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Abstract—A novel data-driven functional magnetic resonance
imaging (fMRI) data analysis method is proposed using a deep
object-centric learning paradigm. The method can faithfully
estimate the variabilities in the spatial neural activation maps,
which capture functional interconnections in the brain, over
fMRI volumes. The key idea is to treat the component maps
composing individual fMRI volumes as “objects,” whose latent
representations are separately learned by a set of autoencoders.
Numerical tests using synthetic and real data sets verify the
advantages of the proposed method compared to existing matrix
factorization-based approaches.

Index Terms—Deep learning, dynamic functional connectivity,
fMRI data analysis, object-centric learning, subject individuality.

I. INTRODUCTION

Functional magnetic resonance imaging (FMRI) can reveal
brain neural activities non-invasively. The fMRI data can
be analyzed based on pre-defined regions-of-interest (ROIs)
or reference signals in a hypothesis-driven manner. While
readily interpretable, the results may be limited by the a priori
modeling assumptions. Alternatively, data-driven approaches
such as the independent component analysis (ICA) and dic-
tionary learning techniques allow fully multivariate analysis in
a matrix factorization framework [1].

A tacit assumption made in such algorithms is the existence
of a common signal subspace over fMRI volumes. This,
however, inevitably neglects possible variabilities of functional
networks. In a similar framework, a group analysis of fMRI
data can uncover common functional networks among multiple
subjects [2], [3]. Notably, group/subject-specific spatial acti-
vation maps can also be obtained. Still, the maps are typically
assumed to be fixed within the set of volumes corresponding
to individual groups. Estimating fine-grained map variability
is challenging but can reveal informative brain dynamics [4].

Recently, deep learning techniques have been actively
employed for fMRI data analysis. A variational autoen-
coder (VAE) was used for resting-state fMRI data to analyze
dynamic changes in neural activities [5]. A deep Markov
factor analysis model was developed to explain spatial and
temporal patterns, yet assuming common spatial activations
across time [6]. A transformer framework was utilized to
analyze fMRI scans, and shown to perform well for age
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and gender prediction tasks [7]. However, these works did
not explicitly estimate spatial activation maps that preserve
variabilities across volumes.

Object-centric learning aims at improving sample efficiency
and generalization capability of machine learning models
by decomposing complex structures in the input data into
interactions of multiple objects [8]. In the compositional scene
models for image and video data, for instance, individual
objects constituting a scene can be segmented in an unsuper-
vised fashion and their latent variables obtained by encoders
with shared parameters across different objects [9]–[11]. The
variability in the attributes of the objects such as the shape,
color, and texture, can be readily preserved in the latent
representations and reconstructed by decoders.

In this work, a fMRI data analysis method is developed
based on the object-centric learning paradigm by treating the
spatial activation maps that compose the individual fMRI
volumes as objects. Inspired by [10], [11], an attention mecha-
nism is adopted which generates spatial masks recursively for
efficient downstream processing. Then, VAEs are adopted to
extract individual component maps from a fMRI volume using
the masks. This way, the model can learn a manifold structure,
rather than a rigid common subspace, that can flexibly preserve
map variabilities across volumes. The proposed method was
tested with both synthetic and real data sets and compared
with existing algorithms to verify the benefit of the approach.

The rest of the paper is organized as follows. The fMRI data
analysis problem is stated in Sec. II. The proposed method
is presented in Sec. III. The employed DNN architecture is
described in Sec. IV. The evaluation results are presented in
Sec. V. Conclusions are provided in Sec. VI.

II. FMRI DATA ANALYSIS WITH MAP VARIABILITY

Let X := {x[n] ∈ RV : n = 1, . . . , N} be a set of N
fMRI volumes with V voxels. Upon constructing a matrix
X ∈ RN×V whose n-th row is x[n], a matrix factorization
approach for fMRI data analysis decomposes X into AU,
where A ∈ RN×K is a matrix of activation coefficients
{ak[n]} and U ∈ RK×V contains the spatial activation maps
U := {uk ∈ RV } as the rows. That is, a representation x[n] ≈∑K
k=1 ak[n]uk is obtained for each n. The identifiability of

the factors often hinges on additional assumptions such as
statistical independence or sparsity on U and orthogonality or
norm constraints on A [12], [13]. Furthermore, since a single



set U is shared for all n, it can be noted that the variability
of the component maps across the volumes is neglected.

To account for the map variability, in this work we aim at
a representation given by x[n] ≈

∑K
k=1 ak[n]uk[n], where a

map uk[n] may depend on n. In fact, one can simply estimate
the product sk[n] := ak[n]uk[n], leading to the representation

x[n] ≈
K∑
k=1

sk[n], n = 1, . . . , N. (1)

Obviously, the set of maps S[n] := {sk[n]} needs to be
estimated in such a way that there is consistency of the
maps across n. This prior is naturally encouraged in our
object-centric learning model, where the individual maps are
taken as “objects” and are encoded to latent vectors using K
encoders. This representational bottleneck enforces learning
of consistent yet variability-preserving maps while allowing
efficient representation of the input.

III. OBJECT-CENTRIC LEARNING FORMULATION

We adopt the deep object-centric learning paradigm to
estimate the maps S[n] for each fMRI volume x[n]. Since
the size V of the voxel space is quite large, an attention
mechanism is first employed to figure out roughly the parts in
the input related to the component activations. A recurrent
architecture is designed to obtain the attention masks for
the components sequentially. Then, the component maps are
extracted from the input through a VAE architecture.

A. Attention Mechanism

The attention mechanism produces K + 1 masks M :=
{mk ∈ [0, 1]V }K+1

k=1 from x. (The volume index n is dropped
for notational simplicity.) For k = 1, . . . ,K, the v-th element
mk,v of mk models the probability that the v-th voxel in x
represents the neural activity corresponding to the k-th com-
ponent map sk. Mask mK+1 corresponds to the background
(non-gray matter) areas. Thus, upon denoting the component
map/background index related to the v-th voxel as Cv , we
have mk,v = P [Cv = k|x] for k = 1, . . . ,K + 1, and∑K+1
k=1 mk,v = 1 holds for all v. Define c ∈ {1, . . . ,K+1}V

to be a vector collecting {Cv}, and qψ(c|x) the probability
mass function (PMF) represented by M.

To generate all masks efficiently, they are obtained se-
quentially using a recurrent architecture. Let rk−1 ∈ [0, 1]V

represent the scope in which the activations not captured by
the masks generated in the previous k − 1 stages. Then, a
deep neural network (DNN) αψ parameterized by ψ is used
to generate the k-th mask as

mk = rk−1 �αψ(x, rk−1), k = 1, . . . ,K (2)

where � denotes element-wise multiplication. The background
mask is simply given by mK+1 = rK , which ensures that all
voxels are accounted for, i.e.,

∑K+1
k=1 mk = 1, where 1 is an

all-one vector. With r0 = 1, the scopes are updated as

rk = rk−1 � [1−αψ(x, rk−1)] , k = 1, . . . ,K. (3)

B. VAE for Component Maps

A VAE is employed to extract component maps S from
x with the help of the masks M [14]. First, an approximate
posterior distribution of the latent vectors Z := {zk ∈ RL} for
the maps is estimated through variational inference. Specif-
ically, it is assumed that Z has a standard Gaussian prior
p(Z) =

∏K
k=1N (zk;0, I), and the posterior for zk can be

approximated as Gaussian with mean and covariance obtained
from x and mk via a DNN parameterized by φ. That is,

qφ(zk|x,mk) = N (zk;µφ(x,mk),diag{σ2
φ(x,mk)}) (4)

where diag{·} denotes a diagonal matrix with the diagonal
entries listed in {·}. Since mk is itself estimated from x
(cf. Sec. III-A), one can rewrite µφ(x,mk) = µφ,ψ(x)
and σ2

φ(x,mk) = σ2
φ,ψ(x). Upon assuming conditional

independence of the latents, the posterior of Z is expressed as

qφ,ψ(Z|x) =
K∏
k=1

N (zk;µφ,ψ(x),diag{σ2
φ,ψ(x)}). (5)

The generative model pθ(x|Z) is parameterized by a de-
coder DNN fθ with parameters θ. In particular, the DNN
generates the component maps as fθ(zk) = sk for k =
1, . . . ,K. Then, pθ(x|Z) is modeled as a voxel-wise inde-
pendent Laplace distribution with location µθ :=

∑K
k=1 sk

and scale b, which mitigates blurriness in the reconstructed
maps [15]. That is,

pθ(x|Z) =
V∏
v=1

1

2b
exp

(
−|xv − µθ,v|

b

)
(6)

where xv and µθ,v are the v-th entries of x and µθ, respec-
tively. For simplicity, b is pre-specified in this work.

C. Training Loss Function

The overall training is done using a loss function based on
the β-VAE loss augmented by a term constraining the masks.
First, the loss function per sample for β-VAE is given by [16]

lβ-VAE(φ,ψ,θ;x) =− Eqφ,ψ(Z|x) {log pθ(x|Z)}
+ βD(qφ,ψ(Z|x)||p(Z)) (7)

where D(·||·) denotes Kullback-Leibler (KL) divergence and
β > 0 is a parameter encouraging disentanglement of latent
variables. The first term in (7) corresponds to the reconstruc-
tion error of the VAE and the second term is a regularizer that
ensures that the approximate posterior is close to the prior. The
expectation can be evaluated using the reparameterization trick
to facilitate the computation of gradients for training [14].

It is also necessary to encourage the attention masks M
to match well with the estimated map areas as otherwise the
masks are not spatially constrained. For this, a PMF pθ(c|Z)
represented by {πk,v = P [Cv = k|Z], k = 1, . . . ,K + 1, v =
1, . . . , V } is constructed from S as

πk,v =
|sk,v|

maxv′
∑K
k=1 |sk,v′ |

, k = 1, . . . ,K (8)
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Fig. 1: Employed DNN architecture.

and πK+1,v = 1−
∑K
k=1 πk,v for all v. Then, the loss for the

masks is defined as

lmask(φ,ψ,θ;x) = Eqφ,ψ(Z|x) {D(qψ(c|x)||pθ(c|Z))} . (9)

The overall loss function for sample x is then given by

l(φ,ψ,θ;x) = lβ-VAE(φ,ψ,θ;x) + γlmask(φ,ψ,θ;x) (10)

where γ is a positive weight parameter.

IV. DNN ARCHITECTURE

The attention network αψ is based on the U-Net architec-
ture as shown in Fig. 1 [17]. Each convolutional layer includes
3D bias-free convolutions with kernels of size 3×3×3, stride
1, and one zero padding, followed by a group normalization
over 8 groups and a ReLU activation. The spatial down-
and up-sampling operations are done by a factor of 2. The
output of the encoding path is passed through fully-connected
(FC) layers with a hidden dimension of 128. The numbers of
kernels are [64, 128, 256, 512, 512] in the encoding path and
[512, 256, 128, 64, 64] in the decoding path. Then, a 1× 1× 1
convolution and the sigmoid nonlinearity are applied.

The encoder qφ of the VAE gets the fMRI volume x and
the log of the mask logmk as the input, which are processed
by convolutional layers consisting of 3D convolutions with
kernels of size 3 × 3 × 3, stride 2, one zero padding, group
normalization, and ReLU activation. The numbers of the
kernels are [32, 32, 64, 64]. Then, one FC layer having an
output dimension of 128 with ReLU and layer normalization,
followed by a linear FC layer, is employed. The dimension
L of the latent vector zk was set to 16. The decoder pθ first
employs a spatial broadcast on zk [18]. Thus, spatial copies of
zk are made in 3D (with padding for subsequent convolutions),
which are concatenated by the 3D coordinates normalized
to the interval [−1, 1]. The resulting tensor is processed by
convolutional layers with the same configuration as in the
encoder except that the stride is 1 and there is no padding. In
each layer, 64 kernels are employed. The output has the same
size as the fMRI volume, which is processed by a 1 × 1 × 1
convolution to obtain the desired sk.

The model was trained using the RMSProp optimizer with
batch size 32. To avoid the KL divergences vanishing at the

Fig. 2: Maps from the proposed and the Infomax algorithms.

early training stage, β and γ were gradually increased from 0
to 0.5 over the first 20 epochs [19].

V. EVALUATION

A. Evaluation with Synthetic Data

The method was evaluated with both synthetic and real
fMRI data sets. The simulated fMRI volumes were generated
using K = 8 component maps {uk[n]} in 2D of size
V = 64× 64 in SimTB [20]. The spatial spread of the maps
was varied over n by sampling the spatial spread parameter
in SimTB from a uniform distribution over [0.25, 1.75]. Each
volume was generated by x[n] =

∑K
k=1 ak[n]uk[n], where

ak[n] was sampled from a Bernoulli (with p = 0.5)-Uniform
(over [−1, 1]) distribution. A total of N = 71, 000 volumes
(70, 000 for training and 1, 000 for testing) were generated.

For comparison, the Infomax algorithm for ICA was also
tested [21]. The mean-square error (MSE) between the ground
truth maps and the estimated maps was calculated. The pro-
posed algorithm and the Infomax algorithm yielded −38 dB
and −35 dB, respectively, for the map estimation MSE.
The MSE was also computed between the input volumes
x[n] and the reconstructed volumes

∑K
k=1 sk[n]. Our method

yielded −30 dB against −28 dB of Infomax for the volume
reconstruction MSE. The performance advantage is due to the
ability to better preserve map variability across volumes. Fig. 2
shows an example case with the spatial spread parameter equal
to 0.25. The first column corresponds to the volume, and the
rest the component maps. The number beneath each estimated
map is the correlation coefficient against the ground truth. It
can be seen that the proposed method obtains maps that are
closer to the ground truth.

B. Evaluation with Real Data

1) Data Set and Data Augmentation: For real fMRI data,
resting-state scans from the Center for Biomedical Research
Excellence (COBRE) consisting of 74 healthy control (HC)
subjects and 71 schizophrenic (SZ) subjects were used1. The
raw scans were processed using the preprocessing pipeline
in the Neuroimaging Analysis Kit (NIAK) [22], which in-
cluded slice time correction, T1 normalization, BOLD-T1 co-
registration, spatial resampling, artifact removal, and spatial
smoothing, resulting in V = 32×32×32. The data set was split
into 105 subjects for training, 10 validation, and 30 testing.

1https://fcon 1000.projects.nitrc.org/indi/retro/cobre.html



Since the real fMRI data did not have much temporal
variability, one volume at around the middle time point was
sampled from each subject’s scan. The sampled volumes were
collected in matrix X̃ ∈ RN×V , to which an ICA algorithm
was applied to extract spatial components S̃ ∈ RK×V with
X̃ ≈ ÃS̃. Then, subject-specific residual spatial variation was
computed as Xr = X̃− ÃS̃. Finally, the augmented volumes
were generated as Xa = A′S̃+Xr, where the elements of A′

were sampled from a uniform distribution with the mean and
variance matched to those of Ã. In this way, 700 additional
volumes were generated for each subject in the training set.

2) Results: Since the ground truth component maps are not
available for the real data set, the method is first assessed
based on the similarity between the input and the reconstructed
volumes. Fig. 3 shows a box plot of the correlation coefficients
due to the proposed method. Also shown for comparison are
the results from i) the ICA-EBM algorithm [23] based on
the same data set without data augmentation; ii) the group
ICA method without back-reconstruction; and iii) group ICA
with back-reconstruction. For ii) and iii), the volumes over
the entire time points were used as the input. The back-
reconstruction procedure in iii) is a post-processing step added
to ii), where the input data is regressed again on the estimated
subject-specific time courses to obtain subject-specific spatial
maps [2]. It can be seen that our method achieves higher
correlation values than the methods that do not use back-
reconstruction. Group ICA with back-reconstruction achieves
very high correlations, but this is simply because back-
reconstruction amounts to least-squares regression to match
the input volumes. As we will see in Fig. 5, the step may not
lead to very interpretable component maps. Fig. 4 depicts some
example reconstructions together with the inputs sampled from
the HC and the SZ groups. The numbers below the maps
indicate the correlations toward the inputs. The proposed
method is seen to faithfully capture the differentiating features
between the groups, better than other ICA-based methods
without back-reconstruction. Note that the group differences
in the reconstructions for methods i) and ii) are due to the
group differences in the coefficients ak[n], not the maps.

Fig. 5 shows K = 8 spatial activation maps from the
proposed method for the same pair of subjects chosen for
Fig. 4. The maps have been Z-scored and thus are independent
of global scaling. Thus, only the maps from the proposed
method and the group ICA with back-reconstruction can have
group differences. However, the maps from group ICA with
back-reconstruction look quite noisy and less interpretable
than maps from other methods. It can also be observed that
the maps from our method can capture component-wise group
differences that are reflected in the input volume. For instance,
The lower left slices in map k = 7 from our algorithm
detect higher activation in the frontal area in the HC subject
compared to the SZ, which is also visible in the input volumes
in Fig. 4.

Proposed
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iii) Group ICA with BR
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Fig. 3: Correlation coefficients between the input and the
reconstructed volumes.

Fig. 4: Input and reconstructed volumes of HC/SZ subjects.

VI. CONCLUSION

A deep learning-based fMRI data analysis method has
been proposed in an object-centric learning paradigm. By
treating the spatial activation maps composing the fMRI
volumes as “objects,” the method can effectively capture the
variabilities in the component maps across fMRI volumes.
The proposed architecture includes an attention network that
generates masks for the desired components, based on which
VAEs can efficiently learn the latent representations of the
maps. The numerical tests with synthetic data showed that the
proposed method can faithfully estimate the components, and
the real data results indicated that meaningful component maps
that preserve volume-wise variabilities can be produced. Our
future work will be on fully exploiting temporal dynamics in
the input and applying the method for analysis of dynamic
functional connectivity.
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