> CMSC 435
> Introductory Computer Graphics Basic Ray
> Penny Rheingans
> UMBC

Announcements

Visibility Problem

- Rendering: converting a model to an image
- Visibility: deciding which objects (or parts) will appear in the image
- Object-order
- Image-order

Raytracing

- Given
- Scene
- Viewpoint
- Viewplane
- Cast ray from viewpoint through pixels into scene

Raytracing Algorithm

Given
List of polygons $\left\{\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots, \mathrm{P}_{\mathrm{n}}\right\}$
An array of intensity [x, y]
\{
For each pixel (x, y) \{
form a ray R in object space through the camera position C and the pixel (x, y)
Intensity [x, y] = trace (R)
\}

Display array Intensity
\}

Projection

- Perspective
- Line AB projects to A'B' (perspective projection)
- Parallel
- Line AB projects to $A^{\prime} \mathrm{B}^{\prime}$ (parallel projection)
- Projectors AA' and BB' are parallel

Simple Parallel Tform

View plane is normal to direction of projection

$$
\begin{gathered}
\mathrm{x}_{\mathrm{s}}=\mathrm{x}_{\mathrm{v}}, \mathrm{y}_{\mathrm{s}}=\mathrm{y}_{\mathrm{v}}, \mathrm{z}_{\mathrm{s}}=0 \\
T_{\text {ort }}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

Simple Perspective Tform

- Assume line from center of projection to center of view plane parallel to view plane normal.
- Center of projection is at origin.
- Have
- Want

Simple Perspective Tform

- Have
- Want
- By similar triangles:
$\frac{x_{s}}{d}=\frac{x_{v}}{z_{v}}, \frac{y_{s}}{d}=\frac{y_{v}}{z_{v}}$

$\Rightarrow x_{s}=\frac{x_{v}}{z_{v} / d}, y_{s}=\frac{y_{v}}{z_{v} / d}$

Simple Perspective Tform

- Have
, want
- By similar triangles:

$$
\frac{x_{s}}{d}=\frac{x_{v}}{z_{v}}, \frac{y_{s}}{d}=\frac{y_{v}}{z_{v}} \Rightarrow x_{s}=\frac{x_{v}}{z_{v} / d}, y_{s}=\frac{y_{v}}{z_{v} / d}
$$

- In homogeneous coords $\mathrm{x}=\mathrm{x}_{\mathrm{v}}, \mathrm{y}=\mathrm{y}_{\mathrm{v}}, \mathrm{z}=\mathrm{z}_{\mathrm{v}}, \mathrm{w}=\mathrm{z}_{\mathrm{v}} / \mathrm{d}$
$\left[\begin{array}{l}x \\ y \\ z \\ w\end{array}\right]=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 / d & 0\end{array}\right]\left[\begin{array}{l}x_{v} \\ y_{v} \\ z_{v} \\ 1\end{array}\right]$
- Do perspective divide to get screen coords

$$
\mathrm{x}_{\mathrm{s}}=\mathrm{x} / \mathrm{w}, \mathrm{y}_{\mathrm{s}}=\mathrm{y} / \mathrm{w}, \mathrm{z}_{\mathrm{s}}=\mathrm{z} / \mathrm{w}=\mathrm{d}
$$

Raytracing Algorithm

Given
List of polygons $\left\{\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots, \mathrm{P}_{\mathrm{n}}\right\}$
An array of intensity [x, y]
\{
For each pixel (x, y) \{
form a ray R in object space through the
camera position C and the pixel (x, y)
Intensity [x, y] = trace (R)
\}
Display array Intensity
\}

Raytracing Algorithm

```
intensity Function trace ( Ray )
{
        for each polygon P in the scene
            calculate the intersection of P and the ray R
        if ( The ray R hits no polygon )
            return ( background intensity )
        else {
            find the polygon P with the closest
                intersection
            calculate intensity I at intersection point
            return ( I ) // more to come here later
        }
}
```


Raytracing Algorithm

```
intensity Function trace ( Ray )
{
    calculate the intersection of nearest polygon P
            and the ray R
    if ( The ray R hits no polygon )
            return ( background intensity )
        else {
            find the polygon P with the closest
            intersection
            calculate intensity I at intersection point
            return ( Illuminate( I, trace(reflect ),
            trace( refract ) ) )
        }
}
```


Computing Viewing Rays

- Parametric ray
$-\mathbf{p}(\mathrm{t})=\mathbf{e}+\mathrm{t}(\mathrm{s}-\mathbf{e})$
- Camera frame
- E: eye point
- u,v,w: basis vectors pointing right, up, backward
- Screen position
- orthographic
- $\mathrm{u}_{\mathrm{s}}=1+(\mathrm{r}-1)(\mathrm{i}+0.5) / \mathrm{n}_{\mathrm{x}}$
- $\mathrm{v}_{\mathrm{s}}=\mathrm{b}+(\mathrm{u}-\mathrm{b})(\mathrm{j}+0.5) / \mathrm{n}_{\mathrm{y}}$
- $\mathbf{s}=\left(\mathbf{e}+\mathbf{u}_{\mathbf{s}} \mathbf{u}+\mathrm{v}_{\mathbf{s}} \mathbf{v}\right)-\mathbf{w}$
- Perspective
- $\mathrm{u}_{\mathrm{s}}=1+(\mathrm{r}-1)(\mathrm{i}+0.5) / \mathrm{n}_{\mathrm{x}}$
- $\mathrm{v}_{\mathrm{s}}=\mathrm{b}+(\mathrm{u}-\mathrm{b})(\mathrm{j}+0.5) / \mathrm{n}_{\mathrm{y}}$
- $\mathbf{s}=(\mathbf{e})+u_{s} \mathbf{u}+\mathrm{v}_{\mathrm{s}} \mathbf{v}-\mathrm{d} \mathbf{w}$

Calculating Intersections

- Define ray parametrically:
$\mathrm{x}=\mathrm{x}_{0}+\mathrm{t}\left(\mathrm{x}_{1}-\mathrm{x}_{0}\right)=\mathrm{x}_{0}+\mathrm{t} \Delta \mathrm{x}$
$\mathrm{y}=\mathrm{y}_{0}+\mathrm{t}\left(\mathrm{y}_{1}-\mathrm{y}_{0}\right)=\mathrm{y}_{0}+\mathrm{t} \Delta \mathrm{y}$
$\mathrm{z}=\mathrm{z}_{0}+\mathrm{t}\left(\mathrm{z}_{1}-\mathrm{z}_{0}\right)=\mathrm{z}_{0}+\mathrm{t} \Delta \mathrm{z}$
- If ($\mathrm{x} 0, \mathrm{y} 0, \mathrm{z} 0$) is center of projection and ($\mathrm{x} 1, \mathrm{y} 1$, zl) is center of pixel, then
$0<=\mathrm{t}<=1$: points between those locations
$\mathrm{t}<0$: points behind viewer
$\mathrm{t}>1$: points beyond view window

Ray-Sphere Intersection

- Sphere in vector form
$-(p-c) \cdot(p-c)-R^{2}=0$
- Ray
$-\mathbf{p}(\mathrm{t})=\mathbf{e}+\mathrm{td}$
- Intersection with implicit surface $\mathrm{f}(\mathrm{t})$ when
$-\mathrm{f}(\mathrm{p}(\mathrm{t}))=0$
$-(\mathrm{e}+\mathrm{t}(\mathrm{s}-\mathrm{e})-\mathrm{c}) \cdot(\mathrm{e}+\mathrm{t}(\mathrm{s}-\mathrm{e})-\mathrm{c})-\mathrm{R}^{2}=0$
$-(\mathbf{d} \cdot \mathbf{d}) \mathrm{t}^{2}+2 \mathbf{d} \cdot(\mathbf{e}-\mathbf{c}) \mathrm{t}+(\mathbf{e}-\mathbf{c}) \cdot(\mathbf{e}-\mathbf{c})-\mathrm{R}^{2}=0$
$-\mathrm{t}=\left(-\mathbf{d} \cdot(\mathrm{e}-\mathbf{c}) \pm \operatorname{sqrt}\left((\mathbf{d} \cdot(\mathbf{e}-\mathbf{c}))^{2}(\mathbf{d} \cdot \mathbf{d})\left((\mathrm{e}-\mathbf{c}) \cdot(\mathbf{e}-\mathbf{c})-\mathrm{R}^{2}\right) /(\mathbf{d} \cdot \mathbf{d})\right.\right.$
- Normal at intersection p
$-\mathrm{n}=(\mathrm{p}-\mathrm{c}) / \mathrm{R}$

Calculating Intersections: Pgons

- Given ray and polygon:
$\mathrm{x}=\mathrm{x}_{0}+\mathrm{t}\left(\mathrm{x}_{1}-\mathrm{x}_{0}\right)=\mathrm{x}_{0}+\mathrm{t} \Delta \mathrm{x}$
$y=y_{0}+t\left(y_{1}-y_{0}\right)=y_{0}+t \Delta y$
$\mathrm{z}=\mathrm{z}_{0}+\mathrm{t}\left(\mathrm{z}_{1}-\mathrm{z}_{0}\right)=\mathrm{z}_{0}+\mathrm{t} \Delta \mathrm{z}$
Plane : $\mathrm{Ax}+\mathrm{By}+\mathrm{Cz}+\mathrm{D}=0$

1. What is intersection of ray and plane containing pgon?

- Substituting for $\mathrm{x}, \mathrm{y}, \mathrm{z}$:
$-\quad \mathrm{A}\left(\mathrm{x}_{0}+\mathrm{t} \Delta \mathrm{x}\right)+\mathrm{B}\left(\mathrm{y}_{0}+\mathrm{t} \Delta \mathrm{y}\right)+\mathrm{C}\left(\mathrm{z}_{0}+\mathrm{t} \Delta \mathrm{z}\right)+\mathrm{D}=0$
$-\quad \mathrm{t}(\mathrm{A} \Delta \mathrm{x}+\mathrm{B} \Delta \mathrm{y}+\mathrm{C} \Delta \mathrm{z})+\left(\mathrm{Ax}_{0}+\mathrm{By}_{0}+\mathrm{Cz}_{0}+\mathrm{D}\right)=0$
$-\quad \mathrm{t}=-\left(\mathrm{Ax}_{0}+\mathrm{By}_{0}+\mathrm{Cz}+\mathrm{D}\right) /(\mathrm{A} \Delta \mathrm{x}+\mathrm{B} \Delta \mathrm{y}+\mathrm{C} \Delta \mathrm{z})$

2. Does ray/plane intersection point lie in polygon?

- Substitute into line equations for pgon edges: does point lie inside all edges? (only works for convex)
- Count edge crossings of ray from point to infinity

Point in Polygon?

- Is P in polygon?
- Cast ray from P to
 infinity
- One crossing -> inside
- Zero, Two crossings -> outside

Point in Polygon?

- Is P in concave polygon?
- Cast ray from P to infinity
- Odd crossings -> inside
- Even crossings -> outside

What happens?

Ray-Triangle Intersection

- Intersection of ray with barycentric triangle
$-\mathbf{e}+\mathrm{td}=\mathbf{a}+\beta(\mathbf{b}-\mathbf{a})+\gamma(\mathbf{c}-\mathbf{a})$
- In triangle if $\beta>0, \gamma>0, \beta+\gamma<1$
boolean raytri (ray r, vector a, vector b, vector c,
interval [$\left.t_{0}, t_{1}\right]$) \{
compute t
if $\left(\left(t<t_{0}\right)\right.$ or $\left.\left(t>t_{1}\right)\right)$
return (false)
compute γ
if $((\gamma<0)$ or $(\gamma>1))$
return (false)
compute β
if $((\beta<0)$ or $(\beta>1))$
return (false)
return true
\}

Raytracing Characteristics

- Good
- Simple to implement
- Minimal memory required
- Easy to extend
- Bad
- Aliasing
- Computationally intensive
- Intersections expensive (75-90\% of rendering time)
- Lots of rays

Basic Concepts

- Terms
- Illumination: calculating light intensity at a point (object space; equation) based loosely on physical laws
- Shading: algorithm for calculating intensities at pixels (image space; algorithm)
- Objects
- Light sources: light-emitting
- Other objects: light-reflecting
- Light sources
- Point (special case: at infinity)
- distributed

Ambient light

$\mathrm{I}_{\mathrm{a}}=$ intensity of ambient light
$\mathrm{K}_{\mathrm{a}}=$ reflection coefficient
$\mathrm{I}=\mathrm{k}_{\mathrm{a}} \mathrm{I}_{\mathrm{a}}=$ reflected intensity

Lambert's Law

- Intensity of reflected light related to orientation

Lambert's Law

- Specifically: the radiant energy from any small surface area dA in any direction θ relative to the surface normal is proportional to $\cos \theta$

Diffuse Reflection

$$
\begin{aligned}
\mathrm{I}_{\mathrm{diff}} & =\mathrm{k}_{\mathrm{d}} \mathrm{I}_{\mathrm{l}} \cos \theta \\
& =\mathrm{k}_{\mathrm{d}} \mathrm{I}_{\mathrm{l}}(\mathrm{~N} \cdot \mathrm{~L})
\end{aligned}
$$

Combined Model

$$
\begin{aligned}
\mathrm{I}_{\text {total }} & =\mathrm{I}_{\mathrm{amb}}+\mathrm{I}_{\text {diff }} \\
& =\mathrm{k}_{\mathrm{a}} \mathrm{I}_{\mathrm{a}}+\mathrm{k}_{\mathrm{d}} \mathrm{I}_{1}(\mathrm{~N} \cdot \mathrm{~L})
\end{aligned}
$$

Adding color:

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{R}}=\mathrm{k}_{\mathrm{a}} \mathrm{I}_{\mathrm{aR}} \mathrm{O}_{\mathrm{dR}}+\mathrm{k}_{\mathrm{d}} \mathrm{I}_{\mathrm{IR}} \mathrm{O}_{\mathrm{dR}}(\mathrm{~N} \cdot \mathrm{~L}) \\
& \mathrm{I}_{\mathrm{G}}=\mathrm{k}_{\mathrm{a}} \mathrm{I}_{\mathrm{aG}} \mathrm{O}_{\mathrm{dG}}+\mathrm{k}_{\mathrm{d} \mathrm{I}_{\mathrm{G}} \mathrm{O}_{\mathrm{dG}}(\mathrm{~N} \cdot \mathrm{~L})}^{\mathrm{I}_{\mathrm{B}}=\mathrm{k}_{\mathrm{a}} \mathrm{a}_{\mathrm{aB}} \mathrm{O}_{\mathrm{dB}}+\mathrm{k}_{\mathrm{d}} \mathrm{I}_{\mathrm{BB}} \mathrm{O}_{\mathrm{dB}}(\mathrm{~N} \cdot \mathrm{~L})}
\end{aligned}
$$

For any wavelength λ :
$\mathrm{I}_{\lambda}=\mathrm{k}_{\mathrm{a}} \mathrm{I}_{\mathrm{a} \lambda} \mathrm{O}_{\mathrm{d} \lambda}+\mathrm{k}_{\mathrm{d}} \mathrm{I}_{1 \lambda} \mathrm{O}_{\mathrm{d} \lambda}(\mathrm{N} \cdot \mathrm{L})$

Adding Attenuation

- Attenuation of light source due to distance
$-\mathrm{F}_{\text {att }}=1 / \mathrm{d}_{\mathrm{L}}{ }^{2}$ or $\min \left(1 /\left(\mathrm{C}_{1}+\mathrm{C}_{2} \mathrm{~d}_{\mathrm{L}}+\mathrm{C}_{3} \mathrm{~d}_{\mathrm{L}}{ }^{2}\right), 1\right)$
- where d_{L} is distance to the light
- Behavior of $1 / \mathrm{d}_{L^{2}}$
- Far from light: little change
- Near light: much change
- Accurate, but looks wrong
- Atmospheric attenuation of color
$-\mathrm{I}_{\lambda}{ }^{\prime}=\mathrm{S}_{0} \mathrm{I}_{\lambda}+\left(1-\mathrm{S}_{0}\right) \mathrm{I}_{\mathrm{d} \lambda \lambda}$
- where $\mathrm{I}_{\mathrm{dc} \mathrm{\lambda}}$ is the depth cue color
- $\mathrm{S}_{\mathrm{O}}=\mathrm{S}_{\mathrm{b}}+\left(\mathrm{Z}_{\mathrm{O}}-\mathrm{Z}_{\mathrm{b}}\right)\left(\mathrm{S}_{\mathrm{f}}-\mathrm{S}_{\mathrm{b}}\right) /\left(\mathrm{Z}_{\mathrm{f}}-\mathrm{Z}_{\mathrm{b}}\right)$
depth
cue
scale

Specular Reflection

For specific wavelength λ
$\mathrm{I}_{\mathrm{spec} \lambda}=\mathrm{k}_{\mathrm{s} \lambda} \mathrm{I}_{\lambda} \cos ^{\mathrm{n}} \phi$
$=\mathrm{k}_{\mathrm{s} \lambda} \mathrm{I}_{\lambda}(\mathrm{R} \cdot \mathrm{V})^{\mathrm{n}}$
Not dependent on surface color \rightarrow white highlights

Specular Reflection

For specific wavelength λ
$\mathrm{I}_{\text {spec } \lambda}=\mathrm{k}_{\mathrm{s} \lambda} \mathrm{I}_{\lambda} \mathrm{O}_{\mathrm{s} \lambda} \cos ^{\mathrm{n}} \phi$

$$
=\mathrm{k}_{\mathrm{s} \lambda} \mathrm{I}_{\lambda} \mathrm{O}_{\mathrm{s} \lambda}(\mathrm{R} \cdot \mathrm{~V})^{\mathrm{n}}
$$

Dependent on surface color \rightarrow colored highlights

Specular Reflection

- Dull highlights
- Gradual falloff
- Approximated by $\cos \phi$

Specular Reflection

- Glossy highlights
- Steeper falloff
- Approximated by $\cos ^{8} \phi$

Specular Reflection

- Shiny highlights
- Steep falloff
- Approximated by $\cos ^{128} \phi$

Calculating the Reflection Vector

- Specular:
$\mathrm{I}_{\mathrm{spec} \lambda}=\mathrm{k}_{\mathrm{s} \lambda} \mathrm{I}_{\lambda} \mathrm{O}_{\mathrm{s} \lambda}(\mathrm{R} \cdot \mathrm{V})^{\mathrm{n}}$
- Have L, want R

Calculating the Reflection Vector

- Mirror L about N

$$
\begin{aligned}
\mathrm{R} & =\mathrm{N} \cos \theta+\mathrm{S} \\
& =2 \mathrm{~N} \cos \theta-\mathrm{L} \\
& =2 \mathrm{~N}(\mathrm{~N} \cdot \mathrm{~L})-\mathrm{L}
\end{aligned}
$$

Where N, L are unit length Projection of L on N is $\mathrm{N} \cos \theta$ $\mathrm{S}=\mathrm{N} \cos \theta-\mathrm{L}$

- $\mathrm{I}_{\mathrm{spec} \mathrm{\lambda}}=\mathrm{k}_{\mathrm{s} \lambda} \mathrm{I}_{\lambda} \mathrm{O}_{\mathrm{s} \lambda}(\mathrm{R} \cdot \mathrm{V})^{\mathrm{n}}$
$=\mathrm{k}_{\mathrm{s} \lambda} \mathrm{I}_{\lambda} \mathrm{O}_{\mathrm{s} \lambda}(2 \mathrm{~N}(\mathrm{~N} \cdot \mathrm{~L})-\mathrm{L} \cdot \mathrm{V})^{\mathrm{n}}$

Calculating the Reflection Vector

- Alternatively: use halfway vector H
- $\mathrm{H}=(\mathrm{L}+\mathrm{V}) / \mathrm{L}+\mathrm{V} \mid$
- Maximum highlight when $\mathrm{H}=\mathrm{N}$ (because then $\mathrm{R}=\mathrm{V}$)
$-\mathrm{I}_{\text {spec }}=\mathrm{k}_{\mathrm{s}} \mathrm{I}_{(}(\mathrm{H} \cdot \mathrm{N})^{\mathrm{n}}$
- $\mathrm{H} \cdot \mathrm{N}=\cos \alpha$
- Two methods can give different results $\alpha \neq \phi$

Combined Model

$$
\begin{aligned}
\mathrm{I}_{\text {total }} & =\mathrm{I}_{\text {amb }}+\mathrm{I}_{\text {diff }}+\mathrm{I}_{\text {spec }} \\
& =\mathrm{k}_{\mathrm{a}} \mathrm{I}_{\mathrm{a}}+\mathrm{k}_{\mathrm{d}} \mathrm{I}_{1}(\mathrm{~N} \cdot \mathrm{~L})+\mathrm{k}_{\mathrm{s}} \mathrm{I}_{1}(\mathrm{~N} \cdot \mathrm{H})^{\mathrm{n}}
\end{aligned}
$$

Multiple lights:

$$
=\mathrm{k}_{\mathrm{a}} \mathrm{I}_{\mathrm{a}}+\sum\left(\mathrm{k}_{\mathrm{d}} \mathrm{I}_{\mathrm{li}}(\mathrm{~N} \cdot \mathrm{~L})+\mathrm{k}_{\mathrm{s}} \mathrm{I}_{\mathrm{li}}(\mathrm{~N} \cdot \mathrm{H})^{\mathrm{n}}\right)
$$

By wavelength (white highlights):

$$
=\mathrm{k}_{\mathrm{a}} \mathrm{I}_{\mathrm{a}} \mathrm{O}_{\mathrm{d} \lambda}+\sum\left(\mathrm{k}_{\mathrm{d}} \mathrm{I}_{\mathrm{li}}(\mathrm{~N} \cdot \mathrm{~L}) \mathrm{O}_{\mathrm{d} \lambda}+\mathrm{k}_{\mathrm{s}} \mathrm{I}_{\mathrm{li}}(\mathrm{~N} \cdot \mathrm{H})^{\mathrm{n}}\right)
$$

By wavelength (colored highlights):

$$
=\mathrm{k}_{\mathrm{a}} \mathrm{I}_{\mathrm{a}} \mathrm{O}_{\mathrm{d} \lambda}+\sum\left(\mathrm{k}_{\mathrm{d}} \mathrm{I}_{\mathrm{li}}(\mathrm{~N} \cdot \mathrm{~L}) \mathrm{O}_{\mathrm{d} \lambda}+\mathrm{k}_{\mathrm{s}} \mathrm{I}_{\mathrm{li}}(\mathrm{~N} \cdot \mathrm{H})^{\mathrm{n}} \mathrm{O}_{\mathrm{s} \lambda}\right)
$$

By wavelength (more metallic highlights):

$$
=\mathrm{k}_{\mathrm{a}} \mathrm{I}_{\mathrm{a}} \mathrm{O}_{\mathrm{d} \lambda}+\sum\left(\mathrm{k}_{\mathrm{d}} \mathrm{I}_{\mathrm{li}}(\mathrm{~N} \cdot \mathrm{~L}) \mathrm{O}_{\mathrm{d} \lambda}+\mathrm{k}_{\mathrm{s}}(\lambda, \theta) \mathrm{I}_{\mathrm{li}}(\mathrm{~N} \cdot \mathrm{H})^{\mathrm{n}} \mathrm{O}_{\mathrm{s} \lambda}\right)
$$

```
    Basic Raytracing Program
{
    for each pixel (x, y) do {
        compute viewing ray
        if (ray hit an object with t>0) then {
            compute n
            evaluate shading model
            set pixel to that color
            }
        else
            set pixel color to background color
    }
```


Shadow Algorithm

```
Function raycolor(ray e+td, real to, real t t )
{
    hit-record rec, srec
    if (scene->hit(e+td, th, th) then {
            p = e+(rec.t)d
            color c = rec.ka
            if (not scene->hit(p+sl, \varepsilon, \infty, srec) then {
            vector h = unit(unit(l)+unit(-d))
            c = c + rec.kd
                    rec.k
                }
            return c
        }
        else
        return background color
}
```


Effects

- Reflection
- Calculate ray direction $-\mathrm{r}=\mathrm{d}-2(\mathrm{~d} \bullet \mathrm{n}) \mathrm{n}$
- d points from eye to surface
- Trace ray
- m = raycolor(p+sr, $\varepsilon, \infty)$
- Composite
$-\mathrm{c}=\mathrm{c}+\mathrm{k}_{\mathrm{m}} \mathrm{m}$

Effects

- Refraction

