetic resonance imaging (fMRI) studies are instru-
mental for discovering underlying functional networks and potential
biomarkers for brain diseases. Various fMRI data analysis methods
have been developed. Model-driven methods such as the general
linear model (GLM) obtain spatial activation maps by fitting the data
to predefined temporal stimuli [1]. Data-driven methods, including
independent component analysis (ICA) or dictionary learning (DL),
make minimal modeling assumptions such as statistical independence
or sparsity of component maps [2]. More recently, deep learning
techniques have been employed as well [3].

As large-scale fMRI studies that involve more than hundreds of
subjects become increasingly common, powerful data-driven methods
for multisubject fMRI data are actively pursued. In particular, subject-
specific phenotypes such as diagnosis, gender, and handedness may
be incorporated. The group analysis allows estimation of features
that are discriminative across subject groups. A DL-based method
was developed to estimate the activation maps that are group-
discriminative using Fisher’s discriminant cost [4]. An ICA-based
method was extended to extract shared and group-specific activation
maps through orthogonality constraints [5].

It is useful to analyze multiple fMRI data sets jointly. For instance,
task fMRI data sets acquired performing different tasks can be
processed through multiset analysis to provide complementary views
to brain functions. A number of ICA-based methods were developed
for multiset fMRI data analysis, and it was shown that multiset
analysis can differentiate the subject groups better than single-set
analysis [6], [7]. However, the methods did not incorporate group
attributes directly for the analysis.

In this work, we propose a novel DL-based method for multisubject
multiset fMRI data analysis. The group attribute labels are incorpo-
rated through Fisher discriminant cost, thus estimating maps that are
indicative of group differences, in addition to the maps that are shared
across subject groups. Furthermore, maps that are common across
multiple data sets and those unique to a data set (or a subset of data
sets) are also identified by incorporating group-sparsity constraints.
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However, rather than rigidly allocating these four map types a priori,
robust techniques are employed to flexibly determine the map types
in a data-driven fashion. The algorithm is evaluated on synthetic and
real data sets to verify the validity and effectiveness of the approach.

The rest of the paper is organized as follows. The proposed
formulation is presented in Sec. II. The algorithm is derived in
Sec. III. The method is evaluated in Sec. IV. Conclusions are provided
in Sec. V.

II. PROBLEM FORMULATION

A. Dictionary Learning for FMRI Data Analysis

Let us first briefly recap the DL-based analysis method developed
for a single fMRI data set [4], which is extended to multiset analysis
in this work. Let X ∈ RM×V be a fMRI data set with M subjects
and V voxels. DL amounts to factorizing X into a dictionary matrix
D ∈ RM×K and a sparse matrix Z ∈ RK×V , such that X ≈ DZ.
In the fMRI data analysis context, the factorization yields K sparse
neural activation maps in the rows of Z and corresponding subject-
wise weights for individual maps in the columns of D.

If group attributes for subjects are available, discriminative DL can
be employed to obtain maps that are characteristic of the differences
between groups, in addition to maps that are shared across groups.
Discriminative DL can be formulated using the Fisher discriminant
cost [8]. Suppose that there are G groups. For g ∈ {1, . . . , G}, letNg
with cardinality Ng be the set of subject indices belonging to group
g. Discriminative DL learns feature vectors Q := [q1,q2, . . . ,qM ]
for M subjects. The Fisher discriminant cost function f(Q) promotes
features {qm} to be clustered within the same group and dispersed
across different groups. Define mg := 1

Ng

∑
m∈Ng

qm, and m :=
1
M

∑M
m=1 qm. Also define the within-class scatter matrix Sw and

the between-class scatter matrix Sb as

Sw(Q) :=
∑G

g=1

∑
m∈Ng

(qm −mg)(qm −mg)
> (1)

Sb(Q) :=
∑G

g=1
Ng(mg −m)(mg −m)>. (2)

where > denotes transposition. Then f(Q) is defined as

f(Q) := tr{Sw(Q)} − tr{Sb(Q)}+ ‖Q‖2F (3)

where the last term ensures that f(Q) is convex [9].
Now split Z into Z := [Z

>
, rZ>]>, where rZ ∈ RĂK×V contains rK

discriminative maps and Z ∈ RK×V contains K shared ones, with
K+ rK = K. Likewise, D is partitioned as D := [D, rD], where the
rows of rD ∈ RM×ĂK are the discriminative features for individual
subjects and the rows of D ∈ RM×K are non-discriminative ones.
Hence, rD> can be used as the feature matrix Q. The DL formulation
is given by [4]

min
D∈D,Z

1

2
‖X−DZ‖2F+λ‖Z‖1+

µ

2
f( rD>) (4)



where the constraint set D := {[d1, . . . ,dK ] : ‖dk‖2≤ 1, k =
1, . . . ,K} for D is employed to avoid scaling ambiguity of bi-
factorization, ‖Z‖1 is a regularizer promoting sparsity in Z, and λ
and µ are pre-specified positive regularization parameters. It is worth
noting that one must also pre-specify the values of K and rK.

B. Flexible Dictionary Learning for Multiset FMRI Data

Formulation (4) learns shared and discriminative spatial maps Z
and rZ from a single multisubject data set X and group attributes
{Ng}. The method is now extended to the case of analyzing mul-
tiple data sets acquired for the same set of subjects. Let {Xs ∈
RM×V }Ss=1 be a collection of S fMRI data sets from M subjects.
For example, the data sets can be captured from the fMRI scans taken
for S different tasks performed by the subjects.

We again aim at obtaining K sparse spatial maps Zs ∈ RK×V
and corresponding weights Ds ∈ RM×K such that Xs ≈ DsZs

for s = 1, 2, . . . , S. However, it is expected that the S sets of maps
{Zs} are related since they are due to the same set of subjects. In
particular, there may be maps that show up commonly in all data sets
and maps that appear uniquely only in one data set (or a subset of
data sets). Furthermore, the group attribute labels {Ng} should also
be utilized to extract maps that are group-discriminative and shared
across groups. In summary, four types of maps are conceived. The
maps can be either common or distinct across the data sets. Also,
the maps can be either group-discriminative or shared depending on
whether or not they are characteristic of the group differences.

To identify the four types of maps, rather than splitting Z and D
with pre-specified dimensions as in Sec. II-A, here we propose to
flexibly determine the map types by employing robust methods. To
estimate common and distinct maps across data sets, first collect the
k-th maps extracted from S data sets as

Zk :=

»

—

–

Z1(k, :)
...

ZS(k, :)

fi

ffi

fl

∈ RS×V (5)

for k = 1, . . . ,K, where (k, :) and (:, k) extract the k-th row and
the k-th column, respectively. Inspired by [10], we decompose Zk as

Zk = pZk + qZk (6)

where pZk is constrained to be column-wise group-sparse and qZk
is constrained to be both element-wise sparse and row-wise group-
sparse. The column-sparsity of pZk encodes the prior information that
common maps from different data sets tend to have shared supports,
meaning that similar neural activation patterns are exhibited across
all data sets. However, not all maps are expected to show such
commonality, which is handled by qZk. The row-sparsity imposed on
qZk allows a small subset of rows in Zk to deviate from the coupling
across all S maps effected by pZk. The element-wise sparsity on qZk
again encourages that the maps obtained in Zk are spatially sparse,
which is expected for neural activations.

A similar idea is employed to extract discriminative and non-
discriminative maps for predicting group attributes. Collect the weight
matrices from S data sets and decompose it as

∆ := [D1,D2, . . . ,DS ] = r∆ + p∆ ∈ RM×SK . (7)

Each row of r∆ is constrained to be discriminative by imposing the
Fisher discriminant constraint. If p∆ were entirely zero, this would
render all SK maps in {Zs} to be group-discriminative. However,
not all maps are expected to be group-discriminative. Suppose that
the k-th map of the s-th data set is not group-discriminative. Then,

the corresponding column (the [(s− 1)K + k]-th column) in p∆
can assume nonzero values, allowing the same column in ∆ to be
exempt from the discriminative constraint imposed by the Fisher cost.
Thus, column-sparsity is imposed on p∆. The nonzero columns in
p∆ indicate non-discriminative maps (in the corresponding rows of
[(Z1)>, (Z2)>, . . . , (ZS)>]>), and the rest discriminative.

Based on these ideas, our DL problem is formulated as

min
{Ds∈D},{Zs}

1

2

S∑
s=1

‖Xs −DsZs‖2F+

K∑
k=1

{
λ1‖pZk‖2,1 (8)

+λ2

”

α‖qZk‖1,2+(1− α)‖qZk‖1
ı}

+
λ3

2
f( r∆

>
) + λ4‖ p∆‖2,1

where {λi} and α are nonnegative weights associated with various
regularizers. The regularizers based on the `2,1-mixed norm ‖·‖2,1
levied on pZk and p∆ promote column-sparsity. Similarly, the regu-
larizer ‖qZk‖1,2 encourages row-sparsity. Additional `1-norm-based
regularization is imposed on qZk to ensure that the obtained maps in
Zk are sparse.

It must be emphasized that, unlike (4), formulation (8) does not
require rigid splitting of Zs into common and unique parts or Ds

into discriminative and non-discriminative parts. Instead, each map
can be determined flexibly which of the four types it belongs to in
a data-driven fashion. Moreover, when a map is found to be shared
across a subset of data sets, this subset can be identified easily from
the group-sparsity structure. The price to pay is that (8) needs more
regularization parameters to be specified than (4).

III. ALGORITHM DERIVATION

In this section, an algorithm to solve (8) is derived in the proximal
alternating linearized minimization (PALM) framework, which allows
to find a stationary point to a class of nonconvex nonsmooth problems
by iteratively optimizing over blocks of variables [11]. For (8), we
choose the following (2K + 2) blocks: {pZk}Kk=1, {qZk}Kk=1, p∆,
and ∆. Furthermore, let us define X := [(X1)>, . . . , (XS)>]> ∈
RSM×V and Dk := bdiag{D1(:, k), . . . ,DS(:, k)} ∈ RSM×S .
Then, the continuously differentiable part of the objective function
in (8) is given by

h({pZk}Kk=1, {qZk}Kk=1, p∆,∆) (9)

:=
1

2

∥∥∥∥∥X−
K∑
k=1

Dk(pZk + qZk)

∥∥∥∥∥
2

F

+
λ3

2
f

ˆ

´

∆− p∆
¯>

˙

.

Note that all entries of {Dk} in (9) are included in variable ∆. The
algorithm proceeds by iteratively updating the blocks sequentially via
appropriate proximal operators, with other blocks fixed at the current
iterates [11], [12].

First, with {pZk′}k′ 6=k, {qZk′}, p∆, and ∆ fixed at the current
iterates, pZk is updated for k = 1, 2, . . . ,K. Denote the current
(t-th) iterate of pZk by pZ

(t)
k . Let ρ̂k := pγk pLk, where pγk > 1 and pLk

is the Lipschitz constant of ∇
pZk
h(·) w.r.t. pZk. Let ∇

pZk
h(t) denote

the gradient of h(·) w.r.t. pZk at the current iterate, i.e., ∇
pZk
h(t) :=

∇
pZk
h(pZ

(t+1)
1 , . . . , pZ

(t+1)
k−1 , pZ

(t)
k , . . . , pZ

(t)
K , {qZ(t)

k′ }, p∆
(t)
,∆(t)).

Then, upon defining pUk := pZ
(t)
k −

1
ρ̂k
∇

pZk
h(t), the update for pZk

is done through the proximal operation

pZ
(t+1)
k = arg min

pZk

λ1‖pZk‖2,1+
ρ̂k
2

∥∥∥pZk − pUk

∥∥∥2

F
(10)



which has a closed-form solution [12]

pZ
(t+1)
k (:, v) = max

{
0, 1− λ1

ρ̂k‖ pUk(:, v)‖2

}
pUk(:, v) ∀v. (11)

Next, for updating qZk, k = 1, 2, . . . ,K, first define

qr(qZk) := λ2

”

α‖qZk‖1,2+(1− α)‖qZk‖1
ı

. (12)

Define also qUk := qZ
(t)
k −

1
ρ̌k
∇

qZk
h(t), and introduce ρ̌k := γ̌k qLk

with γ̌k > 1 and the Lipschitz constant qLk of ∇
qZk
h(·). Then, qZk

can be updated via

qZ
(t+1)
k = arg min

qZk

qr(qZk) +
ρ̌k
2

∥∥∥qZk − qUk

∥∥∥2

F
. (13)

The proximal operator for the combination of the `1,2-norm and
the `1-norm in qr can be computed in sequence [12]. The proximal
operation due to the `1-norm is first performed to get qU′k as

qU ′k(s, v) := max

{
0, 1− λ2(1− α)

ρ̌k|qUk(s, v)|

}
qUk(s, v) ∀s, v. (14)

Then, the proximal operation due to the `1,2-norm is carried out as

qZ
(t+1)
k (s, :) := max

{
0, 1− λ2α

ρ̌k‖ qU′k(s, :)‖2

}
qU′k(s, :) ∀s. (15)

The update for p∆ is done with xW := p∆
(t)
− 1

ρ1
∇

x∆h
(t) as

p∆
(t+1)

= arg min
x∆

λ4‖ p∆‖2,1+
ρ1

2

∥∥∥ p∆− xW
∥∥∥2

F
(16)

where ρ1 := γ1L
x∆ with γ1 > 1 and the Lipschitz constant L

x∆ of
∇

x∆h(·). The update (16) can be shown to be equivalent to

p∆
(t+1)

(:, j) = max

{
0, 1− λ4

ρ1‖xW(:, j)‖2

}
xW(:, j) ∀j. (17)

Finally, to update ∆, define rD(∆) as rD(∆) := 0 if Ds ∈ D,
for all s, and rD(∆) := ∞, otherwise. Then, upon defining W :=
∆(t) − 1

ρ2
∇∆h

(t), the relevant proximation operation is

∆(t+1) = arg min
∆

rD(∆) +
ρ2

2
‖∆−W‖2F (18)

where ρ2 := γ2L∆ with γ2 > 1. This is equivalent to

∆(t+1)(:, j) =
1

max{1, ‖W(:, j)‖2}
W(:, j) ∀j. (19)

The overall algorithm is presented in Table I.

IV. EVALUATION

A. Test with Synthetic Data Sets

The proposed method was first tested on S = 3 synthetic data
sets. For each data set, K = 10 sparse maps with V = 48, 546 were
generated from a Bernoulli (p = 0.5)-Gaussian distribution. Each pair
of common maps were made correlated with a correlation coefficient
0.95. There are six common maps in each data set. The dictionaries
for M = 247 subjects were generated from N (0, 1). To simulate two
groups, a step signal was added to the entries of 109 subjects in the
atoms associated with discriminative maps. Five discriminative maps
were made for each data set. The data sets were then obtained as
the products of the dictionaries and the sparse maps, plus Gaussian
noise. All map types of the synthetic data sets are shown in Fig. 1,
where the same pattern/color in a column signifies common maps,
and the stars indicate discriminative maps.

TABLE I: Algorithm for solving (8).

Input: {Xs},K, {λl}4l=1, α, {pγk, qγk}, γ1, γ2, MAXITER
Output: ∆(MAXITER), {Z(MAXITER)

k }
1: Initialize {pZ(1)

k }, {qZ
(1)
k }, p∆

(1)
, and ∆(1) randomly.

2: For t = 1, . . . ,MAXITER− 1

/* Update {pZk} */
3: For k = 1, . . . ,K

4: pUk = pZ
(t)
k −

1
ρ̂k
∇

pZk
h(t)

5: pZ
(t+1)
k (:, v) = max

{
0, 1− λ1

ρ̂k‖xUk(:,v)‖2

}
pUk(:, v) ∀v

6: End For
/* Update {qZk} */

7: For k = 1, . . . ,K

8: qUk = qZ
(t)
k −

1
ρ̌k
∇

qZk
h(t)

9: qU ′k(s, v) = max
{

0, 1− λ2(1−α)

ρ̌k| qUk(s,v)|

}
qUk(s, v) ∀s, v

10: qZ
(t+1)
k (s, :) = max

{
0, 1− λ2α

ρ̌k‖|U′
k

(s,:)‖2

}
qU′k(s, :) ∀s

11: End For
/* Update p∆ */

12: xW = p∆
(t)
− 1

ρ1
∇

x∆h
(t)

13: p∆
(t+1)

(:, j) = max
{

0, 1− λ4

ρ1‖xW(:,j)‖2

}
xW(:, j) ∀j

/* Update ∆ */
14: W = ∆(t) − 1

ρ2
∇∆h

(t)

15: ∆(t+1)(:, j) = 1
max{1,‖W(:,j)‖2}

W(:, j), ∀j
16: End For
17: Set Z

(MAXITER)
k = pZ

(MAXITER)
k + qZ

(MAXITER)
k , ∀k

𝑠 = 1

𝑠 = 2

𝑠 = 3

𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4 𝑘 = 5 𝑘 = 6 𝑘 = 7 𝑘 = 8 𝑘 = 9 𝑘 = 10

*
*
*

*
*
*

* *
* * *

* * *

*
Maps

Data sets

Fig. 1: Map types in the synthetic data sets.

A grid search for {λl}4l=1 was performed by splitting the data into
training and validation sets and choosing the parameter set with best
classification accuracy. The atoms indicated by the column-sparsity
of p∆ were used to perform classification. The value of α was set to
0.99. With the parameters fixed, (8) was solved using 50 different
initializers and the most stable maps were selected [4].

In addition to our proposed algorithm, existing methods were also
tested for comparison. The benchmark methods are the multiset
canonical correlation analysis + joint ICA (MCCA+jICA) [13],
disjoint subspace analysis using ICA (DS-ICA) [7], joint sparse
representation analysis (jSRA) [14], and single-set discriminative
DL [4] methods. The DS-ICA algorithm was run with various
common orders Kc = 4, 5, 6, 7 (denoted as DS-ICA-Kc). To assess
the map estimation performance, the correlation coefficients between
the matching ground-truth and estimated maps were computed and
averaged. Also, to see whether the (non-)discriminative maps are cor-
rectly estimated as (non-)discriminative, the p-values of the estimated
atoms were computed using two-sample t-tests. Then, the fraction of
the discriminative maps with the p-values less than 0.05 (as well
as the non-discriminative maps with the p-values larger than 0.05)
was recorded as discriminability estimation accuracy. In Table II, it
is seen that our method achieves the best performance in terms of
both metrics. Discriminative DL, which can incorporate the labels,
also achieved 100% discriminability estimation accuracy.



Proposed DS-ICA-4 DS-ICA-5 DS-ICA-6 DS-ICA-7 MCCA+jICA discr. DL jSRA
Avg. corr. coeff. 0.98 0.91 0.93 0.87 0.86 0.90 0.94 0.61
Discr. est. acc. 100% 37% 53% 57% 53% 53% 100% 70%

TABLE II: Performance comparison.

H
HHH
s k #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

1 (100,100) (100,100) (100,100) (100,100) (100,0) (100,0) (76,0) (75,100) (77,0) (100,0)
2 (100,100) (100,100) (100,0) (100,100) (100,100) (76,100) (100,0) (77,0) (77,0) (78,0)
3 (100,100) (100,100) (100,0) (100,0) (76,0) (100,100) (100,100) (100,100) (77,0) (77,0)

TABLE III: Percentages of zeros in the entries of qZk(s, :) and pDs(:, k).

0.5 1 1.5 2 2.5 3 3.5 4 4.5

Voxels 10
4

AOD

SIRP

SM

(a) Zero and nonzero entries in qZk.

AOD SIRP SM

(b) Maps estimated in Zk.

Fig. 2: An example of the estimated qZk and Zk for some k. As
expected, the activating areas in the AOD and SM maps are similar
while those in the SIRP map are not.

The map types are also indicated by our method through the
sparsity of qZk and pDs. All-zero and non-zero rows of qZk correspond
to common and distinct maps, respectively. All-zero and non-zero
columns of p∆ indicate discriminative and non-discriminative maps,
respectively. To check the correctness of these indications, Table III
shows the fraction of zeros in qZk(s, :) and the fraction of zeros in
pDs(:, k) in ordered pairs. Comparing Table III with the ground-truth
map types in Fig. 1 reveals that all map types are corrected estimated.
For example, map #6 in set #3 is a common and discriminative map,
which is correctly captured through the all-zero row qZ6(3, :) and the
all-zero column pD3(:, 6).

B. Test with Real FMRI Data Sets

The method was also evaluated using real fMRI data from MIND
Clinical Imaging Consortium (MCIC) [15]. Three (S = 3) tasks are
due to subjects performing auditory oddball (AOD), Sternberg item
recognition paradigm (SIRP), and sensory motor (SM) tasks. Data
from 138 healthy control (HC) subjects and 109 schizophrenia (SZ)
patients are used. The spatial features for each subject were extracted
through regressing the time series on to a design matrix, which was
the convolution of stimulus onset functions and the hemodynamic
response function. Finally, the contrast images between the target and
the standard stimuli were used as the input matrices {Xs ∈ RM×V }
with M = 247 subjects and V = 48, 546 voxels. The grid search
resulted in λ1 = 0.008, λ2 = 0.35, λ3 = 0.14, λ4 = 4.1, K = 30

with fixed α = 0.99. The classification accuracy was 80%. The most
stable maps were obtained for further analysis.

The common and distinct maps across data sets were then identified
by checking the row-sparsity of qZk. The average of the correlation
coefficients between all pairs of common maps was computed to
be 0.81, whereas the same between distinct maps was 0.40. This
indicates that the group-sparsity priors work as intended. One repre-
sentative set of maps is shown in Fig. 2 for a chosen k. In Fig. 2(a),
the entries of qZk are depicted, where the blue color represents
zeros, and the yellow non-zeros. It can be seen that the AOD and
the SM maps are identified as common, whereas the SIRP map is
determined to be distinct. The maps estimated in Zk are shown in
Fig. 2(b) for the three data sets. The correlation coefficients between
(AOD, SM), (AOD, SIRP), and (SIRP, SM) are 0.69, 0.081, and
0.041, respectively. We also looked into discriminative and non-
discriminative maps as identified from the column-sparsity of p∆. The
fraction of the maps that were identified as discriminative, which also
exhibited p-values less than 0.05, was 63%. Thus, our method shows
the right tendency in extracting the discriminative/non-discriminative
maps based on the Fisher’s criterion and the group-sparsity priors.

The estimated discriminative maps are shown in Fig. 3. Most maps
turn out to be common across all data sets. Maps for k = 4 are
included because the p-value of the map from the AOD data set
is very close to 0.05, and the estimated sparsity pattern indicates
discriminative maps. The estimated maps show activations in visual,
auditory, default mode network (DMN), sensory-motor and motor
areas. These areas are closely related to the performed tasks. In the
AOD task, 14 maps are showing significant group differences. Among
these results, maps for k = 4, 5, 7, 13, 20 capture motor, auditory,
anterior DMN and sensory-motor areas. The map type estimation
results are often related to the corresponding tasks. For example,
maps for k = 4 reflecting motor areas are estimated as common
maps only in AOD and SM, while the one in SIRP is distinct. This
makes sense as the AOD and SM tasks are related to auditory and
motor functions, while the SIRP task focuses more on the visual
function. Maps for k = 5 are common maps related to the auditory
areas but show much higher group differences in AOD and SM than
in the SIRP task. This is reasonable given the similarity between
the AOD and SM tasks. A similar observation can be made for the
common maps k = 3 showing activations in the visual areas. The
map in SIRP shows much higher group differences than the other two
in AOD and SM. This is because that the SIRP task is designed to
be a visual task. There are 7 and 14 maps showing significant group
differences in SIRP and SM, respectively, and the task-related areas
like visual, DMN, sensory-motor, motor areas are captured.



SIRP

AOD

SM

SIRP

AOD
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Fig. 3: Estimated discriminative maps.

V. CONCLUSION

A novel DL method has been proposed for analyzing multisubject
multiset fMRI data. The group attributes of the subjects are exploited
to extract a set of neural activation maps characteristic of the group
differences. Furthermore, multiple data sets are analyzed jointly,
accounting for possible commonality in the neural activations across
the data sets. Four map types—discriminative or shared across groups
and common or distinct across data sets—are flexibly determined
through robust methods using suitable group-sparsity priors. An
iterative algorithm has been derived and tested on synthetic and real
fMRI data sets. The test results show that the method is effective in
finding different types of maps.
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