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Abstract—Data-driven analysis for functional magnetic resonance
imaging (fMRI) data has played an important role for uncovering salient
brain functional networks that are shared across multiple subjects. On
the other hand, recent fMRI studies indicate that there is significant
and consistent heterogeneity present across different subject groups and
individuals. While independent component analysis (ICA) has been a
major tool to perform data-driven analysis of fMRI data, dictionary
learning (DL) approaches are increasingly receiving attention due to
their modeling capability and flexibility. In this work, a supervised DL
framework is employed to capitalize on the available class labels and
capture not only the commonly shared components across the population,
but also the unique components that contribute to discrimination. A
systematic comparison with conventional ICA is performed based on real
fMRI data consisting of healthy controls and patients with schizophrenia.

I. INTRODUCTION

Analysis of functional magnetic resonance imaging (fMRI) data
has played a major role in understanding the brain function. Various
data-driven methods have been developed based on latent variable
models and matrix and tensor factorization approaches, with the
large-scale analysis receiving much attention recently [1]. However,
most of the approaches have focused on characterizing common
activities shared across the population. On the other hand, it has been
recognized that significant and consistent heterogeneity exists across
different subgroups and individuals [2], [3].

Blind source separation (BSS) approaches such as independent
component analysis (ICA) have been the major data-driven fMRI data
analysis methods. Maximizing the statistical independence between
latent factors, ICA proved effective for uncovering non-overlapping
brain regions without prior knowledge on the temporal structures in
the fMRI data [4], [5], and has been recently extended to multiple
datasets using independent vector analysis [6].

Dictionary learning (DL) aims to extract a set of representative
bases from data by capitalizing on the notion of sparsity [7]. The
approach can not only learn an overcomplete basis that entails a
powerful union-of-subspaces model, but is also quite flexible in
that various prior information can be accommodated into the cost
function. The DL approach was applied to fMRI data analysis
recently with promising results [8]–[11]. In these works, the fMRI
data, arranged in matrices, were factorized to yield sparse spatial ac-
tivations in the voxel domain. This was done in a purely unsupervised
learning framework, however, where the reconstruction fidelity of the
factorization was the main objective of training.

DL can be used for supervised learning as well [12], [13]. The idea
is to train a dictionary that is not only effective for reconstruction but
also for predicting the available labels. In the context of fMRI data
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analysis, we are not necessarily interested in the prediction perfor-
mance itself, but rather in revealing both the common components
that are shared across the subjects, and the individual components
that are specific to different subjects or subject groups.

The shared and the subject-specific dictionaries were jointly
learned for fMRI data with an incoherence term for the subject-
specific dictionaries in [14]. The problem of learning a shared
dictionary as well as the class-specific dictionaries was formulated
by incorporating the low-rank constraints on the shared dictionary in
addition to the incoherence terms for class-specific dictionaries [15].
However, having incoherent dictionaries for individual classes may
not be desirable in such scenarios where the underlying discriminative
sources have overlapping subspaces. For example, the fMRI response
for patients with schizophrenia and healthy controls have significantly
overlapping responses [16]. Here, having class-specific incoherent
dictionaries can split the spatial components, rendering neurological
interpretation difficult.

Aiming at learning both the common and the distinctive dictio-
naries that are also readily interpretable, we formulate a supervised
DL problem with a common dictionary and a single discriminative
dictionary that is used for all classes. The discriminability is encour-
aged by Fisher’s discriminant criterion as in [13], [15]. A systematic
comparison is done between the conventional ICA method and the
proposed DL methods in terms of capturing the commonly shared
components across the subjects as well as the distinctive components
characteristics of the subgroups. A real dataset comprising 121
schizophrenic subjects and 150 healthy controls is analyzed.

The remainder of the paper is organized as follows. Sec. II provides
the DL problem formulations, and Sec. III derives the algorithms
for solving the proposed formulations. Sec. IV presents the setup
for analyzing the fMRI data. Sec. V provides the results from the
analysis. Finally, Sec. VI offers conclusions.

II. PROBLEM FORMULATION

A. Discriminative Dictionary Learning

Given the data matrix X := [x1,x2, . . . ,xN ] ∈ RV×N , DL is an
unsupervised learning technique that obtains a dictionary D ∈ RV×K
such that each datum (each column of X) can be well represented
by a linear combination of a small number of columns in D. This
can be achieved by solving e.g. [17]

min
D,Z

1

2
‖X−DZ‖2F + λ‖Z‖1 (1)

where ‖ · ‖F is the Frobenius norm, ‖Z‖1 :=
∑N
n=1 ‖zn‖1, with

zn being the n-th column of Z, promotes sparsity in Z, and λ >
0 adjusts the sparsity level. It is also understood that D satisfies
some normalization constraints, such as constraining the norm of



each column to be no more than unity, in order to mitigate the scaling
ambiguity of the bifactor decomposition.

When the data belong to C different classes, one can develop a
supervised learning method that computes a discriminative dictionary
for the classification task [12]. One way to accomplish this is to
incorporate a cost function related to Fisher’s discriminant criterion;
see also [13]. Suppose that the n-th datum xn belongs to class c(n)
and let Nc represent the set of indices of the class c samples, i.e.,
Nc := {n : c(n) = c}. Also let Nc be the cardinality of Nc with∑C
c=1 Nc = N . Then, upon defining the class mean and the total

mean vectors as

mc :=
1

Nc

∑
n∈Nc

zn and m :=
1

N

N∑
n=1

zn (2)

respectively, the so-called within-class scatter and the between-class
scatter matrices are defined as

SW (Z) :=

C∑
c=1

∑
n∈Nc

(zn −mc)(zn −mc)
T (3)

SB(Z) :=

C∑
c=1

Nc(mc −m)(mc −m)T (4)

respectively, where T denotes transposition. Thus, a discriminative
DL formulation is

min
D,Z

1

2
‖X−DZ‖2F + λ‖Z‖1 +

µ

2
f(Z) (5)

where Fisher’s criterion is captured by

f(Z) = tr(SW (Z))− tr(SB(Z)) + ‖Z‖2F . (6)

The presence of the last term ‖Z‖2F renders f convex with respect to
Z [18]. To see this, first define an N -by-N matrix H1 whose (i, j)-
entry is equal to 1/Nc if both xi and xj belong to the same class,
where c is the class to which they belong, and equal to 0 otherwise.
Define also an N -by-N matrix H2, whose entries are all equal to
1/N . Then, upon further defining

H := (I−H1)(I−H1)T − (H1 −H2)(H1 −H2)T + I

= 2I− 2H1 + H2 (7)

it can be shown that the eigenvalues of H are nonnegative and
f(Z) = tr(ZHZT ).

B. Common and Discriminative Dictionaries

The dictionary from solving (1) is optimized for reconstructing
the given data. On the other hand, in (5), the dictionary is learned to
maximize the classification accuracy through Fisher criterion. Thus,
the latter formulation tends to disregard the patterns in the data that do
not contribute to classification. In fMRI data analysis, the components
that are common across the subject pool (and thus do not contribute to
classification) as well as the components that are unique to different
subject groups are both important.

To capture both the common and the individual components, D is
split into D := [D̄, D̃], where D̄ ∈ RV×K̄ is the common dictionary,
which contributes to reconstruction but not as much to classification,
and D̃ ∈ RV×K̃ is the discriminative dictionary, which is tailored to
the classification task. The sparse factor Z is also split compatibly
as Z = [Z̄T , Z̃T ]T . Thus, the overall formulation becomes

(P1) min
D,Z

1

2
‖X−DZ‖2F + λ‖Z‖1 +

µ

2
f(Z̃) + η‖D̄‖∗

Input: X, D(0), MAX ITER, ρ > 0

Output: D(MAX ITER), Z(MAX ITER)

1: For ` = 0, 1, . . . ,MAX ITER− 1

2: Compute Z(`+1) by (8) using, e.g., FISTA
/* Update D̃ with D̄ fixed */

3: Set D̃ = D̃(`) and X̃ = X− D̄(`)(Z̄(`+1))T

4: Set A := Z̃(`+1)(Z̃(`+1))T and B := X̃(Z̃(`+1))T

5: Repeat
6: For k = 1, 2, . . . , K̃

7: uk ← 1
A(k,k)

(bk − D̃ak) + d̃k

8: d̃k ← 1
max{‖uk‖2,1}

uk
9: Until convergence

/* Update D̄ with D̃ fixed */
10: Set V = U = D̄(`) and X̄ = X− D̃(Z̃(`+1))T

11: Set E = X̄(Z̄(`+1))T and F = Z̄(`+1)(Z̄(`+1))T

12: Repeat
13: Set Ē = E + ρ

2
(V −U) and F̄ = F + ρ

2
I

14: D̄← arg minD̄∈D̄ tr(F̄D̄T D̄)− 2tr(ĒD̄T )
15: V← Sη/ρ(D̄ + U)
16: U← U + D̄−V
17: Until convergence
18: Set D(`+1) = [D̄ D̃]
19: End For

TABLE I: Algorithm for solving (P1)

where ‖ · ‖∗ represents the nuclear norm of a matrix, which is the
sum of the singular values. Inspired by the low-rank shared dictionary
learning (LRSDL) in [15], the common dictionary is constrained
to have a low rank, which is captured by the last term in (P1).
However, unlike [15], D̃ is not further split into per-class dictionaries
as D̃ := [D̃1, D̃2, . . . , D̃C ]. Note that with the per-class dictionaries,
detailed order selection is required and the interpretation of the
obtained components can become more involved.

In the context of fMRI data analysis, it is widely recognized that
the voxel-wise component maps tend to be sparse, thanks to the fact
that different brain regions are responsible for various functions that
the brain may be engaged in. Given that the data samples {xn ∈ RV }
represent the brain activations over V voxels, it thus makes sense to
perform dictionary learning on XT rather than on X, so that the rows
of the sparse coefficient matrix Z correspond to the component spatial
maps. Incorporating this observation, we also consider the following
formulation.

(P2) min
D,Z

1

2
‖XT −DZ‖2F + λ‖Z‖1 +

µ

2
f(D̃T )

where it is noted that the discriminative features are now the rows
of the discriminative dictionary D̃, which is why D̃T is fed into the
Fisher cost.

III. ALGORITHM DERIVATION

A. Algorithm for Problem (P1)

In this section, the algorithms for solving Problems (P1) and (P2)
are derived. Starting with (P1), it is first noted that although the
formulation in (P1) is not convex over all the variables, it is convex
with respect to each block D or Z. Thus, one can adopt the block
coordinate descent (BCD) method to obtain a locally optimal solution.
That is, at iteration ` + 1, with D(`) fixed to its `-th iterate, Z can
be updated by

Z(`+1) = arg min
Z
h(Z;D(`)) + λ‖Z‖1 (8)

where h(Z;D) := 1
2
‖X −DZ‖2F + µ

2
f(Z̃). This problem can be

solved by various algorithms that can deal with the `1-norm-based



Input: X, D(0), MAX ITER
Output: D(MAX ITER), Z(MAX ITER)

1: For ` = 0, 1, . . . ,MAX ITER− 1

2: Solve Z(`+1) = arg minZ
1
2
‖XT −D(`)Z‖2F + λ‖Z‖1

3: Set A := Z(`+1)Z(`+1)T and B := XTZ(`+1)T

4: Set D = D(`)

5: Repeat
6: For k = 1, 2, . . . , K̄
7: uk ← 1

A(k,k)
(bk −Dak) + dk

8: dk ← 1
max{‖uk‖2,1}

uk
9: For k = K̄ + 1, . . . ,K

10: uk ← [A(k, k)I + µH]−1
(
bk −

∑K
j=1,j 6=k djA(k, j)

)
11: dk ← 1

max{‖uk‖2,1}
uk

12: Until convergence
13: Set D(`+1) = D
14: End For

TABLE II: Algorithm for solving (P2)

regularizer. In this work, the Fast Iterative Shrinkage-Thresholding
Algorithm (FISTA) is employed [19]. The FISTA requires as an input
the gradient of the differentiable part of the objective h(Z;D(`)),
which can be obtained from

∂h(Z;D)

∂Z
=

[
∂h(Z;D)

∂Z̄
∂h(Z;D)

∂Z̃

]
= −DT (X−DZ) + µ

[
0K̄×N
Z̃H

]
(9)

where H is defined in (7).
Next, updating D can be done separately for D̃ and D̄. First, the

update for D̃ is based on

D̃(`+1) = arg min
D̃∈D̃

1

2
‖X̃− D̃Z̃(`+1)‖2F (10)

= arg min
D̃∈D̃

tr(AD̃T D̃)− 2tr(BD̃T ) (11)

where X̃ := X − D̄(`)Z̄(`+1), A := Z̃(`+1)(Z̃(`+1))T , B :=
X̃(Z̃(`+1))T and D̃ := {D̃ = [d̃1, . . . , d̃K̃ ] : ‖d̃k‖2 ≤ 1, k =
1, . . . , K̃} is the set of column-normalized dictionaries. Problem (11)
can be solved again by BCD, where the individual columns in D̃
constitute the block variables. The algorithm is provided in [7], which
is reproduced in lines 3–9 in Table I.

The update for D̄ is then based on

D̄(`+1) = arg min
D̄∈D̄

1

2
‖X̄− D̄Z̄(`+1)‖2F + η‖D̄‖∗ (12)

where X̄ := X − D̃(`+1)Z̃(`+1) and D̄ := {D̄ = [d̄1, . . . , d̄K̄ ] :
‖d̄k‖2 ≤ 1, k = 1, . . . , K̄}. This problem can be solved using
the alternating direction method of multipliers (ADMM) [15]. The
precise steps are provided in lines 10–17 in Table I. Note that the
problem in line 14 is in the same form as (11), so the codes in lines
3–9 can be re-used. In line 15, the shrinkage thresholding operator
Sτ (M) is defined as

Sτ (M) = UMdiag({(σi − τ)+})VT
M (13)

where diag({σi}) is the diagonal matrix with the diagonal entries
{σi}, (x)+ := max{0, x}, and the singular value decomposition of
rank-r matrix M is given by UMdiag({σi}1≤i≤r)VT

M .

B. Algorithm for Problem (P2)

For formulation (P2), again it is noted that the objective function
is convex with respect to either D or Z, and thus the BCD method
is employed. For updating Z, one simply needs to solve V LASSO

problems for the individual rows of X, which can be done readily
by FISTA. For updating D, the relevant sub-problem is

D(`+1) := arg min
D∈D

1

2
‖XT −DZ(`+1)‖2F +

µ

2
tr(D̃THD̃) (14)

which can be solved again by adopting the BCD method with the
columns dk, k = 1, 2, . . . ,K of D as the block variables. For
columns k = 1, 2, . . . , K̄, that is, the columns that belong to the
common dictionary D̄, the update rule is the same as that for (11).
For columns k = K̄ + 1, . . . ,K, i.e., those that belong to D̃, the
update for dk now becomes

uk ← [A(k, k)I + µH]−1

bk −
K∑

j=1,j 6=k

djA(k, j)

 (15)

dk ←
1

max{‖uk‖2, 1}
uk (16)

where A(k, j) is the (k, j)-entry of A := Z(`+1)Z(`+1)T and bk
is the k-th column of B := XTZ(`+1)T . The overall algorithm is
presented in Table II.

IV. EXPERIMENTAL SETUP

A. Data Preprocessing

The datasets used in this study are from the Mind Research Net-
work Clinical Imaging Consortium Collection (publicly available at
http://coins.mrn.org). These datasets were obtained from 271 subjects,
150 healthy controls and 121 patients with schizophrenia, and a
description of the multivariate features used in this study are given
in [20]. The Standard stimulus is a 500 Hz tone with a probability
of occurrence of 0.82, the Target stimulus is a 1 kHz tone occurring
with a 0.09 probability. The Novel stimuli constitute random non-
repeating digital noise frequencies played at regular intervals with
probabilities of 0.09. The subject is expected to press a button when
a Target tone is played. A total of T = 90 stimuli are presented to the
subject for a period of 200 ms at sporadic intervals. For each subject,
the time-course data Y ∈ RV×T is regressed on to a design matrix
G ∈ RT×P , which is the result of a convolution of stimulus onset
functions and default SPM hemodynamic response function (HRF)
as a part of the General Linear Model (GLM). The regressors are
then contrasted between the Target and Standard stimuli resulting in
a set of V = 48, 546 spatial features.

B. DL Parameter Tuning

The available data are randomly partitioned into 120 subjects for
training, 60 subjects for validation, and 60 subjects for testing. To
avoid adding bias to the learned features, the numbers of controls
and the schizophrenic patients are maintained equal. The validation
process is repeated 100 times with different partitioning.

The total order K of the dictionary was set to 24, which is the
order obtained with ICA [20]. However, the division between the
discriminative component order K̃ and common component order
K̄ must be found, with K̄ + K̃ = K. These and the remaining
parameters were tuned using a grid search. Since the number of
parameters is rather large, they were optimized in the order of η, λ, µ
and K̃. The parameters were selected using the average classification
accuracy on the validation set.

V. RESULTS

A. Results from ICA

For comparison and benchmark, ICA was first conducted based
on [20]. The principal component analysis (PCA) with 24 compo-
nents was applied to the feature matrix X, and then the entropy



Fig. 1: Spatial maps obtained from ICA

bound minimization (EBM)-based ICA algorithm [21] was applied
to obtain the activation matrix A and the spatial maps S. EBM
uses a flexible density selection mechanism and has no parameters to
select. The signs of the spatial maps were adjusted such that higher
activations (red spots in the plots) occur in the controls. To discern
the components that are discriminative among the spatial maps found,
two-sample t-tests were performed on the activation matrix A and
those that have the p-values less than 0.05 were chosen. In Fig. 1,
the spatial maps are depicted, with the statistically significant ones
marked in blue.

B. Results from (P1)

Fig. 2 shows the common and discriminative components obtained
from solving (P1). The parameter configuration chosen was K̃ =
13, K̄ = 11, λ = 0.005, µ = 0.05 and η = 0.1. Based on the
two-sample t-test, seven components were found to be statistically
significant, which are highlighted in green. The obtained spatial maps
were then compared to those from ICA. The components DL 12,
DL 15, and DL 18 in Fig. 2 are seen somewhat similar to ICA 19,
ICA 5, and ICA 1 in Fig. 1, respectively. The rest four components
obtained from (P1) seems to be novel discriminative components that
were not seen in the ICA analysis. For example, component DL 14
shows higher activation for healthy controls in cerebrospinal fluid
(CSF)/thalamus region, while DL 15 shows activations in the patients
group in the motor/sensory motor region.

C. Results from (P2)

The grid search for the parameters in (P2) resulted in K̃ = 18,
K̄ = 6, λ = 0.001, and µ = 0.05. The common and discriminative
spatial maps from the partition yielding the highest classification
accuracy are presented in Fig. 3 along with their p-values. Out of
the 18 discriminative components, seven components have the p-
values less than 0.05, which are highlighted in orange. There are eight

components from Problem (P2) that are analogous the counterparts
from ICA. Namely, DL 4, DL 13, DL 14, DL 17, DL 18, DL 19,
and DL 24 in Fig. 3 are similar to ICA 13, ICA 3, ICA 4, ICA 5,
ICA 16, ICA 15, and ICA 6, in Fig. 1, respectively. It can be seen
that (P2) leads not only to more matches between the DL and the
ICA components, but also that many of the matching components
are statistically significant. That is, (DL 14/ICA 4) indicating the
CSF/thalamus region, (DL 18/ICA 16) indicating the parietal region,
and (DL 19/ICA 15) indicating the visual and parietal regions are all
statistically significant and neurologically relevant for the diagnosis
of schizophrenia. Also, there are three components that are uniquely
identified as discriminative from DL formulation (P2), which are
DL 20, DL 21, and DL 23 in Fig. 3. The component DL 21 has
activations in motor and parietal regions which is again deemed to
be neurologically relevant. Overall, imposing sparsity in the spatial
maps as is done in (P2) seems to lead to more interpretable maps,
which also match better with the ICA-based maps.

VI. CONCLUSION

Application of DL techniques to fMRI data analysis was explored
to reveal both the common components across the subject population
and the individual components that are discriminative of the sub-
groups of subjects. Two formulations were proposed, which differed
in terms of on which factor the sparsity constraint was imposed, and
the corresponding algorithms were derived. When compared with the
ICA-based spatial maps, the formulation that imposed sparsity on the
spatial activations yielded more matching components. It was also
seen that the proposed DL approaches identify a larger number of
discriminative components, compared to ICA. In future work, the
common and individual components can be obtained by processing
multiple modalities jointly, as well as using the resting-state fMRI
data.



(a) Common spatial maps

(b) Discriminative spatial maps

Fig. 2: Spatial maps obtained from (P1)

(a) Common spatial maps

(b) Discriminative spatial maps

Fig. 3: Spatial maps obtained from (P2)
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