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Abstract—A novel dictionary learning (DL) method is pro-
posed to estimate sparse neural activations from multi-subject
fMRI data sets. By exploiting the label information such as
the patient and the normal healthy groups, the activation
maps that are commonly shared across the groups as well as
those that can explain the group differences are both captured.
The proposed method was tested using real fMRI data sets
consisting of schizophrenic subjects and healthy controls. The
DL approach not only reproduced most of the maps obtained
from the conventional independent component analysis (ICA),
but also identified more maps that are significantly group-
different, including a number of novel ones that were not
revealed by ICA. The stability analysis of the DL method and
the correlation analysis with separate neuropsychological test
scores further strengthen the validity of our analysis.

I. INTRODUCTION

Functional magnetic resonance imaging (fMRI) has be-
come a representative neuroimaging modality, thanks to its
contributions to understanding brain functions and patholo-
gies [1]–[4]. FMRI can reveal the areas of high neural activi-
ties non-invasively based on neurovascular coupling [5]. The
spatial resolution offered by fMRI is much finer than other
existing modalities such as electroencephalography (EEG)
and magnetoencephalography (MEG), often providing im-
portant complementary views in multi-modal studies [6],
[7]. The group analysis of fMRI data can capture common
functional networks across multiple subjects [8], [9]. The
fMRI analysis is also useful for identifying variations present
in different subgroups and individuals. In particular, fMRI
studies are instrumental for finding potentially distinguishing
biomarkers for a variety of brain diseases [1], [2], [7].

The model-driven approaches for fMRI data analysis
typically correlate the time-series data with a hypothesized
reference signal such as the hemodynamic response function
(HRF), as in the general linear model (GLM) implemented
in the statistical parametric mapping (SPM) software [10].
However, the results depend on the reliability of the assump-
tions made. On the contrary, data-driven approaches make
minimal assumptions, rendering the analysis more robust to
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modeling errors, adaptive to various nuisances in the data,
and accommodating to individual traits in multiple data sets.

Blind source separation (BSS) approaches such as in-
dependent component analysis (ICA) have been the major
data-driven analysis tools for fMRI data [11]. The ICA
method aims to extract statistically independent sources from
their linear mixture observations. When applied to fMRI
data analysis, ICA obtains functionally meaningful spatial
maps, without imposing any constraints in the temporal
domain [8], [9]. ICA can be extended to the case where
multiple data sets corresponding to different subjects are to
be processed together. Group ICA concatenates the multi-
subject data sets across the time dimension, before per-
forming ICA jointly [12]. The independent vector analysis
(IVA) method captures the dependence across the data sets
by forming so-called source component vectors (SCVs).
Then, the independence across the SCVs and the dependence
within each SCV are maximized [13], [14]. Some of the
spatial components identified this way were shown to be
revealing the differences between the patient and healthy
control groups with better performance than the widely used
group ICA [13], [15].

More recent approaches include the use of deep learn-
ing techniques, which exhibit impressive performance in
various machine learning and computer vision applications.
A restricted Boltzmann machine (RBM) and a deep belief
network (DBN) were employed for fMRI and structural
MRI (sMRI) data analysis in [16], and the interpretation
of the learned deep network features was attempted using
their nonlinear embeddings. Convolutional neural networks
(CNNs) were adopted for predicting Alzheimer’s disease
and autism spectrum disorder (ASD) with good prediction
performances [17], [18]. In order to interpret the learned
biomarkers, the difference in prediction performance was
analyzed when a region of interest (ROI) was corrupted
in the input data [18], or a direct sensitivity analysis was
performed to the learned network [19]. In summary, while
deep learning methods extract useful biomarkers, the inter-
pretation remains challenging, especially as the depth of the
network increases.

In this work, a dictionary learning (DL) approach is
developed for fMRI data analysis [20], [21]. DL postu-

This is a preprint. For the final version, please refer to IEEE Journal of Selected Topics in Signal Processing, DOI: 10.1109/JSTSP.2020.2992430.



2

lates that each data sample can be represented as a linear
combination of a small number of atoms in the dictionary,
thus capturing a union-of-subspace structure. Rather than
employing a predefined dictionary such as the Fourier or
the wavelet basis, DL aims at learning the basis from the
data, which can even be overcomplete if the number of
measurements is small compared to the dimension of the
subspaces. The unsupervised learning method boils down
to factorizing the data matrix into a dictionary matrix and
a sparse code matrix, while minimizing the reconstruction
error. The approach is flexible in that one can incorporate
various side information to the learning cost in the form
of appropriate regularizers. DL has shown state-of-the-art
performance in a variety of applications including image
denoising and inpainting, as well as object recognition [22]–
[27].

The learned dictionary atoms are often interpretable,
which is a critical merit in medical image analysis. In [28],
a DL formulation was applied to task fMRI data with a
minimum description length (MDL) criterion for determin-
ing the sparsity level. It has been shown that the obtained
time courses were highly correlated with the canonical HRFs
and the spatial activation maps were localized to the relevant
brain areas. DL was employed for whole-brain task fMRI
data for brain functional network identification in [29]. A
hierarchical probabilistic model for brain activity patterns
was proposed in the framework of DL for analyzing multi-
subject resting-state fMRI data to estimate subject-specific
time courses and the spatial maps that are shared across
the population [30]. The performances of the DL and ICA
methods were compared using various metrics in [31], where
it was shown that the time course extracted from DL often
exhibits the spectral patterns that match well with actual
neural activities.

The DL framework can be used for supervised learning
as well, where the dictionary is trained to capture distinctive
patterns in the data such that the corresponding sparse codes
can be used for predicting the labels for the data [32], [33].
This can be done by simply employing a cost function that
augments the reconstruction error with the label prediction
error, or by directly seeking a discriminative dictionary via
minimizing the prediction error of the classifier as a function
of the dictionary.

In the context of fMRI data analysis, one is not necessarily
interested in improving the prediction accuracy itself, but
rather in capturing detailed neural activities by incorporat-
ing available labels in the data sets. For instance, using
multi-subject data sets that have group labels available,
one can obtain the patterns that are common across the
population, as well as the patterns that are representative of
the distinct traits in different groups. A dictionary shared
across all subjects and the set of subject-specific dictio-
naries were learned in [34], where incoherence among the
learned dictionaries was ensured by penalizing high pairwise
correlations. The task fMRI data parcellated to ROIs for
schizophrenic patients and normal controls were analyzed
in a DL framework in [35], where it was postulated that
the schizophrenic group’s responses contain sparse subspace

deviations from the control group’s population mean, and
the patient-specific projections of the deviations were used
to predict the patients’ genetic risks.

In this work, the DL approach is taken for the joint
analysis of multi-subject fMRI data consisting of different
subject groups. The goal is to estimate the spatial activation
maps that are shared across the population as well as the
maps that can explain the group differences. The group
labels are incorporated through the Fisher discriminant cost
added to the DL objective, which encourages clustering
of the sparse codes in the same group, while maximizing
the distances between group centroids [33]. A second-level
analysis is employed here, where each voxel’s time-series
is regressed first to appropriate reference signals to obtain
a single map per subject [36]–[38]. In order to learn the
shared and individual brain spatial component maps, two
sub-dictionaries are learned that collect the common and
the discriminative bases. Then, the vector of coefficients
computed per subject capturing the activations of the dis-
criminative component maps is used as the input to the
Fisher criterion for group differentiation.

The idea of estimating the shared and discriminative sub-
dictionaries was explored for image classification problems
in [39], where the set of shared and discriminative features
are learned as sub-dictionaries, and the sparse coefficients
corresponding to the discriminative sub-dictionaries are used
for classification. In the fMRI data analysis, however, it is
more natural that the sparsity constraints are imposed on the
spatial component maps [40], as it is known that the spatial
brain activations are localized and super-Gaussian [41].
These sparse spatial component maps also play the role of
the basis set for explaining the data, and the coefficients
associated with the discriminative maps are used for group
prediction. In a nutshell, the sparsity is imposed on the basis
set, rather than the coefficients in our work. Furthermore, in-
stead of employing per-class discriminative sub-dictionaries
as in [39], we adopt only a single discriminative sub-
dictionary. This is because in fMRI data analysis, even the
discriminative component maps are often highly correlated
across groups, and estimating per-group maps complicates
their interpretation [42]. Moreover, our choice significantly
simplifies the parameter selection such as the selection of
the model order, and improves the stability of the estimated
maps.

For the evaluation of the proposed method, a real task
fMRI data set comprising schizophrenic and healthy control
subjects is analyzed. To validate the learned brain activation
maps, a systematic comparison is done with the maps ob-
tained from the conventional ICA method. To robustify our
analysis against local optima, which emerge from solving
the nonconvex DL formulation, a rigorous stability-ensuring
procedure is employed as well. The estimated maps show
that our proposed method can reproduce most of the ICA
maps, and also find novel discriminative and interpretable
component maps that are not revealed with ICA. A corre-
lation analysis using a set of behavioral test scores further
validates the results.

The rest of the paper is organized as follows. The novel
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DL formulation is presented in Sec. II. An algorithm to
solve the proposed DL problem is derived in Sec. III. The
proposed DL method is evaluated and compared with ICA
using real task fMRI data in Sec. IV. Finally, the conclusions
are provided in Sec. V.

II. PROBLEM FORMULATION

A. Unsupervised Dictionary Learning

The DL model postulates that the signal vector can be
represented by a linear combination of a small number of
atoms chosen from a dictionary. Thus, the signals reside
in a union of subspaces, and the dictionary constitutes an
overcomplete set of basis for the subspaces. DL aims at
learning the dictionary from the data.

The conventional DL formulation is an unsupervised
learning problem. Let xn ∈ RM for n = 1, 2, . . . , N be
the n-th datum. Collect them in the data matrix X :=
[x1,x2, . . . ,xN ]. For a dictionary D := [d1,d2, . . . ,dK ] ∈
RM×K , which consists of K atoms {dk ∈ RM}, the DL
model assumes that each datum xn ≈

∑K
k=1 znkdk = Džn,

for a sparse coefficient vector žn = [zn1, . . . , znk]>, where
> denotes the transposition. Upon defining the sparse matrix
Z := [ž1, . . . , žN ] ∈ RK×N , the DL problem can be
formulated as [43]

min
D,Z

1

2
‖X−DZ‖2F + λ‖Z‖1 (1a)

subject to D ∈ D := {D : ‖dk‖2 ≤ 1, k = 1, 2, . . . ,K}
(1b)

where ‖ · ‖F is the Frobenius norm, ‖Z‖1 :=
∑
n,k |znk| is

the `1-norm, which promotes sparsity in Z, and λ > 0 is a
parameter that can be varied to adjust the sparsity level of
Z. The constraints in (1b) normalize the dictionary atoms,
which is necessary due to the scaling ambiguity inherent in
the model. That is, scaling the k-th column dk of D by α
and the k-th row z>k ∈ R1×N of Z by 1/α will not alter
the product. Thus, the formulation essentially seeks a bi-
factorization of data matrix X into a normalized dictionary
matrix D and a sparse coefficient matrix Z. The DL problem
(1) is not a convex optimization problem, but an alternating
minimization algorithm can be employed to reach a locally
optimal solution [44], [45].

B. Supervised Dictionary Learning

The DL method can also be used for supervised learning
tasks. In this case, rather than learning the dictionary to
represent the input data with high fidelity, a discriminative
dictionary can be learned, which captures the unique traits in
the data, characteristic of different classes. In the neuroimag-
ing applications, discriminative DL can reveal neural activity
patterns that are unique to different (groups of) subjects.

One way to formulate a supervised DL problem is to aug-
ment to the learning objective a classification cost. Similar
to [33], we advocate employing the Fisher’s discriminant
cost [46]. Suppose that the entire data set X is partitioned to
C classes. Let Nc with cardinality Nc be the set of sample
indices belonging to class c, for c = 1, 2, . . . , C . Let yn

be the feature vector, to be learned by DL, corresponding
to the input sample xn, for all n = 1, 2, . . . , N , and
Y := [y1, . . . ,yN ]. The class mean and the overall mean
vectors are defined as

mc :=
1

Nc

∑
n∈Nc

yn (2)

m :=
1

N

N∑
n=1

yn (3)

respectively. Let us also define so-called the within-class
scatter matrix Sw and the between-class scatter matrix Sb
as

Sw(Y) :=
C∑
c=1

∑
n∈Nc

(yn −mc)(yn −mc)
> (4)

Sb(Y) :=
C∑
c=1

Nc(mc −m)(mc −m)> (5)

respectively. The Fisher criterion aims at learning the fea-
tures such that they are clustered together in the same class,
leading to a small intra-class scatter, and at the same time
the class means are far away among others, yielding a large
inter-class scatter. Thus, a suitable cost to minimize for the
classification task is

f(Y) := tr{Sw(Y)} − tr{Sb(Y)}+ ‖Y‖2F (6)

where the last term ensures the convexity of the cost function
with respect to Y [33], [47].

In fact, upon defining N -by-N matrices H1 and H2,
where the (n, n′)-entry h1,nn′ of H1 is defined as

h1,nn′ :=

{
1
Nc

if n, n′ ∈ Nc
0 otherwise

(7)

and all entries of H2 are equal to 1/N , the Fisher’s objective
in (6) can be re-written as

f(Y) = ‖Y(I−H1)‖2F − ‖Y(H1 −H2)‖2F + ‖Y‖2F .
(8)

Thus, the Hessian ∇2f(Y) is computed as

H := 2I− 2H1 + H2 (9)

where the symmetry of H1 and H2 as well as H2
2 = H2 =

H1H2 = H2 = H1 are used. It can be easily proved that
H is positive semi-definite by showing the eigenvalues of
H are nonnegative [47]. Furthermore, f(Y) can be simply
written as

f(Y) = tr{YHY>}. (10)

Thus, a supervised DL problem can be posed as

min
D∈D,Z

1

2
‖X−DZ‖2F + λ‖Z‖1 +

µ

2
f(Z) (11)

where D now captures the discriminative basis for data
{xn}, the sparse codes {žn} play the role of the features
input to the classification cost f(·), and µ is a parameter
that balances the reconstructing error and the Fisher cost.
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Fig. 1: Illustration of the proposed DL model. The input data X is a row-wise concatenation of the fMRI volumes of N voxels
from M subjects, belonging to HC and SZ groups. The rows of the sparse matrix Z capture the sparse spatial component
maps, where Z collects the common maps and Z̃ the discriminative ones. The columns of D capture subject-wise weights of
individual components, i.e., spatial maps. Only the discriminative activations D̃> are fed to the Fisher’s criterion for group
differentiation.

C. Capturing Common and Discriminative Features

In medical image analysis, the focus is not merely on
extracting discriminative features for improving classifica-
tion performance, but rather on obtaining features that can
explain both common and individual traits in the groups
of samples. For this purpose, a structured dictionary is
employed, where D contains both the common dictionary
D that is shared across all class data, and the discriminative
dictionary D̃, which captures the features reflecting the class
differences. That is, let D := [D, D̃], where D ∈ RM×K
and D̃ ∈ RM×K̃ . Here, K is the number of common atoms,
and K̃ the number of discriminative atoms. Likewise, the
sparse coefficient matrix Z is also partitioned compatibly as
Z = [Z

>
, Z̃>]>, where Z ∈ RK×N and Z̃ ∈ RK̃×N .

Since only the discriminative features would contribute
to predicting the class labels, only Z̃ is input to the Fisher
cost. The overall supervised DL formulation can thus be
constructed as

min
D∈D,Z

1

2
‖X−DZ‖2F + λ‖Z‖1 +

µ

2
f(Z̃). (12)

Existing methods often adopt per-class discriminative
sub-dictionaries and impose additional constraints related
to incoherence of the sub-dictionaries, which can improve
classification performance in general [33], [34], [39]. Fur-
thermore, to enhance identifiability, a low-rank constraint
can be added to the common dictionary for some image
classification applications [39]. In this work, our goal is to
obtain the brain activation maps from fMRI data that faith-
fully capture the spatial activation maps and their per-subject
contributions. In fMRI data analysis, even the discrimi-
native component maps are often highly correlated across
different groups, and estimating per-group maps may hinder
their interpretation [42]. Furthermore, proper order selection,
which is critical for estimating meaningful maps embedded

in noise, becomes more complicated when there are multiple
sub-dictionaries. Thus, in this work, we advocate the simple
structure involving a single discriminative dictionary along
with a common dictionary.

D. Proposed DL Formulation for fMRI Data Analysis

The fMRI data obtained in a scanning session from a
subject is a 4-dimensional data consisting of 3-D scans of
N voxels taken at T different time points. One can flatten
the 3-D volume at each time point into an N -dimensional
vector, transforming the data into a T -by-N matrix. To
facilitate the processing of multi-subject data sets collected
from M subjects, involving M such matrices, the DL model
is employed for the second-level analysis. That is, the time
dimension in each of the voxel-wise time-series is first
regressed away against a reference signal of length T , to
obtain a single spatial map per subject, an N -dimensional
row vector. More detail is given in Sec. IV-A. Thus, the
multi-subject fMRI data X to be analyzed is a M -by-N
matrix, as shown in Fig. 1.

In conventional image classification works, the data vec-
tors belonging to different classes are stacked as columns in
the data matrix for DL analysis. For example, (12) can be
used with X> being the input, in which case, the columns
of D would capture the common and discriminative spatial
maps, and the columns of Z would estimate sparse com-
ponent activations for each subject. We experimented with
the approach in our conference precursor [40]. One issue
with this approach is that, for fMRI data, it is more natural
to impose sparsity on the component maps, rather than the
activations, as it is well-documented that the component
maps are super-Gaussian. Existing DL analysis methods for
fMRI data also often take this approach [28], [29]. Our
own comparison also found that the latter approach tends
to obtain more meaningful results [40].
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Input: X,D(0),Z(0), λ, µ
Output: D(∞), Z(∞)

1: Initialize D(0) and Z(0) randomly. Set ` = 0.
2: While not converged
3: Set i = 0, t(0) = 1, Z(`,i) = Z(`), W(`,i) = Z(`), and L(`) = λmax((D(`))>D(`))

/* Update Z */
4: While not converged
5: G(`,i) ← −(D(`))>(X−D(`)Z(`,i))
6: Z(`,i+1) ← Sλ/L(W(`,i) −G(`,i)/L(`))

7: t(i+1) ← (1 +
√

1 + 4(t(i))2)/2

8: W(`,i+1) ← Z(`,i+1) + t(i)−1
t(i+1) (Z(`,i+1) − Z(`,i))

9: i← i+ 1
10: End While
11: Set s = 0, Z(`+1) = Z(`,i), and D(`,s) = D(`)

/* Update D */
12: Set A = Z(`+1)(Z(`+1))> and B = X(Z(`+1))>

13: While not converged
14: For k = 1, 2, . . . , K

15: uk ← 1
akk

(bk −D(`,s)ak) + d
(`,s)
k

16: d
(`,s+1)
k ← 1

max{‖uk‖2,1}uk

17: Set the k-th column of D(`,s) to d
(`,s+1)
k

18: End For
19: For k = K + 1, . . . ,K

20: uk ← [akkI + µH]−1

(
bk −

K∑
k′=1,k′ 6=k

ak,k′d
(`,s)
k′

)
21: d

(`,s+1)
k ← 1

max{‖uk‖2,1}uk

22: Set the k-th column of D(`,s) to d
(`,s+1)
k

23: End For
24: s← s+ 1
25: End While
26: Set D(`+1) = D(`,s)

27: `← `+ 1
28: End While
29: D(∞) ← D(`) and Z(∞) ← Z(`)

TABLE I: Algorithm for solving (13).

In this work, we focus on stacking the per-subject maps
as rows in X, which is then input to DL. Thus, the rows
of Z correspond to the common and discriminative spatial
component maps. A row in D is the corresponding subject’s
weights associated with the component maps. A column
in D can be regarded as the weights associated with the
corresponding map, where each entry represents each sub-
ject’s contribution. Since only the discriminative activation
coefficients D̃ would contribute to label prediction, D̃> is
input to the Fisher’s criterion. This is summarized in Fig. 1,
where the subjects are shown to be partitioned into two
classes, namely the healthy control (HC) group and the
schizophrenic (SZ) group. The group labels serve as the
supervision signals. Thus, our DL formulation for fMRI data
analysis is finally given by

min
D∈D,Z

1

2
‖X−DZ‖2F + λ‖Z‖1 +

µ

2
f(D̃>). (13)

III. ALGORITHM DERIVATION

The proposed formulation (13) is a nonconvex optimiza-
tion problem, and thus it is difficult to obtain a globally
optimal solution efficiently. On the other hand, it is observed
that when D is fixed, the optimization with respect to
(w.r.t.) Z is essentially a convex least absolute shrinkage and
selection operator (LASSO) problem. Likewise, when Z is
fixed, the problem for D is also convex as f is convex w.r.t.
D̃, the squared error term is convex, and set D is convex
as well. Thus, the block coordinate descent (BCD) method
can be employed by alternating between blocks Z and D,
which converges to a locally optimal solution.

The update for Z when D is fixed to its `-th iterate D(`)

is to solve

Z(`+1) := arg min
Z

1

2
‖X−D(`)Z‖2F + λ‖Z‖1. (14)

This problem is an instance of the well-known LASSO
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problem applied to each column of X. There are a va-
riety of methods to solve this problem. In this work, we
adopt the Fast Iterative Shrinkage-Thresholding Algorithm
(FISTA) [48], which iteratively solves a proximal problem
involving a linear approximation of the differentiable part
of the objective. The next iterate is chosen based on the
“optimal” first-order method. The FISTA thus requires the
gradient of the differentiable part h(Z;D(`)) := 1

2‖X −
D(`)Z‖2F and the Lipschitz constant of the gradient, which
are given by

∂h(Z;D(`))

∂Z
= −(D(`))>(X−D(`)Z) (15)

L(`) = λmax((D(`))>D(`)) (16)

respectively, where λmax(M) denotes the largest eigenvalue
of a matrix M. The FISTA update is described in lines 4–10
in Table I, where the (i, j)-entry of Sα(M) is given by soft-
thresholding the (i, j)-entry mij of M, that is, [Sα(M)]ij :=
sign(mij) ·max{0, |mij | − α}.

When Z is fixed at Z(`+1), the update for D is done by
solving [cf. (10)]

D(`+1) := arg min
D∈D

1

2
‖X−DZ(`+1)‖2F +

µ

2
tr
{
D̃>HD̃

}
.

(17)

As the constraint D ∈ D is decoupled to individual columns
{dk} of D, another layer of BCD can be employed to
solve (17) [44]. First, upon defining A := Z(`+1)(Z(`+1))>

and B := X(Z(`+1))>, it is noted that D(`+1) in (17) can
be obtained from the equivalent formulation given by

D(`+1) = arg min
D∈D

1

2
tr{AD>D} − tr{BD>}

+
µ

2
tr{HD̃D̃>}. (18)

Thus, in iteration s, updating the k-th column of D with all
other columns fixed at d

(`)
k′ = d

(`,s)
k′ for k′ = 1, . . . , k −

1, k + 1, . . . ,K , needs to be done differently depending
on whether the k-th atom belongs to the common dictio-
nary D or the discriminative dictionary D̃. That is, for
k = 1, 2, . . . , K, the following steps are used to update dk.

uk =
1

akk

bk −∑
k′ 6=k

ak,k′d
(`,s)
k′

 (19)

d
(`,s+1)
k =

1

max{‖uk‖2, 1}
uk (20)

where akk′ is the (k, k′)-entry of A, and ak and bk are
the k-th columns of A and B, respectively. Similarly, for
k = K + 1, . . . ,K ,

uk = (akkI + µH)−1

bk −∑
k′ 6=k

ak,k′d
(`,s)
k′

 (21)

d
(`,s+1)
k =

1

max{‖uk‖2, 1}
uk. (22)

The updates (19)–(22) are repeated over s until convergence,
and the converged D(`,s) is the optimal solution to (18). The

overall dictionary update steps correspond to lines 12–25 in
Table I. The entire algorithm for solving (13) is provided in
Table I.

A remark on the computational complexity of the algo-
rithm is in order. For updating Z in lines 4-10, (D(`))>X
and (D(`))>D(`) can be computed outside the while loop.
Thus, the dominant operation is the multiplication of
(D(`))>D(`) with Z(`,i), which can be done in O(K2N)
operations. For updating D, the most demanding operation
is the inversion of an M -by-M matrix in line 20, which
requires O(M3) operations. Since this has to be done K̃
times, the computational cost per while iteration is O(M3K)
(assuming that K and K̃ are similar.) The overall computa-
tional cost is also dependent on the number of iterations for
the while loops. In the computational setup to be explained
in Sec. IV, the average number of while iterations for
the Z-update was around 200, and the same for the D-
update was around 30. Finally, the outer while loop typically
took around 150 iterations. Executing the algorithm on an
Intel Zeon processor with 8 cores at 3.4 GHz clock speed,
typically took 5 to 30 minutes.

IV. EVALUATION

A. FMRI Data Set and Regression Analysis

The proposed method was evaluated using real fMRI data.
We used task fMRI data sets published by MIND Clinical
Imaging Consortium (MCIC), which can be accessed pub-
licly at https://coins.trendscenter.org. The data set contains
150 healthy control (HC) subjects and 121 patients with
schizophrenia (SZ), collected as the subjects, who performed
the auditory oddball (AOD) task. The subjects were pre-
sented with three types of auditory stimuli: the standard,
novel, and target stimuli. The standard stimulus was 1 kHz-
tones that occurred with probability 0.82. The novel stimulus
was randomly generated, complex and non-repeating digital
noise presented with probability 0.09. The target stimulus
was 1.2 kHz-tones that occurred with probability 0.09. The
subjects were instructed to press a button with their right
index fingers when they heard the target tones. For each run,
overall 90 stimuli with a duration of 200 ms were played
at random intervals. The stimulus sequences were designed
to produce orthogonal BOLD responses [49]. Furthermore,
the order of the novel and the target stimuli was shuffled
between runs to make sure the responses do not depend
on the stimulus order. More detailed description of the
data sets can be found in [50]. The preprocessing steps of
individual fMRI data including motion correction, artifact
removal, spatial normalization, smoothing and subsampling
are explained in [38] and [50].

The regressors were then created by modeling the target
and standard stimuli as the convolution of the delta functions
capturing the stimulus onsets and the default SPM HRF in
addition to their temporal derivatives [51]. Finally, the voxel-
wise time-series was regressed in the GLM framework and
the contrast images between the target versus the standard
stimuli were obtained as the input matrix X ∈ RM×N
for the proposed method, where M = 271 subjects and
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(a) HC group

(b) SZ group

Fig. 2: Averages of the rows of X for the HC and the SZ
groups

N = 48, 546 voxels. More details on feature extraction
can be found in [52]. The contrast images convey the
difference in spatial activations associated with the detection
of the target tone and pressing the button as instructed,
relative to the background state, which involves listening
the standard and novel tones, which require no response.
The task involves a variety of cognitive processes as well as
auditory and motor functions. Fig. 2 shows the averages of
the rows of X for the HC and the SZ groups. While there are
common activations across the groups, groups differences
are also clearly visible. Note that in order to increase the
likelihood of getting components in the areas of interest,
non-brain voxels were removed through masking and the
number of voxels was reduced to N .

B. Parameter Tuning
The model presented in Sec. II contains some model

parameters that must be determined. These are the size the
of the shared dictionary K, the size of the discriminative
dictionary K̃, the parameter λ for adjusting sparsity of Z,
and the weight µ for the Fisher cost. We employed cross-
validation to fix these parameters.
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Fig. 3: The CDFs of the maximum T -map values from the
proposed algorithm, unsupervised DL in [28] and the ICA
method.

First, a training set and a validation set were created by
randomly selecting subjects from the entire data sets. As the
numbers of the HC and SZ subjects are not the same (150
and 121, respectively), a balanced training set was obtained
by randomly choosing 85 HC subjects and 85 SZ subjects.
Similarly, 36 HC and 36 SZ subjects were picked for the
validation set. A total of 100 different training/validation
sets were constructed in this way. Then a grid search was
performed over K, K̃, λ and µ to find the combination
that yielded the best average classification accuracy on the
validation sets, averaged over the 100 sets.

The classification was done as follows. Based on the
spatial maps Z obtained from the training set, the weights
associated with corresponding maps D = [D, D̃] were com-
puted by the least-square (LS) regression for the validation
set. Then, for each subject m, the m-th row of D̃ was
input to the 1-nearest neighbor classifier. The best average
classification accuracy achieved was 68% with parameters
K = 12, K̃ = 26, λ = 0.003, and µ = 0.2. This accuracy is
slightly higher than what was reported in a prior study using
the same data set [52], which was around 66%, although as
in [52] we did not try to optimize the classifier itself.

C. Obtaining Stable Maps

As was discussed in Sec. II-D, (13) is a nonconvex op-
timization problem, and thus only locally optimal solutions
can be obtained in practice. Therefore, the algorithm in Ta-
ble I would yield different solutions and thus different spatial
maps, depending on the initialization. Consequently, it is
prudent to use the spatial maps that are more consistently
obtained across multiple runs using random initializations
in order to improve the reliability of the conclusions drawn
from the analysis.

In this work, the framework proposed in [53] was adapted
for our setting. First, it is noted that permuting the columns
of D and the rows of Z using the same permutation does
not alter the objective function value. Thus, this permutation
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Fig. 4: Pearson correlation between the component maps
from each run and the T -maps.

ambiguity must be resolved in order to compare any two sets
of maps. This can be done by solving a linear assignment
problem (LAP), which finds the bipartite matching that
minimizes the total edge weight for a weighted bipartite
graph [54]. Specifically, suppose that one obtained K spatial
maps from each of the R runs and denote the k-th map
from the r-th run as z

(r)
k , where k = 1, 2, . . . ,K and

r = 1, 2, . . . , R. The weight between the k-th map z
(r)
k

from run r and the k′-th map z
(r′)
k′ from run r′ is defined

as w(r,r′)(k, k′) := 1 − |(z(r)k )>z
(r′)
k′ |/‖z

(r)
k ‖2‖z

(r′)
k′ ‖2. The

LAP is to find a bijection f : {1, . . . ,K} → {1, . . . ,K}
to assign each map k in run r to map k′ = f(k) in run r′

such that
∑K
k=1 w

(r,r′)(k, f(k)) is minimized. Let us denote
the resulting minimum cost as w(r,r′)∗. The problem can be
solved using Hungarian algorithm [55].

Then, a weighted graph is constructed where the R runs
constitute the nodes, and the edge weight between nodes r
and r′ is w(r,r′)∗. A minimum spanning tree (MST) is found
on this graph, which is defined as the subgraph connecting
all nodes in the graph with minimum total weights [56].
Then, the node with the maximum number of edges is
selected as the central node. If there are multiple nodes that
have the same maximum number of edges, then the one with
the minimum total edge weight is chosen. The central node
is essentially the run that yielded the spatial maps that are
highly correlated with the most other runs. Subsequently, the
maps in all runs are reordered so that they are aligned with
the maps in the central node, to mitigate the permutation
ambiguity.

After the alignment, the one-sample t-test statistic is
computed for each voxel by regarding R runs as R samples.
The resulting T -map captures the individual voxel’s stability
in each map. Then, the run r∗ whose spatial maps have the
highest correlation with this T -map is found. The maps from
run r∗ are our most stable maps.

We applied the aforementioned strategy for analyzing the
data set X containing 121 HC and 121 SZ subjects. This data
set X is the concatenation of the training and the validation
sets that yielded the best classification accuracy during the
parameter tuning stage explained in Sec. IV-B. We ran the
algorithm in Table I with R = 100 random initializations of
D(0) and Z(0). For comparison, we also ran the unsupervised
DL method proposed in [28] as well as the entropy bound
minimization (EBM)-based ICA algorithm in [57] with R
random initializations, and applied the same strategy.

To compare the stability of the proposed algorithm with
unsupervised DL method and the ICA algorithm, the maxi-
mum value of the T -map (maximized over the voxels) was
computed for each map. Although the spatial distribution of
the T -values is of course not uniform, having only a few
voxels estimated stably while others unstably is unlikely.
Thus, the maximum T -values for each component is a
reasonable indicator of how stable the entire component is.
In Fig. 3, the empirical cumulative distribution functions
(CDFs) of the resulting maximum T -values are plotted. The
number of components was set to K = K + K̃ = 38 for
all the methods. It can be seen that a given percentile of the
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DL#26 DL#16 DL#23 DL#24 DL#37DL#22

ICA#5 ICA#2 ICA#20 ICA#14 ICA#9 ICA#19ICA#11
p = 5.7E-08 p = 5.8E-04 p = 0.0013 p = 0.0017 p = 0.0024p = 7.1E-06

p = 5.8E-08 p = 1.4E-04 p = 0.15 p = 2.6E-04 p = 0.034 p = 0.013p = 4.8E-04

DL#29 DL#21

DL#27 DL#36 DL#35 DL#28 DL#13 DL#19

ICA#4 ICA#6

ICA#13 ICA#10 ICA#7 ICA#8 ICA#21 ICA#24

p = 0.015 p = 0.055 

p = 0.058 p = 0.084 p = 0.11 p = 0.28 p = 0.67 p = 0.88

p = 0.64 p = 0.34

p = 0.44 p = 0.18 p = 0.0057 p = 0.34 p = 0.79 p = 0.32

DL#18

p = 2.4E-04

DL#32

p = 0.24
ICA#16

p = 0.067

DL#31

p = 0.43
ICA#12

p = 0.81

DL#38

p = 0.58
ICA#18

p = 0.71

Fig. 5: The discriminative maps Z̃ from DL and the matching ICA maps. The p-values lower than 0.05 are highlighted in
yellow. The ICA maps in the red boxes were found to be split into multiple DL maps (see Fig. 7). It can be seen that the
DL maps are not only readily interpretable, but also more focal and group-different with higher significance than the ICA
counterparts in many cases.

DL#10 DL#6 DL#1 DL#9 DL#8 DL#2 DL#5

ICA#25 ICA#22 ICA#15 ICA#17 ICA#23 ICA#1 ICA#3

p = 8.2E-04 p = 0.0043 p = 0.042 p = 0.11 p = 0.12 p = 0.73 p = 0.88

p = 0.21 p = 0.069 p = 0.0075 p = 0.12 p = 0.57 p = 0.70 p = 0.015

Fig. 6: The common maps Z from DL with matching ICA maps. The DL maps are again cleaner than the ICA maps. Some
common maps turn out to be group-different, which may be due to the local optima of the proposed optimization formulation.

maximum T -value is higher in the proposed method than the
unsupervised DL or the ICA algorithms, which means that
the proposed method provides maps that are more stable.
In particular, it is noted that our method yields maps that
are more stable than those from unsupervised DL, indicating
that exploiting the label information helps stability.

Fig. 4 shows the actual correlation values of the maps
obtained from the individual runs with the T -maps. Fig. 4a
corresponds to the proposed method, Fig. 4b the unsuper-
vised DL, and Fig. 4c the ICA. It is clearly seen that the
proposed method tends to yield more consistent maps than
the unsupervised DL and ICA counterparts. Thus, the maps

obtained from the proposed method are sufficiently stable
for further analysis.

Remark: It should be noted that the ICA and DL methods
are inherently different and with a simpler but less flexible
ICA algorithm such as Infomax [58], one would obtain
more stable components, but at the expense of limited
approximation to the density of the underlying sources.
When more flexible and powerful algorithms like EBM are
used, a common practice is to use a scheme for selecting
the most consistent one among multiple runs [31], [53].
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ICA#1 ICA#3 ICA#7 ICA#10

DL#5 DL#33 DL#35 DL#12 DL#36 DL#30DL#14DL#2

p = 0.73 p = 0.50 p = 0.88 p = 0.038 p = 0.11 p = 0.021 p = 0.084 p = 0.092

p = 0.70 p = 0.015 p = 0.0057 p = 0.18

ICA#19 ICA#22ICA#15

DL#6DL#37DL#20DL#1 DL#34 DL#11 DL#4 DL#3 DL#17

p = 1.5E-05p = 0.042 p = 0.35 p = 0.0024 p = 0.54 p = 0.69p = 0.0043 p = 0.61 p = 0.10

p = 0.0075 p = 0.013 p = 0.069

Fig. 7: The ICA maps that split into multiple DL maps. The red boxes indicate the matching components between DL and
ICA, found by solving the LAP. In the blue dashed boxes, group-different ICA components are seen to be split into multiple
DL components that include the ones that are not group-different, highlighting that DL method is finding more localized
discriminative regions without losing common features.

D. Analysis of Obtained Spatial Maps

The common and discriminative brain activation maps
obtained from Sec. IV-C are analyzed in this section. It is
recalled that the k-th column dk of the learned dictionary
D can be interpreted as the weights associated with the k-
th component map, which is the k-th row zk of Z. Thus,
the group difference in the activation can be revealed by
performing a two-sample t-test on dk, whose test statistic
is defined as

tk =
µ̂HC,k − µ̂SZ,k√
σ̂2
HC,k

MHC
+

σ̂2
SZ,k

MSZ

(23)

where MHC and MSZ are the numbers of the HC and SZ
subjects, respectively, which are both equal to 121 in the data
set used, and µ̂HC,k and µ̂SZ,k are the sample means of the
entries of dk corresponding to the HC subjects and the SZ
subjects, respectively. Sample variances σ̂2

HC,k and σ̂2
SZ,k

are defined in the same way. To determine components with
significance, we have used a p-value of 0.05 for the statistic
(uncorrected).

In Figs. 5–8, the learned spatial maps are plotted. All the
spatial map plots in this work represent thresholded Z-maps,
where the Z-values are calculated per voxel by dividing the
entries in zk by the standard deviation of the entries, and

then the Z-values whose absolute values are larger than 2
are plotted. Furthermore, as there is a sign ambiguity on the
signs of a component map zk and its activations dk, the
sign is fixed such that tk in (23) is nonnegative. That is, all
the component maps shown have higher activations in the
HC group than the SZ group. The red colors in the map
represent positive values in the Z-map, with bright yellow
indicating the highest intensity, and the blue colors represent
negative values, with bright skyblue indicating the highest
intensity.

To assess the performance of the proposed approach,
we compared the maps with those obtained from ICA,
another data-driven method, and one that has been now well
established for such studies1. We reduced the dimensionality
prior to ICA analysis using an information theoretic order
selection method based on MDL, which also takes sample

1The shared and specific independent component analysis (SSICA)
algorithm proposed in [59] can be used to find the shared and the group-
specific components based on structural constraints on the mixing matrix.
However, the algorithm finds a separate set of components for each group,
whereas our method finds one set for the discriminative components of
all groups. Thus, matching and comparing the resulting maps with our
DL component maps would entail additional steps. Furthermore, SSICA
is originally designed for the first-level analysis, and thus would require
additional investigation to adapt for the second-level analysis done in the
present work. For these reasons, the well-established ICA method is adopted
for comparison with our DL method.
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Fig. 8: DL maps without matching ICA maps.
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Fig. 9: Samples of the maps from the sparse SPM and the
corresponding maps from the proposed DL method. Note
that DL#18 was not identified from the sparse SPM

dependence into account [60]. The order for ICA was
determined to be 25, thus enabling better generalization
performance for ICA. That is, the ICA maps showed the
best statistical significance and interpretability around order
25, while deviating from this order resulted in the maps with
significantly degraded p-values and interpretability. Then,
stable maps were determined as explained in Sec. IV-C. For
this, the rectangular LAP was solved to match the K = 38
component maps from the DL and K = 25 maps from the
ICA. In addition, the component maps were also further
checked by visual inspection to make sure the results were
reliable.

Figs. 5 and 6 show the maps learned from DL and ICA
that are found matching both from LAP and visual inspec-
tion. Fig. 5 lists the discriminative maps Z̃ from the DL and
the matching ICA maps, whereas Fig. 6 depicts the common
maps Z and those matching from ICA. The maps in the top
row of each figure are the maps from the DL and the bottom
from the ICA. The map index k is indicated on the top of
each map. The indices k = 1, 2, . . . , K = 12 correspond to
common components, and k = K+1 = 13, . . . , K+K̃ = 38
to discriminative components. The p-values are provided
at the bottom of the maps. When the map is significant
(p < 0.05), the p-value is highlighted in yellow. It can be
seen that DL identifies 25 component maps that are in good

match with the ICA-based maps, which validates the map
estimation performance of the DL algorithm2. Furthermore,
it is observed from Fig. 5 that many of the maps in Z̃ indeed
show significant group difference. In fact, the p-values of the
discriminative maps turn out to be smaller than the p-values
of the corresponding ICA maps in most cases, which verifies
that the supervised DL formulation is working as designed.
In particular, DL#24 and DL#22, which can be ascribed to
motor and sensory motor functions, respectively, and thus
are strongly related with the AOD task, are showing more
significant group difference than their ICA counterparts
ICA#9 and ICA#11. Furthermore, the DL maps #16 and #29
are interesting, since the maps are group-different while the
matching ICA maps #20 and #4 are not. The map DL#29
is showing significant activations in inferior and middle
temporal gyrus, which are known to be associated with
language and semantic memory processing, visual and facial
perception, and multimodal sensory integration. On the other
hand, the map DL#16 is showing activations in the brain-
stem area, directly related to controlling respiration, pain
modulation, motor, and cardiac output [61]. These highlight
that the proposed DL is finding more discriminative maps by
incorporating the label information. Many maps in Figs. 5
and 6 are readily interpretable as motor (DL#23, DL#24),
sensory motor (DL#22), auditory (DL#27), anterior default
mode network (DMN) (DL#36), posterior DMN (DL#31)
and frontal parietal regions (DL#35). It can be observed
that the DL-based maps are often much more localized and
cleaner than the ICA counterparts. This is because the DL
is formulated to estimate sparse component maps.

As the DL aims at finding sparse maps, we observe
splitting of components into multiple sparse maps [62], when
compared with maps estimated using ICA. This is observed
in Fig. 7, which depicts some of the ICA maps containing
activation regions explained by multiple DL maps. The red
boxes in Fig. 7 indicate the matching found by LAP, which
are also shown in Figs. 5–6. In particular, it is observed that
the ICA maps in the blue boxes are group different, which
are split into a set of DL maps that include the maps that
are not group different. For example, component in DL#12
is showing activation in frontal parietal region associated
with attention network, while the matching ICA map #7 has
activations in other areas not significant and not related to the
task. This underlines that DL map is finding more localized
regions that are group different, without losing the common
regions, based on our DL formulation. Similar trends can
be found in other components shown in Fig. 7. DL map
#37 is showing activations in anterior cingulate cortex with
a lower p-value, while ICA#19 has activations in insular
areas as well. DL map #20 is related to parietal areas and
showing very significant activations compared to ICA#15.

2As was explained, the colors in the maps capture the signs of the map
values. Since we fixed the sign ambiguity for each map such that the two-
sample t-test statistic is positive, the color may be misleading when the
t-statistic is not significant. Since the p-values for the three DL maps #31,
#32 and #38 are quite high, we decided to neglect the signs for these maps
and match them with the ICA maps #12, #16, and #18, respectively, in
spite of the color mismatch.
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Fig. 10: Bar plot of the p-values of all DL maps.

Fig. 8 shows the DL maps that are not matched with
any of the ICA maps. These are the maps that were not
assigned from solving the rectangular LAP, nor were asso-
ciated with the split maps in Fig. 7. Although the p-values
for components DL#25 and DL#7 are not lower than the
hard threshold 0.05, they are quite close to it, potentially
contributing meaningfully for discrimination. Furthermore,
they correlate well with known functional areas, such as
the visual (DL#25) and the insular (DL#7) areas. One
component (DL#15) is picking up the white matter area,
presumably owing to noise and artifacts present in the data.
Note that there are no ICA maps left unmatched with DL
maps.
Remark: Note that even though our proposed formulation
encourages the discriminative maps to be collected sepa-
rately from the common maps, the formulation is nonconvex,
hence is prone to have local optima. Thus, even after our
effort to ensure stability, the found common maps may turn
out to be discriminative, and the found discriminative maps
common. However, the general tendency can be seen to
be clearly toward the intended separation. From Fig. 10,
it can be seen that most of the p-values for the common
maps tend to be much larger than the 0.05 threshold, while
for the discriminative maps, the p-values are often quite
small. In fact, the five smallest p-values are all associated
with the discriminative maps. Some summary statistics de-
rived from the p-values can help convey the point more
clearly. The geometric mean of the p-values of the common
maps is computed to be 0.091, whereas the same for the
discriminative maps is equal to 0.017, indicating that the
discriminative maps tend to be more significant in detecting
the group differences. Similarly, geometric median (i.e.,
exp(med{logpi})) for the common maps is equal to 0.11
while the same for the discriminative maps is 0.070, again
indicating that the discriminative maps are more significantly
group different.

We also compared the spatial maps from our DL method
with the maps obtained from the sparse SPM algorithm
in [28], which is an unsupervised DL method. The p-

values of the maps were computed again using the two-
sample t-tests. The comparison between the two sets of
maps reveals that most of the maps from the two methods
match very well. However, it is also observed that some
of the maps identified by our proposed DL method show
group differences, whereas the corresponding components
from the sparse SPM are not. This can be ascribed to the
use of the label information in our method. The maps are
shown in Fig. 9. Note that DL#18 was not identified from
the sparse SPM, but it actually exhibits highly significant
group-difference. On the average, the geometric mean of
the p-values of the maps from the sparse SPM turns out be
0.036, whereas the same for the maps due to our method
is 0.028. (If only the discriminative maps Z̃ is considered,
the number goes down to 0.017.) In summary, our method
extracts faithfully the components of the sparse SPM but
with enhanced group-difference in the discriminative maps.

In the conference paper [40], we also performed a com-
parison with the method in [39], which is a discriminative
DL method, developed for image classification. Specifically,
formulation (P1) in [40] contains a low-rank constraint on
the common dictionary, and the sparse coefficients cor-
responding to the discriminative dictionary are used for
classification. It was observed that the resulting spatial maps
showed less similarity to the ICA maps, than our proposed
method. It was also found that the maps from our method
(equivalently, formulation (P2) in [40]) were often more
interpretable and showed more significant group differences.
The detailed estimated maps and discussion can be found
in [40].

In conclusion, the proposed algorithm can find many
component maps that can be readily cross-validated with
ICA. By exploiting sparsity, the maps from DL are cleaner
and more localized. Through incorporation of the label
information during the learning process, our method tends to
discover more meaningful activations, and in particular those
that provide more specific areas with greater sensitivity in
differentiating the patients from the healthy controls.

E. Correlation Analysis with Behavioral Variables

The spatial component maps obtained from the DL anal-
ysis can be further validated and interpreted by using the
behavioral test score data that we have. A total of 105
behavioral variables (BVs) were available for 193 of the 271
subjects. Out of all the BVs, 7 were found to be significantly
group different based on a two-sample t-test. Table II lists
the 7 BVs along with their p-values.

Then, we computed the Pearson correlation between the
BVs and the weight vector associated with k-th component
map dk (only the part for the 193 subjects for whom the
BVs are available) learned from the DL analysis. Table III
lists all the component maps that are significantly correlated
with each of the BVs, that is, the components that yield p-
values less than 0.05 from one-sample t-tests on the Pearson
correlations.

The maps listed in Table III are sorted in the order of
descending correlation. It can be observed that the correlated
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BV index #9 #23 #32 #37 #53 #88 #94

Behavioral test BVRT FAS WMS-3: Logical Memory I TMT WMS-3: Logical Memory II - Delay WAIS-3 HVLT: Immediate
p-value 5.6E-13 3.3E-12 0.0E+00 1.1E-05 0.0E+00 7.8E-06 0.0E+00

TABLE II: Behavioral tests and corresponding p-values.

BV index DL spatial map index

#9 DL#16[p=2E-6], DL#37, DL#22, DL#20, DL#26, DL#25, DL#10, DL#19, DL#32, DL#14 [p=2E-2]
#23 DL#26 [7E-4], DL#16, DL#37, DL#23 [2E-2]
#32 DL#16 [3E-4], DL#22, DL#20, DL#10, DL#25, DL#24, DL#19, DL#6, DL#23, DL#12, DL#37, DL#26 [4E-2]
#37 DL#16 [3E-5], DL#10, DL#22, DL#21, DL#20, DL#14 [4E-2]
#53 DL#22 [4E-4], DL#16, DL#20, DL#25, DL#6, DL#23, DL#12, DL#18, DL#10, DL#24, DL#26 [4E-2]
#88 DL#20 [4E-5], DL#16, DL#19, DL#26, DL#33 [3E-2]
#94 DL#16 [2E-4], DL#20, DL#26, DL#23, DL#25, DL#5, DL#37, DL#22, DL#19, DL#12, DL#10 [4E-2]

TABLE III: BVs and correlated spatial maps with correlation p-value lower than 0.05. The ranges of the p-values are indicated
for each BV.

maps are mostly from discriminative maps Z̃ (underlined
in Table III), which verifies again that the obtained dis-
criminative maps Z̃ are indeed extracting discriminative
features, and the common maps Z are indeed obtaining
shared features. In fact, most of the BVs are showing
significant correlations with DL maps DL#16 (brainstem),
DL#22 (sensory motor and motor), DL#37 (anterior cingu-
late cortex) and DL#26 (associated with logical condition
and item recognition). Since the listed BVs are mainly
associated with working and visual memory (BV#9, BV#32,
BV#53), and verbal and working memory (BV#88, BV#94),
finding highly correlated discriminative neural activations in
sensory, anterior cingulate cortex, logical condition and item
recognition related areas is justified and is in line with many
previous studies [63]–[67]. For instance, DL#22, which is
showing activations in motor and sensory motor regions that
are related to planning, monitoring, decision making and
execution of motor activity, is showing high associations
with almost all the BVs. DL#37 is a map for anterior
cingulate cortex, known to be associated with attention,
decision making, emotion, performance monitoring, and
error detection. It is also worth noting that DL#25, which is
identified by the DL method (see Fig. 8) is highly correlated
with BVs #9, #32, #53, and #94, further illustrating the
advantage of the proposed discriminative DL method.

V. CONCLUSION

A novel supervised DL method has been proposed for
multi-subject fMRI data analysis to extract brain activation
maps that are common across different groups of subjects
as well as the maps that are discriminative for predicting
group labels. The dictionary and the corresponding sparse
matrix have been structured with common and individual
submatrices for this purpose, and the labels were incorpo-
rated using Fisher’s discriminant criterion. Given that spatial
functional activations are typically sparse and localized, the
sparsity constraint has been imposed on the spatial map
factor, and the corresponding weights of different subjects’
contributions were used for classification. An optimization

algorithm to solve the proposed formulation was derived
using alternating minimization based on convex subprob-
lems. The stability of the resulting algorithms was compared
to that of the unsupervised DL method, and it was found
that our algorithm yielded more stable maps when the same
number of components were extracted. The estimated brain
maps were also compared carefully with the maps from
the ICA. It was observed that the DL formulation not only
reproduced most of the ICA components but also extracted
components that are more discriminative, including some
novel maps that were not discovered by the ICA approach.
A correlation analysis with separate behavioral test scores
available for the same set of subjects further verified the
validity and usefulness of the DL analysis.
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