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PROBLEMS

Expected Wire Length Between Two Randomly Chosen Terminals

Problem 95-6, by DavID M. LAZOFF (The Johns Hopkins Applied Physies Laboratory and
the Computer Science Department, University of Maryland Baltimore County and ALAN T.
SHERMAN {(University of Maryland Baltimore County),

What is the expected Euclidean distance beween wo independent, randomty chosen points
uniformly distributed in an arbitrary rectangle? This problem arises in VLSTI layout, analysis
of rectangle heuristics for minimum-weighted Euclidean matchings, computation of the ex-
pected cost of random minimum-cost spanning trees, and in cognitive science in the analysis
of experiments assessing human memory of spatial relations. Overwhelmed by algebraic dif-
ficulties of the problem, previous computer science researchers have resorted to special cases,
asymptotic bounds, and numerical approximations.

1. Give exact, closed-form expressions for the first two moments of the distance in
simple form as elementary functions of the two rectangle dimensions 2 and &,

2. Express the formulae from Part 1 in terms of the aspect ratio r = q /b and area
A = ab of the rectangle. For any fixed aspect ratio r, what is the asympiotic behavior of the
expected distance in terms of A7 For any fixed area A, what is the asymptotic behavior of
the expected distance in terms of r?

3. Simplify your answers to Part 1 for the special cases when the two points are uni-
formiy distributed within a square or along a line segment.

An Integral Arising in Computing the Energy of Crystals

Problem 95-7, by M. L. GLASSER {Clarkson University),
In a study of the total electronic energy of crystals using the tight binding approximation
[1} one encounters the integral

m "
K(G) mf {(e-—“}’ w}_e.r)a _ EMG.‘( -—e“'t}d}c,
4]
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Expected Wire Length Between Two Rapdomly Chosen Terminals

Problem 95-6, by DAVID M. LAZOFF (The Johns Hopkins Applied Physics Laboratory and
the Computer Science Department, University of Maryland Baltimore County) and ALAN'T.
SHERMAN (University of Maryland Baitimore County).

What is the expected Euclidean distance beween two independent, randomly chosen points
uniformly distributed in an arbitrary rectangle? This problem arises in VLSI layout, the
analysis of rectangle heuristics for minimum-weighted Buclidean matchings, the computation
of the expected cost of random minimum-cost spanping trees, and in cognitive science in
the analysis of experiments assessing human memory of spatial relations. Overwhelmed by
algebraic difficulties of the problem, previous computer science researchers have resoried to
special cases, asymptotic bounds, and numerical approximations.

1. Give exact, closed-form expressions for the first two moments of the distance in simple
form as elementary functions of the two rectangle dimensions a and b.

2. Express the formulae from Part 1 in terms of the aspect ratior = a /band area A = ab
of the rectangle. For any fixed aspect ratio » what is the asymptotic behavior of the expected
distance in terms of A? For any fixed area A what is the asymptotic behavior of the expected
distance in terms of r?

3. Simplify your answers to Part 1 for the special cases when the two points are uniformly
distributed within a square or along a line segment.

Solution by W. BOEHM (U niversity of Economics, Vienna, Austria).

It is sufficient to consider the generic rectangle with sides having lengths ¢ and 1, where
¢ is an arbitrary positive real number, because the uniform distribution has a scale invariance
property: if X is upiform in (0, 1) and ¥ is uniform in (0, 1), then Y has the same distribution as
tX. So general rectangles may always be reduced to genetic ones by choosing an approptiate
scaling constant » > O andt, such that the sides have lengths Az and A. Observe that for the
generic rectangie both aspect ratio and area ate equal to ¢

If D, denotes the distance of two randomly chosen points in the rectangle with sides Az
and A, then by scale invariance it follows immediately that

E(D;) = *E(D) and E(D?) = N E(DY,

where D is the distance of two points in the generic rectangle.

Now let the points chosen be (X, Yo) and (X1, Y1), where Xp, X; are vniform in (0, 1)
and Yg, Y, are uniform in (0, 1. Furthermore, let Dy = | X = Xol and Dy = |¥; — Yo}, and
denote the densities of Dy and Dy by f and g, respectively. These densities are well known
(see, e.g., [1, . 22]) and are given by

2
(1) Fxy= ;5(3 — X} g(x) =2(1 —¥)

where0<x <tand0 <y =L
From (1) we get the answer to the first part of Point 3:

) ;
@ : E(Dx):f S —-x)xdx =3
p t* 3

and
z 2 Iz
(3 E(Dir) =j; :—2-(3 —x)xtdx = e
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Now consider the conditional distribution of D = / D} + D}, given Dx = x. This distribu-
tion is

/2
P(Dﬁzli*x)=2f (1—y)dy=2{x/zz—-x2w%(zz-x2)}.
4]

Differentiating with respect to z yields the conditional density

e =2( 7).

If we multiply h(z|x) by z and integrate with respect {0 z on the interval {(x. /1 -+ x2), we
obtain the conditional expectation of I

of 122 22 5
{4) E(D§DX :—"J.’) = 25/; [“ﬁ -z } dZ

1 1 1y 2
= o1+ 331 =22 + x| =+ 1+ = |+ 7%
3 x x? 3

If we multiply (4) by the density of Dy, as given in (1), and integrate with respect to x over
(0, 1), then we get the unconditional expectation of D,

& ED)= f ;25(1’ —x)E(D| Dy =x)dx
0

_sinh”'s N Asinhi(l/n  JIH2E =37+ 1D - 1 + £
i 6 1517 152 15

which is the desired formula for generic rectangles. All integrals occurring in (5) are, by the
way, more or less elementary or at least standard ones.
If we set ¢ = 1, then we get E(D) for the unit square:
i 1
6 E(D}..—=-3~»1n(1+x/§)+~i-§(2+«/§)=0.5214... :
Multiply (6) by A > O to obtain the corresponding result for an arbitrary square with side
length A.

The second moment of D is easy; since D? = D} + D}, we have from (3)
2 2 2, _ 1 2
{7 E(D*) = E(Dy)+ E(Dy) = 3(1 + 1.

Now consider an arbitrary rectangle with aspect ratio 7 and sides having lengths iz and i, Its
area equals A = 2%, and therefore the mean distance expressed in terms of the aspect ratio is

A
& ED) =rED) = \/;E(D).
Thus for fixed 7 and large A, we have

E(D,) = O(/A).
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Now we fix A and let r grow large. Using the fact that
1 i
sinh™}(1/1) ~ - and V1412~ 5
we find from (5) that
E(D) ~
3

which is not surprising since ) must tend to zero, and as & result, asymptotically, the rectangle
coliapses 10 the line segment (0, ). However, in this case necessarily

E(D) - E(Dx) = %
Thus for large 7 and fixed A,
%) E{D;) ~ gﬁ
REFERENCE

{11 W. FELLER, An Introduction to Probability Theory and Its Applications, Vol. 2, 2nd ed., John Witey and Sons,
New York, 1971,

Also solved by CARL C. GROSJEAN (University of Ghent, Belgium), W, WESTON MEYER
(General Motors R&D Center, Warren, MI), and the proposers.
Editorial note. W. W. MEYER obtains a general formuia for the moments of D. Hisresult
is
-1 {aZk + bZk)dn——Zk 4 an-i—4 + bn—M — dnwiw4

/2] saN suzi
BN o E 2 2 .
B =4 = (J( k } FE DR et @ BrdE+He+d

. Alsin(ra/2)] (3 ntlp—i <d+b> il —1 (dé—a)}
T(n+2)(n+3)(»—%){a S S R W

where d = /a? -+ b*.

As pointed out by I. BOERSMA (Eindhoven University of Technology, The Netherlands),
the first four moments are contained in a 1951 paper of Ghosh [5], and this paper is referenced
as part of the published solution of Problem 75-12 in this journal [6]. The authors knew of
Ghosh’s work. In a discussion section of their problem proposal, they note that the results in
question have been rediscovered by various workers:

“The first solution for an arbitrary rectangle may be due to Ghosh [4, 3],
with relevant previous work dating backto Crofton’s second formula of 1885
[2]. Over the past century, several people have rediscovered the solution to
this and related problems. For example, as part of his 1972 thesis, Ehlers
[3] rediscovered the formula for the case of an arbitrary rectangle, and in
1976 Alagar [ 1] computed the expected distance when the points fali intwo
adjacent rectangles. We can now add our names to the list.”

In submitting their proposal to Problems and Solutions, the authors sought to elicit more
elegant and/or general solutions and provide an accessible source for the moment formulas
and references to previous work. The editors agreed with these objectives. [C.CR]
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An Integral Arising in Computing the Energy of Crysials

Problem 95-7, by M. L. GLASSER (Clarkson University).
In a study of the total electronic energy of crystals using the tight binding approximation

{1], one encounters the integral
. oo
E{a) = f [(e"" +&)% — ™% — ™ ]dx,
0

and by numerical integration Harrison obtained the value K (5/3) = 4.45. Evaluate K (a) in
terms of Gamma functions.

REFERENCE

[1] W.HarrisoN, Total energies in the tight-binding theory, Phys. Rev., B23 (1981), pp. 5230-5245.

Solution by MOURAD E. H. IsMALL (University of South Florida, Tampa, FL).
From the large x behavior of (¢* +¢™*)% — & itis clear that the integral converges only
for 0 < a < 2. When 0 < a < 2, the binomial theorem gives

b = (=an -2 —ax
K = ax AL X _1 L~ a. d
{a) fG {e ,,2;1 . € (=1} F } X

a a T —~a/)
=R (a3 -5 ="Tra-a
by Theorem 26, p. 68 in Rainvilie's book on special functions.

Also soived by 1. BOERSMA (Eindhoven University of Technology, The Netheriands),
PAUL BRACKEN (University of Waterloo), DAVID BRADLEY (Simon Fraser University), R. G.
BUSHMAN (University of Wyoming), ROBIN CHAPMAN (University of Exeter, UK), CARL C.
GROSIEAN (University of Ghent, Belgium), W. B. JORDAN {(Scotia, NY), JouN C. MALVIDC
(Interet Corpotation, Millburn, NT), W. WESTON MEYER (General Motors R&D Center, War-
ren, MI), ALLEN R. MILLER (Washington, DC), MICHAEL RENARDY (Virginia Tech), BILLY
SPRATT (University of Paisley, Scotiand), PETER WAGNER (University of Inasbruck, Austria),
JAMES A. WILSON (fowa State University), PETER N. ZHEVANDROV {Universidad Michoacana,
Mexico), and the proposer,

Several solvers noted that K (5/3) & 4.626291112.

A Conditional Trace Inequality

Problem 95-8*, by PAUL A. ROEDIGER (U.S. Army Armament Research, Picatinny Arsenal,
NI,
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An Exact Formula for the Expected Wire Length
Between Two Randomly Chosen Terminals

David M. Lazoff' and Alan T. Sherman
Computer Science Department
University of Maryland Baltimore County
Baltimore, Maryland 21228-5398
email: lazoF@umbeR.umbc.edn, sherman@cs.,umbc.ede

August 2, 1994

Keywords. Combinatorial problems, computational geometry, computer aided design, geometric
probability, geometric Steiner tree problem, layout algorithms, minimum-cost spanning trees, very

large scale integration (VLSI}.

Problem

What is the expected Fuclidean distance between two independent, randomly-chosen points uniformly
distributed in an arbitrary rectangle? This problem arises in VLSI layout, analysis of rectangle
heuristics for minimum weighted Fuclidean matchings, computing the expected cost of random
minimum-cost spanning trees, and in cognitive science in the analysis of experiments assessing
human memory of spatial relations. Overwhelmed by algebraic difficulties of the problem, previous
computer science researchers have resorted to special cases, asymptotic bounds, and numerical

approximations.

1} Give exact, closed-form expressions for the first two moments of the distance in simple form
as elementary functions of the two rectangle dimensions a and .

2) Reexpress the formulae from Part 1 in terms of the aspect ratio 7 = a/b and area A = ab of
the rectangle. For any fixed aspect ratio r, what is the asymptotic behavior of the expected
distance in terms of A7 For any fixed area A, what is the asymptotic behavior of the expected

distance in terms of 77

3) Simplify your answers to Part 1 for the special cases when the two points are uniformly
distributed within a square or along a line segment.

1Member, Applied Physics Laboratory, The Johns Hopkins University.
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Solution

Let the random variable D denote the Fuclidean distance between two independently-chosen points,
uniformly distributed over a rectangle of dimensions ¢ > 0 and & > 0.

1 The First Two Moments of D

Using elementary calculus, we compute closed-form expressions for the first two moments of IV in
terms of elementary functions of a and b. By the definition of expected value, and because the
two points are uniformly distributed, the expected value of I’ can be expressed as the quadruple

integral

E[D] = _.}.._ /b]b f‘ﬁ-/'“ \le — (132)2 + (y1 — y;g}?‘ d(o“l dmz dyl dyg. (1)
a?b? Jo o./o 0 ’

In Equation 1, each integral corresponds to one of the four coordinates needed to describe the two
points. The difficulty of the problem arises from the square root in the integrand.

After applying the variable substitutions u = &3 — #2 and v = ¥, — ¥, we solve the resulting
simpler quadruple integral, one integral at a time. In this calculation, the six integrals [ 2°v/z? + a?
with 0 < k < 3 and [In(z +v2? + ¢2) and [ 2?In(a++v/2? + a?) account for most of the calculus.
Since the amount of algebra is extensive, we leave the detailed calculations to Appendix B of our
technical report [10]. As we expected, the resulting formula is symmetrical in ¢ and b:

a5 4 b5 — (at — 302 + b )Wal + B d° b++a?+b2\ b a+vVa?+8°
E[D]= - +—In| ———— et —ln | —————— . (2}
15a%b* 6b a 6a b
By evaluating Equation 2, practitioners can solve instances of the problem exactly, rather than
resorting to upper and lower bounds or to numerical approximations.
Because squaring the integrand in Equation 1 eliminates the square root, an easy calculation
determines the second moment of D to be

: 3)

EID? =

2 Solution Expressed in Terms of Aspect Ratio and Area

To interpret our solution further, we express F[D] in terms of the aspect ratio r = a/b and area
A = ab of the rectangle. Substituting a = v Ar and & = /A/r into Equations 2 and 3, and using
the inverse hyperbolic substitution sinh™' 7 = In(r + /7% + 1}, we obtain

E[D] =

ST s AT w31 _ S -2 1
Wyrd EAA R i i Tlfgz}“ (= vr +1)+%sinh_l(1/r)+%sinh“1rj (4)

and A
E|DY = s+ = H. (5)



Tazoff and Sherman, Expected wire length between two randomly chosen terminals—August 2, 1994 3

Thus, for any fixed aspect ratio, E[D] grows linearly with the square root of the area. Conversely, for
any fixed area, E[D] € ©(+/r), because litn, —.co E[D]//F = VA[(3-0.5+0)/15+(1/6)+0] = VA/3.
This asymptotic behavior can be seen in Figure 1, which shows a 3-dimensional graph of Equation 4
produced by Maple [2].

3 Special Cases: Square and Line Segment

We simplify Equations 2 and 3 for the special cases when the points are uniformly distributed within
a square or along a line segment. Let D, denote the random variable D when the rectangle is a
square, and let D; denote D for the degenerate case when the two points are uniformly distributed
along a line segment of length a. Substituting b=a in Equations 2 and 3 yields

E[D,)=a F +v2, i+ ﬂ)} 05214050 and B = & (6)

15 3 3’
which agrees with Gilbert’s calculation [7, p. 387]. A simple integration of polynomials yields

¢ pa 2
E{D)] = L f/ |2y — @l dagday = ¢ and E[Df = z, (7
a? Jofo 7 ’ 4]

As a final check of Equation 2, we verified that limpo E[D] = EID)] and limy_¢ E[D?] = E[D{].

=3

4 Monte Carlo Simulations

To check our solution, we ran Monte Carlo simulations and compared the resulting sample mean
and standard deviations of D with the corresponding exact values given by Equations 2 and 3.
We implemented our simulations in a straightforward fashion and ran them on a Silicon Graphics
workstation, using L’Ecuyer’s [13, p. 282] psendorandom number generator with the Bays-Durham
shaffle.

Table 1 summarizes the results of some of our simulations. In these simulations, we worked
with rectangles of constant area 1 with selected aspect ratios 1 < a/b < 1024. Using 10° trials per
rectangle, the empirical values agree closely with their corresponding theoretical valies; moreover,
the extent of this agreement increased with the number of trials. Also, as we expected, the standard
deviations in Table 1 become large for long, narrow rectangles. For additional simulations, see [10}.

5 Discussion

Our interest in this problem grew out of & need to compute the expected wire length between two
randomly-chosen terminals on a VLSI chip. Only after deriving Equation 2 did we learn of the
1985 work of Sheng [15], who used the advanced Borel overlap technique to solve this and other
related problems. In particular, Equation 2 follows after a page of routine algebra from Sheng’s
Equation 2.5.1, which also yields all higher moments of the distance. The first solution for an
arbitary rectangle may be due to Ghosh [5, 6] in 1943, with relevant previous work dating back to
Crofton’s [3] second formula of 1885. Over the past century several people have rediscovered the
solution to this and related problems. For example, as part of his 1972 thesis, Ehlers [4] rediscovered
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the formula for the case of an arbitrary rectangle, and in 1976 Alagar [1] computed the expected
distance when the points fall in two adjacent rectangles. We can now add our names to the list.

Despite the intuitive nature, apparent simplicity, and wide applicability of the problem, the
general case has eluded exact analytical solution by many researchers. For example, in 1965,
motivated by the challenge of computing the expected cost of minimum-cost Euclidean spanning
trees, Gilbert [7] rediscovered the special case of our problem for the unit square. Similarly, in their
1983 analysis of the oc-version rectangle heuristic for Minimum Weighted Euclidean Matchings,
Reingold and Supowit [14, p. 53] solved a variation only for the /2 x 1 rectangle, in which the
two points are required to lie on opposite sides of the rectangle. And in his 1980 calculation of
the quantization error coefficient of a 2-dimensional lattice for the Euclidean Traveling Salesman
Problem [8, pp. 72-74], Goddyn [8] solved a much simpler variation for which one point is fixed
at the lower-left corner of a unit square. Apparently, none of these researchers were aware of the
relevant work by Ghosh and others. Several researchers have studied the more general problem of
computing the expected costs of random minimum-cost spanning trees on n > 2 vertices, but we
are aware only of experimental or asymptotic bounds (for example, see [7, 9, 11]).

The difficulty of the problem is not conceptual—it is simple to express the solution as a multiple
integral and to sketch a high-level plan for solving the integral. Rather, the difficulty lies solely in
the excruciatingly toilsome algebra necessary to solve the integral to produce a usable formula. For
example, in his 1993 probability textbook, Pitman {12, Prob. 21, p. 356| considers the problem on
the unit square and challenges the reader to bound its solution from above and below, admonishing
that even for the unit square, the calculation “is hard to do exactly by calculus.” It would be natural
to solve the integral with a symbolic math package, such as Macsyma, Maple, or Mathematica.
Although we did use these packages to verify some of our intermediate calculations, none of these
tools were able to solve Equation 1 without extensive hints from our manual sclution. Meticulously
applying elementary techniques, we relentlessly overcame all algebraic difficuities.

a/k a b Exact D Empirical D
1 1.000000 1.000000  0.52140540.247931  0.521598 £0.247950
2 1.414214 0.707107  0.569060£0.304693  0.569337 £0.304542
4 2.000000 0.500000  0.713743+0.445987  0.712530£0.445795
8  2.828427 0.353553  0.964207+0.651514  0.963945+0.651531
16 4.000000 0.250000  1.342640£0.935094  1.342688 £0.934585
32  5.656854 (.176777  1.889535:1.320736  1.888086+1.328148
84  8.000000 0.125000  2.668275+1.884032  2.667324+1.884120
128 11.313708 0.088388  3.7718842.665994  3.77142112.665872
256 16000000 0.062500  5.333591£3.770059  5.340682£3.772550
512 22827417 0.044194  7.5342573£5.333221  7.529635+5.331104
1024 32.000000 0.031250 10.666706+7.542428 10646558 £7.537217

Table 1: Results of Monte Carlo simulations for unit-area rectangles of dimensions a and b, for selected
aspect ratios 1 < a/b < 1024. Values of D are listed as means = standard deviations. Exact values are
computed from Equations 2 and 3; empirical values are based on 10° trials for sach rectangle.



Lazoff and Sherman, Expected wire length between two randomly chosen terminals—August 2, 1994 5

6 Open Problem

We conclude by posing the following related open problem: Derive an exact, closed-form expression
for the expected cost of minimum-cost spanning trees (respectively, minimum Steiner trees) con-
necting n randomly chosen points in an arbitrary rectangle, for small values of n > 2. For n = 3,
we conjecture that this problem is solvable by case analysis.
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Figure 1: Expected value of I} for rectangles of dimensicns a and b, as function of aspect ratio
r = a/b and rectangle area A = ab.



