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ABSTRACT RF signal recognition is an important element toward RF situational awareness and dynamic
spectrum management. In this work, machine learning-based signal recognition algorithms are proposed.
Our key contribution is to engineer feature learning such that the classifiers can perform robustly even
when a mixture of heterogeneous signal classes is observed, although the training is still done using non-
mixture single-label samples. To achieve this, discriminative dictionary learning algorithms are developed
with various feature-shaping constraints. The signal detection can then be done in a way reminiscent of
the multi-user detection in wireless communication, employing linear equalizers. The algorithms are tested
using real wideband RF measurement data. It is verified that the proposed algorithms can robustly classify
the component signals even when their powers are widely different and their number is not known a priori.

INDEX TERMS Dictionary learning, multiple signal classification, RF signal recognition, supervised
learning.

I. INTRODUCTION
RF signal recognition, such as modulation recognition, wire-
less technology identification, and wireless device finger-
printing, is an important building block for RF situational
awareness in military applications and for dynamic spec-
trum sensing and interference management in commercial
networks. With the advent of the 5G and Internet-of-Things
(IoT) networks, more and more wireless devices with diverse
access technologies cohabit in a shared spectrum, pressing
the need for accurate and flexible RF interference recognition
techniques.

Traditionally the RF signal recognition problems have
been tackled by extracting handcrafted features from the sig-
nals, including the carrier frequency, the cyclic features such
as the spectral correlation function (SCF), and the features
related to modulation types and orders such as the higher-
order moments and cumulants [1, Ch. 11]. More recently,
various machine learning techniques are explored for this
problem, where useful features are learned directly from
the signal sets, often without much domain-specific adap-
tation. A convolutional neural network (CNN) was adopted
to classify the modulation types of communication signals
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from their in-phase/quadrature (I/Q) samples in [2], [3].
Amulti-modality fusion approach was proposed in [4], where
handcrafted features and CNN-extracted features were com-
bined for modulation classification. RF signals generated
by various communication protocols were classified using
CNNs [5]. By exploiting intrinsic variabilities in the radio
hardware components, individual RF emitters were identified
using deep neural network architectures [6], [7].

All these works dealt with the problem of classifying
each input signal to a single signal type among multi-
ple possible types. However, as more transmitters with
various wireless technologies coexist in a crowded spec-
trum, it is desired to recognize the RF signals of concur-
rent transmissions belonging to multiple signal types. For
example, in the ISM band, different wireless technologies,
such as Wi-Fi, Bluetooth, and Zigbee, may coexist, and
the identification of the interference mixture is important
for an efficient use of the spectrum [8]. In the cognitive
radio systems, secondary radios must sense the spectrum
to prevent interfering with on-going transmissions of the
primary or other secondary users sharing the band [9].
Recognition of mixture signals may also be instrumental
for RF-based device/tag identification, where the signatures
of multiple devices may be observed simultaneously [10].
A signal recognition algorithm designed for detecting a

VOLUME 9, 2021
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 1

https://orcid.org/0000-0002-5504-4997
https://orcid.org/0000-0003-2602-1937


H. Chen, S.-J. Kim: Robust RF Mixture Signal Recognition Using Discriminative Dictionary Learning

single type of transmission will not fare well in such
scenarios.

Works that address RF mixture signal recognition are
rather scarce. Features that can be robustly extracted from
mixtures are manually selected based on the prior knowledge
of the signals such as the unique protocol characteristics [8].
Under a linear mixing model, by exploiting a subspace
structure or statistical independence, blind source separa-
tion (BSS) can estimate the individual components first,
which can then be classified [11]–[13]. However, the number
of sensors often needs to be no smaller than the number of
components.

From the machine learning perspective, the problem can
be viewed as an instance of multi-label classification, where
one input is associated with potentially more than one class
labels [14], [15]. Then, a simple approach is the binary
relevance method, where a binary classifier is trained for
each class to detect the presence of the class in the mixture.
Another common approach is to build a power set of labels,
and train a multi-class single-label classifier based on the
expanded set of labels. In all these methods, it is critical that
the multi-label (mixture) data sets are prepared and used for
training.

However, collecting and training with multi-label data
sets may become quite cumbersome. If there are C classes,
the number of different mixtures increases exponentially
as 2C . The complexity can be significantly aggravated if
one desires to build robustness against the dynamic ranges
of the component signals, as then the combinations of dif-
ferent signal powers need to be considered as well. It is
quite impractical to prepare data sets anticipating all possible
power ratios of the components. It is noted that such disparate
power ratios are pretty common in the RF applications.

In this paper, we tackle the mixture classification problem
from a feature learning perspective. Different from the tradi-
tional multi-label classification methods that require mixture
training samples, we propose to use non-mixture (single-
label) samples in the training stage. Our key idea is to
engineer the feature learning such that robust classification
performance is achieved even for the mixture signals. For
this purpose, novel dictionary learning (DL) formulations are
proposed.

TheDL framework postulates that the data possess a union-
of-subspace structure, allowing the data samples to be well
represented by a linear combination of a small number of
atoms in a dictionary. The DL problem has often been for-
mulated as unsupervised learning, minimizing a reconstruc-
tion error, and shown impressive performance in denoising,
imputation, and dimensionality reduction [16], [17]. DL can
be extended to supervised learning, where a dictionary that
captures discriminative patterns in the data is learned by
employing a label prediction cost, in addition to the recon-
struction error [18], [19]. For instance, Fisher’s discriminant
cost can be incorporated, where the sparse coefficients cor-
responding to the same class data are encouraged to cluster

together, while the distances between the cluster centroids are
maximized [20].

In formulating the DL problems for mixture classification,
our basic assumption is that a mixture signal sample is close
to the linear combination of the samples of the individual
component signals. For example, such a property holds for
the cyclostationarity features such as the SCF when the com-
ponent signals are uncorrelated. Recently, it was observed
that deep neural network architectures can yield features that
essentially linearize the data manifold, allowing the linear
arithmetic in the feature space to have corresponding effects
in the semantics [21], [22].

Even with approximate linearity, when a component signal
is significantly stronger than others, the strong component
can swamp the overall measurement and prevent the classifier
from properly recognizing the weaker components. In wire-
less communication, such a phenomenon is called the near-
far problem [23], [24]. The problem can be mitigated by
employing appropriate equalization strategies, among others.

Inspired by this, and adopting the Fisher discriminant
approach for supervised DL, our novel idea is to constrain
the centroids corresponding to different classes to be approx-
imately orthogonal to one another. The multi-label classifier
can then be designed in a way similar to multi-user detec-
tion [25]. This approach significantly improves the classifi-
cation performance of the weak signals mixed with stronger
signals. To further improve the performance for severe near-
far scenarios, we also consider a formulation that approxi-
mately spheres the distribution of the features around each
centroid. Efficient optimization algorithms are derived for the
formulated DL problems, where each step involves solving a
convex optimization problem. The efficacy of the proposed
methods is tested using RF data sets collected using software
defined radios.

Preliminary results of this work were reported in a con-
ference precursor [26]. In the present paper, more detailed
exposition and derivation of the algorithms are provided,
in addition to the results of extensive numerical tests with
rigorous parameter tuning. Furthermore, a novel algorithm
is developed (Algorithm 3), and its merit compared to other
algorithms is verified. A Bayesian sparse coding method is
also incorporated for the case where the number of mixture
components is unknown.

The rest of the paper is organized as follows. In Sec. II,
a supervised DL algorithm is derived using Fisher’s criterion,
which learns a dictionary as well as a linear transformation
for the sparse coefficients. This algorithm serves as the base-
line for performance comparison and subsequent algorithm
derivation. In Sec. III, an algorithm tailored for mixture clas-
sification is developed employing feature orthogonality con-
straints. In Sec. IV, the method incorporating the whitening
constraints is derived. Numerical test results are reported in
Sec. V. The conclusion is provided in Sec. VI.
Notations: Bold uppercase symbols are used for matrices,
bold lowercase for vectors, and calligraphic uppercase for
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sets. For matrix X, xk represents the k-th column, and xlm
denotes the (l,m)-entry. ·> denotes transpose, and ·† pseudo-
inverse. 1N×M is the N -by-M matrix with all entries equal
to 1. ‖ · ‖F denotes the Frobenius norm, and ‖ · ‖1 is the
`1-norm, equal to the sum of the absolute values of entries.
tr{·} and λmax(·) represent the trace and the maximum
eigenvalue, respectively. bdiag{·} denotes the block diagonal
matrix constructed by arranging the matrices listed in {·}. |a|
is the absolute value of a, |I| the cardinality of set I, and ∗
the convolution operator.

II. SUPERVISED DICTIONARY LEARNING
A. DICTIONARY LEARNING
Let xi, i ∈ I := {1, 2, . . . ,N }, be an M -dimensional datum
(sample), and X := [x1, x2, . . . , xN ] ∈ RM×N be the data
set. Dictionary learning postulates that given an appropriate
dictionary D ∈ RM×K with K atoms (the columns of D),
the data X can be well represented as X ≈ DZ, where
the coefficient matrix Z ∈ RK×N is sparse. A widely used
approach for learning D from the data is to solve [17]

min
D∈D,Z

‖X− DZ‖2F + λ‖Z‖1 (1)

where λ > 0 is a parameter for adjusting the sparsity level
of Z. D is a constraint set for D, which ensures that the
solution is well-defined. For example, the columns of D are
often constrained to have norms no greater than unity via

D := {[d1, . . . ,dK ] ∈ RM×K
: ‖dk‖22 ≤ 1, k = 1, . . . ,K }

(2)

which resolves the inherent scaling ambiguity of the bi-factor
model X ≈ DZ. That is, scaling a column in D by α and the
corresponding row inZ by α−1 does not alter the productDZ.

Formulation (1) is not a convex optimization problem.
Thus, alternating minimization is often employed to obtain
locally optimal solutions [16], [17]. DL has been shown to
achieve state-of-the-art performance in a variety of image
and signal processing applications such as image denoising,
inpainting, and object recognition.

B. SUPERVISED DICTIONARY LEARNING FORMULATION
Through (1), a dictionary that allows faithful representa-
tion of the data is learned. On the other hand, one can
also tailor the dictionary so as to capture the discrimina-
tive features that are useful for performing classification
[18], [20]. Consider for now the single-label classification
with C classes. Let Xc ∈ RM×Nc be the collection of the
class-c samples, for c = 1, 2, . . . ,C . That is, the columns
of Xc are {xi}i∈Ic , where Ic denotes the index set for class-c
data, and Nc = |Ic| is the number of the class-c samples
with

∑C
c=1 Nc = N . With a slight abuse of notation, let us

denote again by X the data matrix, where the same class
samples are arranged in consecutive columns; that is, X :=
[X1,X2, . . . ,XC ] ∈ RM×N .

One way to obtain a discriminative dictionary is to
incorporate the Fisher discriminant criterion to the learning

formulation [20]. Here we make some departures from [20].
First, D is not partitioned to the sub-dictionaries correspond-
ing to different classes. Therefore, in addition to the resulting
simplicity of the formulation, each of theK atoms is not hard-
assigned for representing the features of a particular class, but
rather can flexibly represent the features of multiple classes.

Another important difference is that instead of using the
coefficient matrix Z directly in the Fisher criterion as in [20],
a linear transformation W> ∈ RP×K is introduced, which
is learned jointly with the dictionary. This transformation
is important because typically not all atoms in the dic-
tionary capture discriminative features. For example, there
may be atoms that explain the common background, which
is not informative for classification [27]. Projecting the
K -dimensional sparse codes to a smaller P-dimensional
space allows one to ignore those atoms unhelpful for
discrimination, rendering further dimensionality and noise
reduction, ultimately contributing to improved classification
performance.

Let zi be the coefficient vector corresponding to a sam-
ple xi, i = 1, 2, . . . ,N . Projecting zi via W yields a dis-
criminant variable yi := W>zi ∈ RP, where P satisfies
C ≤ P ≤ K . Let us define the class-c centroid vector
and the overall sample mean vector of the sparse codes for
data X as

mc :=
1
Nc

∑
i∈Ic

zi and m :=
1
N

∑
i∈I

zi (3)

respectively. Then, one can define the within-class scatter
matrix SW and the between-class scatter matrix SB of Z as

SW :=
C∑
c=1

∑
i∈Ic

(zi −mc)(zi −mc)> (4)

SB :=
C∑
c=1

Nc(mc −m)(mc −m)> (5)

respectively. It can be easily shown that the overall scatter
is the sum of the between-class scatter and the within-class
scatter as [28]

S :=
∑
i∈I

(zi −m)(zi −m)> = SB + SW . (6)

Here, SB corresponds to the ‘‘signal’’ term useful for
classification, and SW the ‘‘noise’’ term that confuses the
classifier. The idea of the Fisher discriminant criterion is
to maximize the between-class scatter W>SBW, and, at the
same time,minimize thewithin-class scatterW>SWW. Thus,
a reasonable penalty function to minimize is constructed as

f (W,Z) := tr{W>SWW}−tr{W>SBW}+α‖W>Z‖2F (7)

where the last term with α > 1 is added to ensure strict
convexity of f (W,Z) with respect to Z. To see this, define
N × N matrices

H1 :=bdiag
{

1
N1

1N1×N1 ,
1
N2

1N2×N2 . . . ,
1
NC

1NC×NC

}
(8)
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TABLE 1. Algorithm 1 for solving (P1).

and H2 :=
1
N 1N×N . Then, f (W,Z) in (7) can be written as

‖W>Z(I−H1)‖2F−‖W
>Z(H1−H2)‖2F + α‖W

>Z‖2F (9)

= tr{W>ZSZ>W} (10)

where S := (1+α)I−2H1+H2.Here, the fact thatH1H2 =

H2H1 = H2 and H2
2 = H2 is used. It can be shown that S

is positive definite for α > 1 [29]. Thus, for an arbitrary T,
tr{T>ST} is strictly convex in T, and so is f (W,Z) in Z since
W will be constrained to be full-rank [cf. (12)].
The overall optimization problem can now be formulated

as

(P1) min
D∈D,Z,W

‖X− DZ‖2F + λ‖Z‖1 + µf (W,Z) (11)

subject toW>W = I (12)

where λ,µ > 0 are parameters. Constraint (12) is added to
avoid the trivial solutionW = 0.

C. ALGORITHM DERIVATION
Problem (P1) is not convex as the cost function is not jointly
convex with respect to (D,Z,W) and constraint (12) is
nonconvex. However, the optimization with respect to one
variable out of {D,Z,W} can be solved easily, provided the
remaining two are held fixed. Thus, an alternating minimiza-
tion approach based on the block coordinate descent (BCD)
method is proposed [30].

First, with Z and W fixed, the objective of (11) is mini-
mized with respect to D. This is equivalent to solving

min
D∈D
‖X− DZ‖2F + λ‖Z‖1. (13)

This is a convex problem, which can be solved, for exam-
ple, by employing another layer of the BCDmethod as in [17].

With D andW fixed, the sub-problem for Z is given by

min
Z
‖X− DZ‖2F + λ‖Z‖1 + µf (W,Z) (14)

which is a convex optimization problem. Recall that thanks
to the term α‖W>Z‖2F in (9), f (W,Z) is convex with respect
to Z. Thus, the problem can be solved with various algo-
rithms that can deal with the `1-norm regularizer efficiently.
For example, the fast iterative shrinkage-thresholding algo-
rithm (FISTA) can be employed [31], which requires the
gradient of the smooth part of the objective and the Lipshitz
constant of the gradient. The gradient is given by

∂

∂Z

[
‖X− DZ‖2F + µf (W,Z)

]
= −2D>(X− DZ)+ µ

∂

∂Z
f (W,Z) (15)

where ∂f (W,Z)
∂Z = 2WW>ZS [cf. (9)]. The Lipschitz constant

can be shown to be

L1 := λmax(D>D)+ 2µλmax(WW>)λmax(S). (16)

Finally, with D and Z fixed, the update forW is done via

min
W:W>W=I

tr
{
W> [SW − SB + αZZ>]W

}
. (17)

Thus, the optimal W can be obtained as the eigenvectors
corresponding to the P smallest eigenvalues.

The aforementioned BCD steps can be repeated until con-
vergence. Under mild conditions, the DL step yields a unique
minimum for D [17]. Thus, it can be guaranteed that the
iterates of the proposed training algorithm converge [30]. The
overall algorithm is summarized in Table 1, where Sb(a) :=
sign(a) max{|a| − b, 0} is a shrinkage operator.

III. DL FOR MIXTURE CLASSIFICATION
A. MOTIVATION
The algorithm developed in Sec. II best suits the problem
of classifying a signal that belongs to a single class. When
presented with a signal that contains a mixture of components
from multiple classes, it is expected that the corresponding
discriminant variable y possesses the features of the con-
stituent classes. Provided that the nonlinear coupling among
different class features can be neglected, one can expect that y
would lie somewhere in between the centroids of the compo-
nent classes. This can confuse the classifier trained on single-
label samples. On the other hand, if the feature subspaces for
different classes are not overlapping significantly, but rather
sufficiently decorrelated, one should be able to focus on each
class subspace while nulling out the other classes’ features.
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In conventional multi-label classification, the classifiers
are trained using mixture samples. However, this can dramat-
ically increase the training set size as the number of combina-
tions increases exponentially. Also, for applications such as
the RF, the dynamic ranges of the component signals can be
large, yielding different power ratios. Preparing the training
data capturing such variety may not be straightforward.

In wireless communication, the challenge associated with
detecting component signals that have widely disparate
power levels is termed the near-far problem. When the same
frequency spectrum is shared among multiple transmitter-
receiver pairs (users), and a user’s signal power is much
higher than those of the rest, the strong signal can dominate
the weaker components, rendering it difficult to detect the
weaker users [23]. The remedies include performing power
control and precoding, combined with linear/nonlinear equal-
ization and multi-user detection strategies [24], [25].

Inspired by this, we take a pragmatic approach, where the
distribution of the discriminant variable is engineered in such
a way that the components due to different mixture classes
can be easily separated and detected. In particular, in order
to mitigate the near-far issue and prevent the strong signals
from leaking into the weaker signal subspaces, orthogonality
is encouraged among different class signals.

B. PROBLEM FORMULATION
Our novel idea is to introduce an additional penalty term in the
training objective to impose orthogonality constraints among
different class centroids {W>mc}

C
c=1. Specifically, a matrix

U ∈ RP×C , whose columns are orthonormal as U>U = I,
is newly introduced, and the class centroids are constrained
to be close to U.
Specifically, first collect {mc} as M := [m1,m2, . . . ,

mC ] ∈ RK×C . Upon defining H0 := bdiag{ 1N1
1N1×1, . . . ,

1
NC
1NC×1} ∈ RN×C , one can verify that M = ZH0. The

orthogonality constraints can be encoded into the penalty
term

g(W,Z,U) := ‖W>M− U‖2F = ‖W
>ZH0 − U‖2F . (18)

Augmenting this to the objective in (11), the proposed
formulation is given by

(P2) min
D∈D,Z,W,U

‖X− DZ‖2F + λ‖Z‖1 + µf (W,Z)

+ νg(W,Z,U) (19)

subject to U>U = I (20)

where ν > 0 is an appropriate weight. Note that con-
straint (12) in (P1) is removed since the orthogonality of U
alone can avoid the trivial solutionW = 0.
Continuing with the analogy to wireless communication,

one can interpret the class centroids {mc} as the multi-user
signal constellation, and Z as the noisy signals received at the
receiver. The linear transformationW> then plays the role of
the equalizer that combats the multi-user interference.

TABLE 2. Algorithm 2 for solving (P2).

C. TRAINING ALGORITHM
Similar to the algorithm for (P1), the algorithm for (P2) can be
derived using alternating minimization. First, with Z,W, and
U fixed, the update for D is again equivalent to solving (1).
For updating Z, with D,W and U fixed, the relevant sub-
problem is given by

min
Z
‖X− DZ‖2F+µf (W,Z)+νg(W,Z,U)+λ‖Z‖1. (21)

It is noted that (21) minimizes a smooth convex term
plus an `1-norm regularizer. Thus, the FISTA can be again
employed, where the necessary gradient of the smooth part is
given as

∂

∂Z

[
‖X− DZ‖2F + µf (W,Z)+ νg(W,Z,U)

]
= −2D>(X−DZ)+2µWW>ZS+2νW(W>ZH0−U)H>0

(22)

and its Lipschitz constant as

L2 := L1 + 2νλmax(WW>)λmax(H0H>0 ). (23)

The update for W, with all other variables fixed, is done
by minimizing a convex quadratic cost, whose closed-form
solution is given by

W =
(µ
ν
ZSZ> +MM>

)−1
MU> (24)

assuming that Z is full-rank.
Finally, the update for U is done by solving

U = arg min
U:U>U=I

‖U−W>M‖2F . (25)

Problem (25) is an instance of the orthogonal Procrustes
problem [32]. Perform a singular value decomposition (SVD)
on W>M = U161V

>

1 , where U1 ∈ RP×P and V1 ∈

RC×C are orthonormal and 61 ∈ RP×C is diagonal. Then,
the solution to (25) is given by [33]

U = U1IP×CV
>

1 (26)
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where IP×C := [IC ,0C×(P−C)]>. When W>M has the full
rank C , the solution can also be obtained by first performing
a SVD onM>WW>M = V262V

>

2 , and computing

U =W>MV26
−1/2
2 V

>

2 . (27)

The update steps for D, Z, W, and U are repeated until
convergence. The convergence is again guaranteed by noting
that the updates forD andW correspond to the uniqueminima
of the respective sub-problems [30]. The overall algorithm is
listed in Table 2.

IV. DL WITH WHITENING
A. MOTIVATION AND PROBLEM FORMULATION
It is recalled from (6) that the overall scatter contains not only
the ‘‘signal’’ term but also the ‘‘noise’’ term. In Sec. III, the
focus was on engineering the ‘‘signal’’ term such that the
centroids are approximately orthogonal. In this section,
the ‘‘noise’’ part is manipulated.

In particular, note that if the ‘‘noise’’ scatter W>SWW
is elongated along the direction connecting any two class
centroidsW>mc andW>mc′ for c 6= c′, then the discrimina-
tive performance between these two classes can be degraded.
In [34], a discriminant component analysis technique is pro-
posed, where the discriminant projection W is learned under
the constraint that the noise is whitened. That is, tr{W>SBW}
is maximized subject to the constraint

W>SWW = I. (28)

That is, the noise distribution becomes spherical after
projection to W. However, (28) constrains the noise scatter
averaged over all classes [cf. (4)]. Therefore, when per-class
noise powers are disparate, it may be influenced much by the
few classes with strong noise power.

Thus, we take one step further and whiten the per-class
scatter of the discriminants {W>zi}i∈Ic for each class c =
1, 2, . . . ,C . That is, for class c, it is constrained that∑

i∈Ic

W>(zi −mc)(zi −mc)>W ≈ δ2c I (29)

for an appropriate scaling parameter δc > 0. The whitening
constraint shapes the data cloud of class c to be spherical
with radius δc around the centroid W>mc. It is necessary to
determine δc from data as well, since the centroids themselves
are placed around the unit-radius sphere, per (18) and (20).

One could use the squared error between the left-hand
and the right-hand sides of (29) as the penalty term, but this
will lead to a quartic function, which is not convex. Instead,
let us introduce an additional matrix variable Vc ∈ RP×Nc ,
which satisfies VcV>c = I. Let Zc ∈ RK×Nc denote the
collection of class-c sparse coefficients {zi}i∈Ic . Define also
Mc := [mc,mc, . . . ,mc] = mc11×Nc ∈ RK×Nc . Then, one
can use the constraints

W>(Zc −Mc) ≈ δcVc, c = 1, 2, . . . ,C . (30)

Thus, upon defining V := [V1, . . . ,VC ] and
δ := [δ1, . . . , δC ]>, a whitening penalty is given by

s(W,Z,V, δ) =
C∑
c=1

‖W>(Zc −Mc)− δcVc‖
2
F . (31)

The overall optimization problem can be formulated as

(P3) min
D∈D,Z,W,U,V,δ

‖X− DZ‖2F + λ‖Z‖1 + µf (W,Z)

+ νg(W,Z,U)+ωs(W,Z,V, δ) (32)

subject to U>U = I,VcV>c =I, c=1, 2, . . . ,C

(33)

where ω > 0 is another weighting parameter.

B. ALGORITHM DERIVATION
Problem (P3) is not convex jointly in all the variables. Thus,
the BCD method is again employed with the blocks D, Z,W,
U, V, and δ. For each of these blocks, the sub-problem with
the rest of the block variables fixed can be solved optimally.
For updating D, the sub-problem is exactly the same as
before.

For updating Z, the sub-problem is given by

min
Z
‖X− DZ‖2F + µf (W,Z)+ νg(W,Z,U)

+ωs(W,Z,V, δ)+ λ‖Z‖1. (34)

Note that the first four terms in the objective of (34) are
convex quadratic in Z. Thus, we have a convex cost plus
a non-smooth `1-norm term, again solved by the FISTA.
To facilitate the computation of the derivative of the smooth
part w.r.t. Z, define

Hc := I−
1
Nc
1Nc×Nc ∈ RNc×Nc (35)

H̃c := [0Nc×
∑c−1

i=1 Ni
, INc ,0Nc×

∑C
i=c+1 Ni

]> ∈ RN×Nc (36)

as well as Ĥc := H̃cHc. Then, it is noted that Zc = ZH̃c, and
W>(Zc −Mc) =W>ZH̃cHc =W>ZĤc. Thus, (31) can be
re-written as

s(W,Z,V, δ) =
C∑
c=1

‖W>ZĤc − δcVc‖
2
F . (37)

The derivative needed for the FISTA can be expressed as

∂

∂Z

[
‖X−DZ‖2F+µf (W,Z)+νg(W,Z,U)+ωs(W,Z,V,δ)

]
= −2D>(X−DZ)+2µWW>ZS+2νW(W>ZH0 − U)H>0

+ 2ω
C∑
c=1

W(W>ZĤc − δcVc)Ĥ>c (38)

and the Lipschitz constant is given by

L3 := L2 + 2ωλmax(WW>)
C∑
c=1

λmax(ĤcĤ>c ). (39)
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TABLE 3. Algorithm 3 for solving (P3).

For updatingW, the relevant sub-problem is given by

min
W
µf (W,Z)+ νg(W,Z,U)+ ωs(W,Z,V, δ) (40)

whose solution can be obtained simply by taking the deriva-
tive of the objective in (40) and setting it to zero. This yields
a closed-form solution forW as

W =

(
µZSZ> + νMM> + ω

C∑
c=1

ZĤcĤ>c Z
>

)−1

×

(
νMU> + ω

C∑
c=1

ZĤcδcV>c

)
. (41)

TheU update is the same as in (26)–(27). The sub-problem
for V is

min
V
s(W,Z,V, δ) subject to VcV>c = I, c = 1, 2, . . . ,C

(42)

which is equivalent to solving for each c = 1, 2, . . . ,C

min
Vc
‖W>(Zc −Mc)− δcVc‖

2
F subject to VcV>c = I. (43)

It can be seen that (43) is again an instance of the orthogo-
nal Procrustes problem since it is equivalent to

min
Vc
‖(Zc−Mc)>W/δc − V>c ‖

2
F subject to VcV>c =I. (44)

Let the SVD of (Zc −Mc)>W/δc = Ĥ>c Z
>W/δc is given

by Ũc6̃cṼ>c , where Ũc ∈ RNc×Nc and Ṽc ∈ RP×P are
orthonormal, and 6̃c ∈ RNc×P is diagonal. Then, the solution
to (43) is given by

Vc = ṼcIP×NcŨ
>
c . (45)

The sub-problem for δ can be solved for each element δc
independently as well. It is a simple least-squares problem

min
δc
‖W>ZĤc − δcVc‖

2
F (46)

with the solution given by

δc =
tr{V>c W

>ZĤc}

‖Vc‖
2
F

. (47)

The overall algorithm is listed in Table 3.

V. NUMERICAL TESTS
A. DATA SET AND PREPROCESSING
The performance of the proposed methods is tested on real
RF data sets collected in the 2.4 GHz band using a software
defined radio from Ettus Research. The downconverted com-
plex signals of 40 MHz bandwidth were acquired inside a
RF shield box. The transmissions of Wi-Fi, Bluetooth, and
Bluetooth Low Energy (BLE) protocols were generated using
a vector signal generator from Rohde & Schwarz. The Wi-Fi
signal actually has two categories:Wi-Fi with high occupancy
(denoted as Wi-Fi1 in the sequel) and Wi-Fi with low occu-
pancy (Wi-Fi2). The high occupancy signals capture inten-
sive Wi-Fi usage such as downloading a large file, whereas
the low occupancy signals represent a more sporadic use
case. Moreover, two types of drone controllers were used as
transmitters, which generated unique proprietary frequency
hopping spread spectrum (FHSS) waveforms, which we term
FHSS1 and FHSS2.

For each of the 6 classes, the samples were collected
for 45 s. Then, 449 temporal snapshots of duration 200 ms
each were extracted per class by allowing overlaps no longer
than 100ms. Of the 449 snapshots, 300were used for training,
74 for cross-validation, and 75 for testing.

Instead of using the raw snapshots for DL, they were
preprocessed to obtain the deep scattering spectrum (DSS)
features [35]. The DSS can not only produce features that
are locally translation-invariant and stable to deformations,
but also capture scale interactions and higher-order statistics.
Its computation is done by a multi-layer architecture that
resembles a CNN, but it does not require training.

As the baseband RF samples are complex, the DSS fea-
tures were constructed for the real and the imaginary parts
separately. Let x̄j(t) denote the real part of the j-th RF snap-
shot xj(t). Let {ψα1 (t)}α1∈A1 be a set of analytic wavelet
filters. That is, ψα1 (t) is a bandpass filter centered at fre-
quency α1 with bandwidth α1/Q1, where Q1 is the number
of wavelets per octave, and A1 the set of center frequencies.
Then, with a lowpass filter φ(t) with bandwidth 1/T , the first
layer output of the DSS is simply a lowpass-filtered version
of the input signal, given by

S0(x̄j) := x̄j(t) ∗ φ(t). (48)

Stable and locally translation-invariant features are
obtained by taking the moduli of the wavelet filter bank
outputs, followed by lowpass filtering, as in

S1(x̄j, α1) := |x̄j(t) ∗ ψα1 (t)| ∗ φ(t). (49)

The second layer output of DSS due to x̄j(t) is the collection
{S1(x̄j, α1)}α1∈A1 . To recover the information lost due to the
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FIGURE 1. DSS of different RF signal classes. The second layer outputs in
the DSS frequency index range [279,836] are seen to be quite useful for
discrimination.

lowpass filtering, one can go deeper with more layers. For
example, the next layer can be defined based on another set
of wavelets {ψα2 (t)}α2∈A2 with Q2 wavelets per octave as

S2(x̄j, α1, α2) := ||x̄j(t) ∗ ψα1 (t)| ∗ ψα2 (t)| ∗ φ(t). (50)

This process can be repeatedwithmore layers. In this work,
we used up to S2. Thus, the DSS is defined as the collection
of M := 1+ |A1| + |A1||A2| signals given by

S(x̄j) := [S0(x̄j), {S1(x̄j, α1)}α1∈A1 ,

{S2(x̄j, α1, α2)}α1∈A1,α2∈A2 ]. (51)

By sampling the analog signals in (51) at the Nyquist rate,
the discrete-time DSS can be obtained as a matrix Xj ∈

RM×N . Likewise, one can extract the DSS from the imaginary
part x̃j(t) to construct X̃j ∈ RM×N . Define the concatenation
X̂j := [X

>

j , X̃
>
j ]
>
∈ RM×N , where M = 2M . The

input vectors {xi} to the DL algorithms are the columns of
X := [X̂1, X̂2, . . . , X̂J ] ∈ RM×N , where J is the number of
RF snapshots, and N = JN .
In our experiment, Q1 = 16, Q2 = 0.05, and T = 100 ms

were used. A Morlet wavelet was employed for the bandpass

filters andGabor for the lowpass filter. Overall, the dimension
of X̂j turns out to beM = 1, 114 and N = 8.

In Fig. 1, the sampleDSS of the 6 classes are depicted using
100 snapshots for each class. In each DSS plot, the vertical
axis represents the DSS frequency index. Index 1 corresponds
to S0, indices 2 ∼ 278 to S1, and indices 279 ∼ 557 to S2,
for the real part x̄j(t). Likewise, index 1, 114 represents S0,
indices 1, 113 ∼ 837 to S1, and 836 ∼ 558 to S2, for the
imaginary part x̃j(t). It is interesting to see that highly dis-
criminative features are often extracted through S2, as is the
case, for instance, when discriminating between Wi-Fi1 and
Wi-Fi2.

B. CLASSIFICATION STRATEGIES
In this section, the strategies employed for classifying the
mixture components are described. For a given test snapshot
X̂ ∈ RM×N , one first needs to perform sparse coding using
the trained dictionary D. One way to do this is to solve

min
Ẑ
‖X̂− DẐ‖22 + λ̄‖Ẑ‖1 (52)

where λ̄may be different from the value of λ used for training,
and thus is tuned separately. An alternative approach that does
not require tuning of λ̄ is a Bayesian sparse coding method,
such as the relevance vector machine (RVM) [36]. The test
results of both approaches are reported in Sec. V-E.
The resulting sparse code matrix Ẑ is of dimension

K×N . In order to impart with temporal invariance (i.e., we do
not care at which time point the discriminative features
appear), average pooling is done to form a summary ẑ :=
N
−1∑N

n=1 ẑn. Then, the discriminant variable ŷ is obtained
as ŷ :=W>ẑ.
Employing ŷ as the input feature, we tested different clas-

sifiers, namely, the logistic regression (LR), and the neural
network (NN) classifiers, as well as the matched filter (MF)
and the zero-forcing (ZF) equalizer. The LR classifier is a
linear classifier. With parameters {βc}

C−1
c=1 , the posterior class

probabilities are computed as [37]

πLRc :=
exp(β>c ŷ)

1+
∑C−1

c′=1 exp(β
>

c′ ŷ)
, c = 1, 2, . . . ,C − 1 (53)

and πLRC := 1−
∑C−1

c=1 π
LR
c . Given that the mixture contains L

components, the class labels for the components can be deter-
mined as the classes corresponding to the L largest values of
{πLRc }

C
c=1. If L is not known, one can adopt a simple strategy

of thresholdingπLRc to detect the presence of individual signal
classes. That is, the c-th class is detected when πLRc ≥ θ , for
c = 1, . . . ,C . The NN classifier is a nonlinear classifier,
constructed in our experiments using 10 hidden layers with
sigmoidal nonlinearity, followed by the cross-entropy loss as
the training objective. The LR and NN classifiers are machine
learning algorithms, whose parameters are trained using the
(non-mixture) training data.

On the other hand, MF and ZF detectors were developed
originally in the detection theory framework. The MF detec-
tor correlates the input ŷ with the class centroids {W>mc} to
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FIGURE 2. Results for parameter tuning. Coarse grid searches were
performed based on the classification accuracy using 5-fold
cross-validation.

obtain ξMF := (W>M)>ŷ. If the class centroids were truly
orthogonal, then the MF detector would be able to null out
the interference completely. Since the orthogonality is only
approximate, one may improve the detection performance
by employing a linear equalizer. The ZF equalizer applies
the pseudo-inverse of the centroid matrix to get ξZF :=
(W>M)†ŷ. Thus, the interference signals are nulled out via
linear projection. The class labels of the L components are
determined based on the L largest absolute values of the
elements in ξMF or ξZF . Note that the MF and ZF detec-
tors are obtained without any separate training. When L is
not available, one can again adopt the thresholding strategy.
For example, in the ZF case, the class probabilities are first
obtained from the transformation

πZFc :=
exp(ξZFc )∑C
c=1 exp(ξZFc )

, c = 1, 2, . . . ,C (54)

where ξZFc is the c-th component of ξZF . The class-c signal is
detected if πZFc ≥ θ . The MF detection is done similarly.

C. PARAMETER TUNING
The DL formulations contain parameters that need to be
tuned, namely, K , P, λ, µ (for (P1), (P2), and (P3)), ν (for
(P2) and (P3)), and ω (for (P3)). We performed coarse grid
searches based on 5-fold cross-validation using the classifi-
cation accuracy as the metric.

For tuning (P1)’s parameters, the k-nearest neighbor (kNN)
classifier was used to obtain the classification accuracies on
the validation data. The kNN classifier is a nonparametric
classifier, which does not assume any parametric model of

FIGURE 3. MDS of the learned features. The 3-D embeddings of
{yi =W>zi } are depicted. (a) The FHSS features from Algorithm 1 do not
seem to cluster well. (b) This is mitigated by Algorithm 2, but some
classes exhibit elongated point clouds. (c) Algorithm 3 obtains
well-separated and spherical point clouds.

the classification boundaries [37]. In our experiments, five
nearest neighbors of ŷ in Euclidean distance were found
from the training data features {yi}Ni=1. Then, the label was
predicted as the majority label of the five. We added white
Gaussian noise with a signal-to-noise power ratio (SNR) of
−20 dB to the DSS, since, without noise, the classification
accuracy always turned out to be 100%. The tuned number of
atoms K was 25, and the dimension of the feature P was 10.
The accuracy curves for varying K and P values are depicted
in Figs. 2(a) and 2(b), respectively. Similarly, tuning of the
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remaining parameters yielded λ = 10−2 and µ = 10−1,
as shown in Figs. 2(c) and 2(d), respectively.

For tuning the parameters of (P2), we used a small number
of mixture signals containing L = 2 equal-power com-
ponents. This is necessary since the optimal ν would be
0 if tuned with non-mixture samples, as the orthogonality
penalty always impairs the performance in the non-mixture
case. Specifically, 100 snapshots for each of the

(6
2

)
= 15

mixture types were generated, resulting in 1, 500 snapshots
in total. The ZF classifier was used to get the accuracies.
Retaining K = 25 from the tuning of (P1) for simplicity,
we performed the grid search over P ∈ {6, 10, 20, 25}, λ ∈
{10−4, 10−3, 10−2, 10−1},µ ∈ {10−4, 10−3, 10−2, 10−1, 1},
and ν ∈ {10−3, 10−2, 10−1, 1, 10, 102}. The tuned values are
P = 20, λ = 0.1, µ = 10−3, and ν = 10. The tuning curve
for ν is shown in Fig. 2(e).

For the parameters in (P3), all the parameters were fixed
at the values obtained for (P2) for simplicity, except the new
parameter ω. A 1-dimensional search over ω found the best
value ω = 1, as shown in Fig. 2(f).

D. VISUALIZATION OF LEARNED FEATURES
An intuitive way to understand the differences of the pro-
posed DL formulations is to visualize the learned features.
The classical multidimensional scaling (MDS) is employed
to visualize the P-dimensional discriminant vectors {yi =
W>zi} in the 3-dimensional Euclidean space. Fig. 3 shows
the MDS results for Algorithms 1–3. From Fig. 3(a), it can
be seen that the point clouds are mostly well separated thanks
to Fisher criterion, except for FHSS1 and FHSS2. It turns
out that the representations for FHSS signals occupy higher
dimensions (require more atoms) than the other classes, and
the learned features do not cluster well. When Algorithm 2 is
used, the features become approximately orthonormal, which
can be observed to some degree in Fig. 3(b). Note that orthog-
onality in a higher dimensional space can never be accurately
depicted in the 3-dimensional visualization. On the other
hand, some of the class clouds such as for BLE and FHSS1 are
seen to be quite elongated in certain directions, which may
hurt the classification performance. Using Algorithm 3, it can
be seen from Fig. 3(c) that the distribution of the features have
become much more spherical.

E. TEST RESULTS
1) TESTS WITH NON-MIXTURE SIGNALS
First, the performance of the proposed algorithms for classi-
fying non-mixture (single-label) signals was evaluated. Fig. 4
shows the classification accuracies at different SNR levels.
Circularly symmetric complex Gaussian noise was added
to the time-domain snapshots xj(t), before computing the
DSS. The classification was done using a 5-NN classifier.
The sparsity parameter λ̄ in (52) was tuned using 5-fold
cross-validation. Different values of λ̄ were allowed at dif-
ferent SNR levels. The accuracies were computed on the
test data set using the 5 dictionaries trained from 5 different

FIGURE 4. Classification accuracies in the non-mixture case. Training was
done at SNR =∞. Algorithms 2 and 3 perform worse than Algorithm 1 as
they incorporate additional feature shaping constraints useful for the
mixture case.

FIGURE 5. Classification performance for L = 2. Algorithms 2
and 3 perform robustly with the ZF or MF strategies. Algorithm 3 further
improves the performance in the near-far situations especially for the
weak components.

training/cross-validation data splits. A robust average of the
5 accuracies was calculated, by throwing away the maximum
and the minimum values before averaging. Note that the DL
training was done using samples without any noise added
(i.e. at SNR =∞), but tested at various SNRs. It can be seen
from Fig. 4 that the accuracies for Algorithms 2 and 3 are
comparable to that of Algorithm 1 at high SNRs, but slightly
worse at lower SNR levels. However, as we will see next, they
have much more robust performance in the mixture case.

2) TESTS WITH MIXTURE SIGNALS
Next, the algorithms were tested using the mixture signals.
First, assume that the number L of the components in the
mixture is known. In this case, the number of false positive
(FP) predictions (that is, predicting a signal to be present
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when it is actually absent) becomes the same as the number
of false negative (FN) predictions (predicting absence when
in fact present). Thus, the precision, which is defined as
the number of true positives (TPs) over the total positives
(TP + FP), becomes equal to the recall, which is defined as

TP
TP+FN . Moreover, the accuracy, defined as the total correct
predictions (both TPs and true negatives (TNs)) over the
total predictions (TP+FP+FN+TN), becomes simply 1 −
2L
C (1 − Precision). Thus, we focus on the precision as our
performance metric in the ensuing discussion.

The test data set was generated by linearly combining mul-
tiple single-label signals in the time domain. Fig. 5 depicts
the precision metric when L = 2 signals are present in
the mixtures. The signals were combined using a certain
power ratio. For instance, a power ratio of 20 dB means
that one component signal is 20 dB stronger than the other
component. A total of 30 different types of mixtures were
generated at each power ratio by considering

(6
2

)
= 15 signal

combinations and 2 different ways of picking the strong/weak
components. For each type, 100 snapshots were generated for
testing the classification performance. In Fig. 5, each panel
shows the performance of one of the four classification strate-
gies, namely, ZF, MF, LR, and NN classifiers, at different
power ratios that range from equal power (0 dB power ratio)
to more near-far situations (up to 20 dB power ratio). The
solid curves represent the robust precision averaged across
both the strong and the weak components. The dashed curves
depict the precisions of only the weak component.

a: PERFORMANCE OF THE PROPOSED ALGORITHMS
In Fig. 5, the square, circle, and triangle markers indicate
Algorithms 1, 2, and 3, respectively. It can be seen that
the performance of Algorithm 1 is severely degraded by
the mixture signals, regardless of the classification strate-
gies or the power ratios. In other words, the features from
Algorithm 1 are not robust against mixture classification,
although they achieve good performance in the non-mixture
case [cf. Sec. V-E1]. Interestingly, the performance of Algo-
rithm 2 based on the ZF and the MF strategies is seen to
remain robust to the mixture signals. This is because the
feature centroids fromAlgorithm 2 are almost orthonormal to
one another, allowing the ZF/MF filters to effectively null out
the interfering signals. On the other hand, the LR and the NN
classifiers are seen not as robust, since they do not exploit the
inherent orthogonality in the features. Comparing the LR and
the NN classifiers, the NN improves the performance slightly
thanks to its nonlinear decision boundaries.

The performance of Algorithm 3 stays similar to that of
Algorithm 2 when the power ratio is close to unity. However,
in the near-far situation, Algorithm 3 with the ZF or the
MF detectors provides significant improvement in the clas-
sification performance. It should be noted that the improve-
ment is particularly pronounced for the weak signals. For
example, in Fig. 5(a), using the ZF detector at the power
ratio 20 dB, the overall improvement from Algorithm 2 to
Algorithm 3 is around 8%, whereas for the weak signals,

FIGURE 6. Performance for L = 3. The trend is similar to the L = 2 case.

FIGURE 7. Performance with SVM classifiers when L = 2. It is interesting
to see that the features from Algorithm 3 are robust with SVMs.

the improvement is as high as 22%. It is also worth noting
from Figs. 5(a) and (b) that the ZF detector performs slightly
better than the MF detectors. This is because the ZF can
further mitigate the leakages from imperfect orthogonality
among the features.

We repeated the experiment for the case of L = 3. When
the power ratio was not 0 dB, one strong component and two
weak components were created, where the two weak ones
were at the same power level. Fig. 6 shows the resulting
classification performance. One can see a trend similar to
the L = 2 case. That is, Algorithms 2 and 3 exhibit robust
performances while Algorithm 1 degrades sharply. The ZF
and the MF detection strategies work much better than the
LR or the NN counterparts. Algorithm 3 improves upon
Algorithm 2 when the power ratio is high, especially for the
weak signals.1

1Compared to Fig. 5, it can be seen that the performances of Algo-
rithms 2 and 3 are slightly worse in L = 3 than in L = 2, which is expected
since correctly predicting the presence of three signals is harder than two.
However, it is also noted that the performance of Algorithm 1 is improved
when L = 3 compared to L = 2, which can be explained as follows. Consider
a random prediction strategy, which picks L classes out of C candidates at
random. The performance of this strategy when L = 2 can be shown to be 1

3 ,
while with L = 3, it actually becomes 1

2 . The performance of Algorithm 1 is
already quite bad. Thus it seems it is affected by this higher baseline when
L = 3.
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b: COMPARISON WITH THE EXISTING METHODS
Next, the performance of the proposed algorithms is com-
pared to that of the existing DL and recent CNN-based
methods. First, the basic K -SVD algorithm [16] and the
low-rank shared dictionary learning (LRSDL) algorithm are
considered [27], [38]. Since the ideas in other discrimina-
tive DL algorithms, such as LC K -SVD [39], discriminative
K -SVD [19], DLSI [40] and DL-COPAR [41], were already
incorporated and compared to LRSDL in [38], we do not
explicitly compare with those.

In Figs. 5 and 6, the LRSDL performance for mixture
classification is shown. In Figs. 5(a) and 6(a), we also added
the curves forK -SVD followed by ZF detection. The inputs to
LRSDL and K -SVD algorithms are the DSS as before. Since
the classification strategies proposed in [38] is not suitable for
multi-label classification, the ZF, MF, LR, and NN strategies
are again employed. Also, since the performances of K -SVD
combined with MF, LR, and NN classifiers are inferior to the
ZF case, they are not shown to reduce the clutter. For a fair
comparison, the number of atomsK inK -SVD algorithmwas
fixed to 25, which is the same as the size used for our pro-
posed methods. Similarly, the dictionary for LRSDL contains
24 discriminative atoms and 3 common atoms, yielding 27 in
total, which is close to our number 25.

From Fig. 5(a), it is seen that when L = 2, K -SVD per-
forms as well as Algorithm 1, but much worse than LRSDL,
Algorithms 2 and 3. This is because K -SVD does not obtain
discriminative features but learns the dictionary based on a
reconstruction criterion. A similar observation can be made
for L = 3 in Fig. 6(a). As for LRSDL, it can be seen from
Fig. 5 that the performance is the best with the ZF detection.
In Fig. 5(a), LRSDL is seen to outperform Algorithm 1. This
is expected since Algorithm 1 does not employ an orthog-
onality constraint, while the LRSDL formulation actually
includes a penalty term related to a notion of orthogonality.
That is, for a class-c sample, the portion explained by the
class-c′ sub-dictionaries, c′ 6= c, is encouraged to be small.
Still, LRSDL is inferior to Algorithms 2 and 3, since the
learned features in LRSDL are not constrained to be orthonor-
mal, unlike the formulations for Algorithms 2 and 3. This is
important for mixture signal classification, since the leakage
from stronger signals can still affect the weaker components
unless they are of approximately the same ‘‘power’’ in the
feature domain. A similar conclusion can be drawn from
Fig. 6 when L = 3.

We also tested the algorithms with the support vector
machine (SVM) classifier instead of the ZF, MF, LR, or NN
classifiers. Since there are six classes, six binary classifiers
were trained in a one-versus-all-others fashion, again using
non-mixture samples. Both linear and kernel SVMs were
tested. In Fig. 7(a), it is seen that the K -SVD followed by
the linear SVM does not perform well, as K -SVD does
not yield discriminative features. It is also noted that Algo-
rithms 1 and 2, as well as LRSDL, perform much worse
than with the ZF classifier. This is because the SVM does

FIGURE 8. Classification accuracy with the ZF equalizer. The number L = 3
of the components is not known to the classifier. A class-c signal is
detected when πZF

c ≥ θ . Algorithm 3 achieves the best performance
regardless of the sparse coding method.

FIGURE 9. ROCs with the ZF equalizer. L = 3 is unknown to the classifier
and the power ratio is 20 dB.

not anticipate the mixture signals, whereas the ZF or the MF
classifiers are designed with the mixture signals in mind.
It is interesting to see that Algorithm 3 performs quite well
with SVMs. The use of a radial basis function (RBF) kernel
improves the performances slightly in Fig. 7(b), except for
Algorithm 3, for which linear classification seems to work
better.

We also compared with a CNN architecture designed for
RF signal classification in [42], where 2.4 GHz-band Wi-Fi,
Zigbee, Bluetooth signals were classified, similar to our
work. Instead of using the FFT-based features as the input to
the CNN (which achieved the highest classification accuracy
in [42] among other features), we used the DSS features as the
input, for fair comparison. The outputs from the CNN are the
class probabilities. In our experiments involving the mixtures
of L different transmissions, the class labels corresponding
to L highest probabilities were picked. The resulting perfor-
mances are shown in Figs. 5(a) and 6(a), for L = 2 and L = 3,
respectively. As the results show, the CNN trained using non-
mixture samples is not robust for the mixture classification
task. In particular, in the near-far situation, it can be seen that
the CNN can barely detect the weak signals.

3) MIXTURE SIGNALS WITH UNKNOWN NUMBER OF
COMPONENTS
In many situations, the number of the components in the
mixture may not be available. As explained in Sec. V-B,
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TABLE 4. AUC performances.

a thresholding strategy can then be employed. Fig. 8 shows
the detection performance of the proposed algorithms using
the ZF detector. Only the ZF detection is shown as it was
observed to achieve the best performance in Sec. V-E2. The
test data set is the same as in Sec. V-E2 with L = 3,
but this L is unknown to the detector. There are one strong
component and two weak components, with the power radio
set to 20 dB. Fig. 8 depicts the classification accuracy, defined
as TP+TN

TP+FP+FN+TN , achieved at different threshold values θ .
In particular, Fig. 8(a) shows the accuracies when the sparse
coding is done based on (52), and Fig. 8(b) corresponds to
employing the RVM for the sparse coding step. In the case
of using (52), λ̄ needs to be tuned manually. We tuned it as
in Sec. V-E2 using a small set of mixture data with L = 2
equal-power components. It can be seen from Fig. 8 that the
best performance is achieved by Algorithm 3 regardless of
the sparse coding method. The RVM is seen to yield slightly
better performance compared to the one using (52). This is
reasonable since λ̄ was tuned for L = 2 but the performance
was tested on L = 3, whereas the RVM can automatically
adjust the sparsity level. Fig. 9 shows the receiver operating
characteristic (ROC) curves for the ZF detection. Again,
it can be seen that Algorithm 3 shows the most robust per-
formance. Interestingly, the ROC obtained using (52) seems
to be better than the ROC from the RVM, presumably because
the tuning of λ̄ still provides useful information as the mis-
match in L between the tuning and the testing is not large.
Table 4 summarizes the area under the ROC curve (AUC)

values for the ROCs obtained using the ZF, MF, LR, and
NN classifiers based on the RVM sparse coding, under vari-
ous scenarios involving different L values and power ratios.
When the detection performance is high, a high TP rate
is achieved at a low FP rate, which would render a ROC
curve pushed to the upper-left corner of the plot, leading
to a high AUC value. Table 4(a) corresponds to the equal-
power case with L = 1, 2 and 3, and Table 4(b) is for the
case with the power ratio equal to 20 dB and L = 2 or 3.
When L = 1, virtually all detectors are performing perfectly.
However, when L > 1, Algorithm 1 is much degraded,

while Algorithms 2 and 3 yield robust performances. It can be
observed that Algorithm 3 significantly outperforms the rest
in difficult scenarios, such as with L = 3 and the power ratio
20 dB, especially when employing the ZF detection scheme.

VI. CONCLUSION
RF signal classification algorithms based on data-driven fea-
ture learning have been developed, which can detect and clas-
sify the individual component signals when the observation
is a mixture of concurrent transmissions. In order to reduce
the data collection and training burden, the training was done
using the single-label non-mixture samples, rather than the
mixture samples. This was achieved by discriminative DL
formulations that incorporated the labels in a Fisher discrimi-
nant cost, while shaping the learned features to be orthogonal
across different classes and spherically distributed within
each class. Exploiting the orthogonality, simple MF and ZF
detectors were employed to effectively null out interfering
class signals, much like the multiuser detection in wireless
communication. The developed algorithms were tested with
real wideband RF measurements to verify that the orthogo-
nality and the sphering constraints significantly improved the
robustness of classification, even in the challenging scenarios
where there were large power differences among the com-
ponent signals and the number of the components was not
known a priori.
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