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Abstract—An unsupervised learning-based blind RF scene
analysis method is proposed. The method can analyze a complex
radio scene containing a mixture of different transmission types
and estimate the constituent signals with associated channel vec-
tors from multi-antenna measurements. A deep neural network
is trained to learn the unique time-frequency patterns of various
signal types. The channels, noise powers, and encodings input
to the neural network are estimated in a maximum likelihood
framework via an expectation-maximization algorithm. Numer-
ical tests using scenes constructed from real RF measurements
verify the effectiveness of the proposed method.

I. INTRODUCTION

Analyzing the activities in the radio frequency (RF) spec-
trum is critical for efficient spectrum sharing, interference
mitigation, RF intelligence, and security assurance in wireless
networks. In cognitive radio (CR) systems, estimation of
spectrum occupancy in the time, frequency, and space domains
is a key prerequisite for opportunistic dynamic spectrum
utilization. In tactical scenarios, a wide bandwidth of spectrum
over an operation area must be continuously monitored so
that suspicious RF transmissions can be quickly identified and
acted upon.

The spectrum sensing techniques developed for CRs often
rely on the signal strength measurements, known pilot signals,
or the 2nd-/higher-order statistics of the received signals to
perform binary hypothesis testing and determine spectrum
occupancy [1]. Therefore, the methods either require signif-
icant a priori information on the signal formats, or perform
rather poorly in the presence of the detrimental effects of the
wireless channel. Furthermore, they cannot effectively analyze
the complex radio scenes containing multiple transmitters
sharing the spectrum even in a non-orthogonal fashion.

Existing methods on analyzing the RF scenes with concur-
rent transmissions are rather limited. A robust feature extrac-
tion technique exploiting a priori knowledge of transmission
protocols was studied [2]. Blind source separation (BSS)
techniques based on subspace structures were employed in
the CR setups [3], [4]. The power spectrum of the received
signal was clustered over time and the 4th-order spectrum was
analyzed using three-way tensor decomposition in [5]. Mixed
signals were classified using dictionaries trained on the single-
transmitter scenes in [6]. However, the unique time-frequency

patterns of the constituent signals have not been fully exploited
in a machine learning framework.

In recent years, deep learning techniques were shown to
achieve remarkable performance in various applications in-
cluding signal/image analysis, natural language processing,
and dynamic decision making. Unfortunately, training deep
neural networks often requires a large amount of data, which
may be costly to collect, preprocess, and find labels for. In
particular, a naive “black box” approach that does not carefully
exploit the problem structure may require a very large training
set to capture diverse underlying factors in play.

Our approach is to adopt unsupervised learning that does not
require labels for the radio scenes. The mixture signals are pro-
cessed in the time-frequency domain in a blind fashion without
any prior knowledge on the signal characteristics or transmis-
sion patterns. Inspired by the related works in the audio signal
processing [7], [8] and image classification applications [9],
we achieve good performance with high data efficiency by
judiciously combining a proven signal processing framework
with a powerful deep learning technique. Specifically, a deep
neural network is trained to model different signal types and
their unique time-frequency transmission patterns, while a
maximum likelihood (ML) parameter estimation is employed
to estimate the multi-antenna channels, noise variance, and
the encodings for the neural networks. The resulting algorithm
performs the expectation-maximization (EM) iterations per RF
signal snapshot, while training the neural network parameters
over the entire data set.

The rest of the paper is organized as follows. The signal
model and the problem statement are provided in Sec. II.
The parameter estimation algorithm is derived in the EM
framework in Sec. III. The overall training of the neural
network is discussed in Sec. IV. The numerical test results are
presented in Sec. V. Conclusions and future research directions
are provided in Sec. VI.

II. SIGNAL MODEL AND PROBLEM STATEMENT

Let x(t) ∈ CM , t = 1, . . . , T , be the downconverted
and sampled measurement vectors of the RF signal received
using M antennas. The RF signal contains transmissions
from J transmitters. For simplicity, it is assumed that the
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transmitters have single antennas and the channel is frequency-
nonselective. Upon denoting the signal transmitted at time t
from the j-th transmitter as sj(t), the channel between the
j-th transmitter and the receiver as hj ∈ CM , and the receiver
noise vector at time t as z(t), x(t) can be expressed as

x(t) =

J∑
j=1

hjsj(t) + z(t), t = 1, . . . , T. (1)

Define H := [h1, . . . ,hJ ] and s(t) := [s1(t), . . . , sJ(t)]>,
where > represents transposition. Then, (1) can be compactly
written as

x(t) = Hs(t) + z(t), t = 1, . . . , T. (2)

Our goal is to estimate {sj(t)}j and {hj}j from x(t) using
signal processing and machine learning methods. Specifically,
it is postulated that for each j, transmission sj(t) belongs
to a distinct type with unique features, such as Wi-Fi or
Bluetooth transmissions. These patterns are to be learned using
machine learning. However, instead of using a set of training
waveforms for each signal type, it is desired that a training
set of mixture waveforms is utilized. Thus, the algorithm
can learn from samples collected in a densely interfered RF
environment in an unsupervised fashion, without requiring
much manual labeling and preprocessing of measurements. On
the other hand, the channels can be estimated through signal
processing techniques. This approach is advantageous since it
obviates the need to prepare a data set that involves diverse
channel realizations, which is critical if the channels were to
be estimated using machine learning methods.

The patterns of different signal types can be extracted in
the time-frequency domain. Let x(n, f) ∈ CM , s(n, f) ∈ CJ ,
and z(n, f) ∈ CM , with n = 1, . . . , N and f = 1, . . . , F ,
be the short-time Fourier transforms (STFTs) of x(t), s(t),
and z(t), respectively. To derive a ML estimator, probabilis-
tic assumptions are made on the signals. Specifically, it is
assumed that s(n, f) is complex Gaussian with mean 0 and
covariance Rs(n, f), which is a J × J diagonal matrix with
v1(n, f), . . . , vJ(n, f) on the diagonal. Also, it is assumed
that sj(n, f) is statistically independent of sj′(n′, f ′) unless
j = j′, n = n′, and f = f ′. Then, it is straightforward to
verify that x(n, f) is independent across n and f , and has a
complex Gaussian distribution with mean 0 and covariance

Rx(n, f) := HRs(n, f)HH + Rz (3)

where ·H denotes Hermitian transpose and Rz the diagonal
covariance matrix of z(n, f).

To capture the time-frequency patterns in the j-th transmit-
ted signal, matrix Vj ∈ RN×F

+ , whose (n, f)-entry is vj(n, f),
is modeled via a deep neural network fφ with parameter vector
φ as

Vj = fφ(γj). (4)

Here, γj is the input to the neural network, with a much lower
dimension than that of Vj , which is NF . γj not only encodes
the differences in the signal types, but also any variabilities

in the patterns within each signal type. {γj} are estimated
automatically in a ML framework as explained in Sec. III.

III. EM-BASED PARAMETER ESTIMATION

Suppose for now that the neural network parameter φ is
fixed. We wish to estimate the unknown parameters θ :=
({hj}, {γj},Rz) based on the given time-frequency snapshot
X := {x(n, f)}n,f . This can be done in a ML framework by
maximizing w.r.t. θ the log-likelihood

log p(X;θ,φ) = −
∑
n,f

[log |πRx(n, f)|

+x(n, f)HR−1x (n, f)x(n, f)
]

(5)

where | · | denotes the determinant. However, this optimization
is quite challenging. Instead, one can adopt the EM framework
to solve the problem more efficiently [7], [9].

Let Sj := {sj(n, f)}n,f for j = 1, . . . , J , where sj(n, f)
is the j-th entry of s(n, f). Define also S := {Sj}j . With S
not observed, the EM algorithm aims at maximizing a lower
bound of (5) based on the current k-th iterate of θ, denoted
as θ(k). This lower bound is given by

Q(θ;θ(k)) := ES|X;θ(k) {log p(X,S;θ)} (6)

where the dependence on φ is suppressed for brevity. Now
define

W(n, f) := Rs(n, f)HHRx(n, f)−1 (7)
ŝ(n, f) := W(n, f)x(n, f) (8)

Cs|x(n, f) := (I−W(n, f)H)Rs(n, f) (9)

Rss|x(n, f) := Cs|x(n, f) + ŝ(n, f)ŝ(n, f)H . (10)

Then Q(θ;θ(k)) can be expressed as∑
n,f

[
− log |Rs(n, f)| − tr

{
Rss|x(n, f ;θ(k))Rs(n, f)−1

}
− log |Rz| − x(n, f)R−1z x(n, f)H

+2Re
{
x(n, f)HR−1z Hŝ(n, f ;θ(k))

}
−tr
{
Rss|x(n, f ;θ(k))HHR−1z H

}]
(11)

where it is emphasized in Rss|x(n, f ;θ(k)) and ŝ(n, f ;θ(k))
that the quantities must be computed through (7)–(10) using
parameters θ(k). The bound is maximized w.r.t. θ to obtain the
next iterate θ(k+1). In particular, to find H(k+1) and R

(k+1)
z ,

the partial derivatives of Q(θ;θ(k)) w.r.t. H and Rz are set
to zero. This results in the updates

H(k+1) = R̂xŝR̄
−1
ss|x (12)

R(k+1)
z = diag

{
R̂xx −H(k)R̂H

xŝ − R̂xŝH
(k)H

+H(k)R̄ss|xH
(k)H

}
(13)
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where

R̂xŝ :=
1

NF

∑
n,f

x(n, f)ŝ(n, f ;θ(k))H (14)

R̄ss|x :=
1

NF

∑
n,f

Rss|x(n, f ;θ(k)) (15)

R̂xx :=
1

NF

∑
n,f

x(n, f)x(n, f)H (16)

and diag{M} is a diagonal matrix of the same size as M with
the diagonal entries equal to those in M.

For updating {γj}, a closed-form update rule cannot be
derived. Instead, a simple gradient descent method can be
employed. That is, the following update is repeated L times
starting with γ

[0]
j = γ

(k)
j .

γ
[`+1]
j = γ

[`]
j + η1

∂Q(θ;θ(k))

∂γj

∣∣∣∣
γj=γ

[`]
j

, ` = 0, . . . , L− 1

(17)

where η1 > 0 is a setp size, and the derivative is obtained
from (11) together with the back-propagation (chain rule)
applied to (4). Then, γ(k+1)

j is set to γ
[L]
j , for j = 1, . . . , J .

IV. OVERALL ALGORITHM

While θ is estimated for a given snapshot X using the EM
algorithm described in Sec. III, the neural network parameter
φ is learned from the entire data set {X[i]}Ii=1. Note that the
same neural network fφ with a shared parameter vector φ is
used for all J transmissions, which can improve the sample
efficiency for training. The log-likelihood in (5) is used for
the objective function for training. Thus, φ is updated using
the b-th mini-batch of samples {X[i]}i∈Ib as

φ[b+1] = φ[b] +
η2
|Ib|

∑
i∈Ib

∂ log p(X[i];θ[i],φ)

∂φ

∣∣∣∣∣
φ=φ[b]

(18)

where η2 > 0 is a step size, and θ[i] is the θ estimated
from the EM algorithm for snapshot X[i]. The overall training
algorithm is described in pseudocode in Table I.

Since the optimization problem is highly nonconvex, it is
important to initialize the algorithm properly. In particular, in
the early stage of training, the EM algorithm must produce
good estimates to guide the neural network training. For this,
similarly to [7], the channel matrix H was initialized to a
rough estimate obtained from a clustering algorithm applied
to X[i]. The underlying assumption is that for each time-
frequency bin, there is a dominant transmission. Parameters
{γj} and φ are initialized randomly.

Once the training is complete, for a new snapshot X[I+1],
the EM algorithm in lines 4–14 in Table I can be executed
using the trained parameter φ∗. Upon convergence of the
EM loop, {ŝ(n, f) = [ŝ1(n, f), . . . , ŝJ(n, f)]>}n,f contains
the estimated individual transmission signals and H(∞) =
[ĥ1, . . . , ĥJ ] the corresponding channel estimates.

TABLE I: Overall training algorithm.

Input: {X[i]}, J , η1, η2, and {Ib}
Output: φ∗

1: Initialize φ[0] randomly
2: For b = 0, 1, . . . /* b-th mini-batch */
3: For X[i], i ∈ Ib

/* EM iterations */
4: Initialize H(0) and {γ(0)

j }
5: For k = 0, 1, . . .

/* E-step */
6: Compute ŝ(n, f), Cs|x(n, f), and Rss|x(n, f)

for all n, f via (8)–(10)
/* M-step */

7: Compute R̂xŝ, R̄ss|x, and R̂xx via (14)–(16)
8: Compute H(k+1) and R

(k+1)
z via (12) and (13)

9: Set γ[0]
j = γ

(k)
j for all j = 1, . . . , J

10: For ` = 0, 1, . . . , L− 1

11: Update {γ[`]
j } per (17)

12: Next `
13: Set γ(k+1)

j = γ
[L]
j for all j

14: Next k
15: Set θ[i] =

(
H(∞), {γ(∞)

j },R(∞)
z

)
16: Next i

/* Update neural network parameters φ */
17: Update φ[b] per (18)
18: Next b
19: Set φ∗ = φ[∞]

Wi-Fi2

FHSS1BLE Bluetooth

FHSS2 Wi-Fi1

Fig. 1: Spectrograms for different types of transmissions.

V. NUMERICAL TESTS

A. Experiment Setup

We tested the proposed algorithm to the RF data set
collected in the 2.4 GHz band using a software-defined ra-
dio from Ettus Research. The baseband complex signals of
40 MHz bandwidth were acquired inside a RF shield box.
In total, 6 signal types were used, namely 2 types of Wi-
Fi signals, Bluetooth (BT), Bluetooth Low Energy (BLE),
and 2 types of frequency hopping spread spectrum (FHSS)
transmissions [6]. The 2 types of Wi-Fi signals correspond to
the Wi-Fi transmission in a high occupancy scenario (denoted
as “Wi-Fi1” in the sequel), capturing intensive Wi-Fi usage
such as downloading a large file, and in a low occupancy
scenario (Wi-Fi2), representing a more sporadic use case. Two
types of drone controllers generated unique proprietary FHSS
waveforms, which we denote as “FHSS1” and “FHSS2”. The
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Fig. 2: Neural network architecture.

sample spectrograms of the six types of transmissions are
shown in Fig. 1. The data set was collected using a single
antenna. The multi-antenna mixture signals were synthetically
generated by multiplying the steering vectors corresponding to
suitable incident angles and summing multiple transmissions.
M = 3 or 6 antennas were postulated. Each snapshot is 100 ms
long, which was processed to obtain a STFT with N = 100
and F = 100. All transmissions are assumed to be of equal
power. We used I = 3, 000 snapshots for training, 100 for
validation, and 100 for testing.

B. Neural Network Architecture

The architecture of the neural network used is depicted in
Fig. 2, which is similar to the decoding part of U-Net [10].
An 8 × 8 matrix initialized randomly is used for the input
γj to the network. The size was of γj was chosen from
trial and error. The network eventually produces output Vj ,
which is a 100× 100 matrix. Each arrow in Fig. 2 represents
a combination of a 2-D convolution operation, a nonlinear
transformation, and normalization, as indicated in the legend.
Each rectangular block represents the resulting tensor, which is
a collection of matrices of the size indicated at the left side of
each block, with the number of the matrices (channels) shown
on top of each block. The parameter α was set to either 1 or
1.5 depending on J as explained in Sec. V-C, with larger α
imparting more capacity to the network. All the normalizations
are the batch normalization [11], except the normalization in
the last layer, which simply scales so that the maximum entry
in the output Vj is equal to 1. Such normalization is useful
since there is scaling ambiguity in the estimate of H and Vj ;
see (3).

C. Test Results

1) Case with J = 3: First, consider the case with J = 3
signal types (BLE, FHSS1 and Wi-Fi2) present in the mixture.
The number of antennas is M = 3 as well. The incident angles
of the signals are {15, 60,−45} degrees. The neural network
architecture in Fig. 2 with α = 1 was used. To benchmark
the performance of our neural EM (NEM) algorithm, an EM
algorithm without employing the neural network is also tested.
In the latter algorithm, only lines 4–14 in Table I are run,

Wi-Fi2FHSS1BLE

(a) EM estimates
Wi-Fi2FHSS1BLE

(b) NEM estimates

Fig. 3: Estimated spectrograms when J = 3.

with lines 9–13 replaced by a routine that estimates vj(n, f)
simply from the j-th diagonal entry of Rss|x(n, f) [7]. Thus,
it neglects the patterns in the time-frequency domain. Fig. 3
shows the estimated spectrograms |ŝj(n, f)| from the EM and
the NEM methods. It can be seen that NEM method obtains the
components that are closer to the ground truth spectrograms
in Fig. 1. In particular, the FHSS1 and Wi-Fi2 spectrograms
are seen to be not well separated in the EM results, compared
to those from the NEM algorithm.

In Fig. 4, the average correlation coefficients between the
true channels and the estimated channels are shown at various
signal-to-noise power ratio (SNR) levels as the red curves with
triangle markers. Additive white Gaussian noise was added to
simulate the SNRs. The SNR equal to ∞ represents the case
where no additional noise was added to the measurements. The
solid curve corresponds to the NEM results and the dashed
curve the EM ones. The averaging was done over 100 test
snapshots as well as the three signal types. It can be seen that
NEM obtains the channels that are more highly correlated to
the ground truths than the EM algorithm at all SNR levels.
In fact, the performance gap is seen to widen at lower SNR
values. Similarly, the red curves with triangle markers in Fig. 5
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Fig. 4: Channel correlations between true and estimated values.
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Fig. 5: STFT correlations between true and estimated values.

depict the average correlation coefficients between the true and
the estimated STFTs. The NEM estimates are again observed
to achieve higher correlations to the ground truth STFTs.

2) Case with J = 6: We also tested the case where
all six signal types were mixed together. The directions of
arrival for the BLE, BT, FHSS1, FHSS2, Wi-Fi1 and Wi-Fi2
transmissions were at {15, 45, 75,−15,−45,−75} degrees,
respectively. This case is more challenging than the J = 3
case discussed in Sec. V-C1, as some signal types possess
strong similarities among them and the incident angles are
also smaller. To increase the capacity of the neural network to
cope with more diverse signal types, α = 1.5 was used in the
neural network in Fig. 2. Also, M = 6 antennas are employed.

An exemplar set of estimated spectrograms of the individual
transmissions are shown in Fig. 6. In Fig. 6(a), the spectro-
grams from the EM algorithm without a neural network are
depicted. By comparing them with those in Fig. 1, one can
observe that the two Wi-Fi transmissions (Wi-Fi1 and Wi-Fi2)
were not clearly estimated and strong interference from FHSS1
is present. The results from the NEM algorithm in Fig. 6(b)
are seen to be much clearer, although some small interference
from FHSS2 and Wi-Fi transmissions is visible in the FHSS1
spectrogram.

To see the robustness against the noise, the average correla-
tion coefficients of the estimated channels and STFTs against

Wi-Fi2

FHSS1BLE Bluetooth

FHSS2 Wi-Fi1

(a) EM estimates

Wi-Fi2

FHSS1BLE Bluetooth

FHSS2 Wi-Fi1

(b) NEM estimates

Fig. 6: Estimated spectrograms when J = 6.

the ground truths were again calculated at various SNR levels.
The results from both the EM and the NEM algorithms are
depicted in Fig. 4 and Fig. 5 in the blue curves with circle
markers. As before, the NEM results are significantly better
than the EM performances. Both algorithms experience degra-
dation in the correlation due to the aforementioned challenges
associated with mixtures with larger number of components.

3) Case with Mismatched J: To see how the proposed
algorithm fares when the number J of the component signals
is unknown, the actual number J of signals in the mixture is
varied from 2 to 6. This gives rise to a total of

∑6
J=2

(
6
J

)
= 57

combinations of possible mixtures. The value of J can be
estimated in practice from, e.g., the eigen-analysis of R̂xx

or using more sophisticated methods [12]. Here, J = 6 is
assumed by the algorithm for simplicity.

The experiments were conducted with 10 testing samples
per combination. The resulting correlation coefficients for the
STFTs and the channels are shown in Table II. It can be
seen that when the true J matches the assumed J = 6, the
performance of the EM and the NEM algorithms are the best
or close to the best. On the other hand, the NEM performance
degrades significantly when J is mismatched, although as
J gets smaller, the performance is seen to rebound, as the
estimation is done with fewer interferers. Still, the NEM is
seen to be superior to the EM counterpart across all values of
true J .
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True J 2 3 4 5 6
EM 0.9216 0.8718 0.8729 0.8616 0.8344

NEM 0.9419 0.8919 0.8891 0.8772 0.9436

(a) Average correlation coefficients for STFTs

True J 2 3 4 5 6
EM 0.9209 0.8696 0.8703 0.8367 0.8316

NEM 0.9496 0.8898 0.8769 0.8558 0.9346

(b) Average correlation coefficients for channels

TABLE II: Correlation performances.

VI. CONCLUSIONS AND FUTURE WORKS

An unsupervised learning algorithm has been proposed that
can automatically analyze a RF scene containing a mixture
of various types of transmissions into constituent signals and
associated channel vectors. A deep neural network was trained
to capture the time-frequency patterns unique to different
signal types. The channel vectors, the measurement noise
covariance, and the embeddings input to the neural network
were estimated in a ML estimation framework using the
EM algorithm. Only unlabeled mixture signals are used for
training, and the data set does not need to contain diverse
realizations of channel vectors. The proposed algorithm was
tested using mixture STFTs constructed from six different
types of real RF signal measurements, and the performance
was seen superior to that of an EM algorithm that does
not employ neural networks. Joint estimation of the number
of component signals, semi-supervised training using weak
labels, and developing fully neural network-based algorithms
for faster training and operation, are left for future work.
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