Quantum Transport Devices Based on Resonant Tunneling

> Reza M. Rad UMBC

Based on pages 407-422 of "Nanoelectronics and Information Technology", Rainer Waser

Introduction

 Some general aspects of resonant tunneling diodes will be discussed
 RTDs can be considered as devices which are in active competition with conventional CMOS

> Transfer Matrix Method

- Electrons have a wave like character
- In structures with dimensions in the range of electron wavelength, quantum mechanical transport becomes relevant
- One of these transport mechanisms is the tunneling process
- Electrons can penetrate through and traverse a potential barrier with a finite transmission probability independent of temperature
- In classical view electrons can overcome a potential barrier only thermodynamically

- Envelope function description of electron state : rapid changing electron potential is approximated with an envelope potential
- Envelope function is based on effective mass description of the band structure and leads to electron effective mass Schrödinger equation :

$$\left[-\frac{\overline{h}^2}{2}\frac{d}{dz}\frac{1}{m^*(z)}\frac{d}{d(z)}+\Phi(z)\right]\Psi(z)=W_z\Psi(z)$$

 $\Psi(z)$: electron wave function, W_z : electron energy is Z direction m^{*}: electron effective mass, $\Phi(z)$: potential energy at the conduction band minimum

- Occupation probabilities can be predicted from absolute square of wave function $|\Psi(z)|^2$
- Consider a sequence of n different layers (fig 1) with different potential energies (φ_i) and electron effective masses (m^{*}_i)

Figure 1: Sequence of n different layers; in each layer the effective mass m_i^* and the potential Φ_i was assumed to be constant.

 Ψ_i(z) can be written as a superposition of propagating waves in z and –z direction with amplitudes A_i and B_i

$$\Psi_i(z) = A_i e^{ik_i z} + B_i e^{-ik_i z} \coloneqq A_i \Psi_{i+} + B_i \Psi_{i-}$$

boundary conditions :

$$\Psi_{i}(z_{i}) = \Psi_{i+1}(z_{i})$$
$$\frac{1}{m_{i}^{*}} \frac{d}{dz} \Psi_{i}(z_{i}) = \frac{1}{m_{i+1}^{*}} \frac{d}{dz} \Psi_{i+1}(z_{i})$$

In matrix form :

$$definition: TM_{i} \coloneqq \begin{bmatrix} \Psi_{i+} & \Psi_{i-} \\ \frac{1}{m_{i}} \Psi_{i+}^{'} & \frac{1}{m_{i}} \Psi_{i-}^{'} \end{bmatrix}$$
$$TM_{1(z=z1)} \begin{bmatrix} A_{1} \\ B_{1} \end{bmatrix} = TM_{2(z=z1)} \begin{bmatrix} A_{2} \\ B_{2} \end{bmatrix}, TM_{2(z=z2)} \begin{bmatrix} A_{2} \\ B_{2} \end{bmatrix} = TM_{3(z=z2)} \begin{bmatrix} A_{3} \\ B_{3} \end{bmatrix}, \dots$$
$$TM_{n-1(z=z_{n-1})} \begin{bmatrix} A_{n-1} \\ B_{n-1} \end{bmatrix} = TM_{n(z=z_{n-1})} \begin{bmatrix} A_{n} \\ B_{n} \end{bmatrix},$$

 Amplitudes of the propagating waves in z and –z direction in last layer can be written as:

$$\begin{bmatrix} A_n \\ B_n \end{bmatrix} = TM \begin{bmatrix} A_1 \\ B_1 \end{bmatrix}$$

 $TM = TM_{n(z=z_{n-1})}^{-1} ... TM_{2(z=z^2)} TM_{2(z=z^2)}^{-1} TM_{1(z=z^1)}$

• Transmission probability Tc can be written as the ratio of outgoing to the incoming quantum mechanical probability current: $k m_{*}^{*} |A|^{2} \det TM$

$$T_{c} = \frac{k_{n}}{k_{1}} \frac{m_{1}^{+}}{m_{n}^{*}} \frac{|A_{n}|^{2}}{|A_{1}|^{2}}, A_{n} = \frac{\det TM}{TM_{22}} A$$
$$\det TM = \frac{k_{1}m_{n}}{k_{n}m_{1}}$$
$$T_{c} = \frac{k_{1}}{k_{n}} \frac{m_{n}^{*}}{m_{1}^{*}} \frac{1}{|TM_{22}|^{2}}$$

Tunneling through a single barrier A single potential barrier is shown in figure (fig2) AlAs barrier embedded in GaAs

Figure 2: Schematic band diagram of a single AlAs barrier (a) and the corresponding tunneling transmission probability for different barrier thicknesses (b).

- Transmission probability is calculated as a function of electron energy
- Finite transmission probability for electrons below potential height of 1 eV (tunneling)
- The smaller the barrier thickness the higher the tunneling probability

- Tunneling through a double barrier structure
 - Figure (fig 3) shows the case of tunneling through a double barrier structure
 - 4 nm tick AIAs barriers separated by a 5 nm GaAs well

Figure 3: Schematic band diagram of a double barrier structure of AlAs embedded in GaAs (a) and the corresponding tunneling transmission probability (b).

- In contrast to single barrier, there are three sharp maxima below 1 eV
 - Interpreted as quasi-bound states with narrow energetic bandwidth through which electrons can tunnel through open channels in the barrier
- This is not describable by a sequential picture of two wells
- Quantum mechanical devices cannot be put too close together without changing the characteristics of the single device

Resonance properties

- Resonant tunneling diode is the experimental realization of double barrier structure
- Figure (fig 5) shows the behavior of resonances
- A resonance can be considered as a channel which opens electron flux, current density first increases then decreases

Current voltage characteristics

- Current density can be calculated based on transmission probability and the corresponding occupation densities
- Text gives a relation for calculating current density based on the potential profile φ of the structure
- The potential can be obtained by coupling effective mass Schrödinger equation with Poisson equation in a self-consistent manner

- Figure (fig 6) shows a typical currentvoltage characteristic
- Negative differential resistance is a main feature

 The quantum device simulation package NEMO (NanoElectronic MOdeling) simulates a wide variety of quantum devices including RTDs

Interface and growth temperature

(fig 8)

- PVR (Peak to Valley Ratio) is a merit of quality for RTDs
- Highest PVR coincides with sharpest interface between barriers and the well
- Temperature range between 580 and 600 results in highest PVR for AIAs/GaAs RTDs

> Operation Speed of RTDs

- One of the most attractive features of RTDs is their potential for extremely high speed operation
- RTDs with 712 GHz oscillation and 1.5 ps switching times have been reported
- It is important to differentiate "tunneling time" and "RC time"
- Tunneling time is in order of the resonant-state lifetime or escape time which is the time it takes an electron in the quantum well to escape from it:

- Shorter tunneling times can be obtained with thinner and lower barries
- Various non-idealities affect tunneling time in real RTDs
- Tunneling time determines the intrinsic delay of RTDs

- In most applications, operation speed of RTDs is limited not by the intrinsic tunneling time but by the charging time of RTD capacitance
- Equivalent circuit of RTDs is shown in figure (fig 10)
- The capacitance-voltage curve is also shown in the figure
 (a)

> Applications of RTDs

- Several applications exploit negative differantial resistance (NDR) of RTDs
- Resonant tunneling transistors
 - To make a three terminal tunneling device RTDs are merged with conventional transistors and resonant tunneling bipolar transistors, resonant tunneling hot electron transistors and gated RTDs are fabricated

- Gated RTDs have Schottkey or junction gates around the emitter to control RTD area
- Concept of Monostable-Bistable transition logic elements (MOBILES)
 - The ultrahigh-speed logic gate : MOBILE exploits NDR of the RTDs
 - A circuit consisting of two NDR devices connected serially, to exploit monostable to bistable transition
 - Bias voltage is oscillated to generate the transition
 - NDR devices with third terminal are used to modulate their peak currents

- Figure (fig 12) shows the load curves and the corresponding potential energy diagrams
- Figure (fig 13) shows the operation of a simple

Figure 13: Circuit configuration and the operation wave form of the simple MOBILE inverter. Traces are the clock, input, and output voltages, from top to bottom, respectively.

Integration Technology for MOBILES

- NDR devices with third terminal are required for MOBILEs
- Gated RTDs were first used as three terminal NDR device, however they have disadvantages including high capacitance, difficult to optimize the layer structure, low PVR and difficult to fabricate
- To overcome the problems, RTDs connected in parallel with HEMTs were fabricated

Resonant Tunneling Devices > Examples of MOBILEs

• Figure (fig 17, 18) shows implementation of a weighted sum threshold logic function

Figure 17: The circuit configuration and the operation of three-input MOBILE. The traces are the input 1 (w = 1), the input 2 (w = 2), the input 3 (w = 4), and the output, from top to bottom, respectively. The weighted sum (S) is shown at the bottom of the figure as a reference. The threshold value is selected by the control voltage, V_{con} , and it is chosen to be 2.5 in this figure.

Resonant Tunneling Devices
 Figure (19, 20, 21) demonstrate a test circuit for evaluating operation speed of the MOBILE and the estimated power consumption

Figure 20: The operation waveform of the MOBILE D-FF (a)

(b)

(a) with the input of a pseudo-random bit stream at 35 Gb/s,

(b) with an input bit pattern of (0111010000101110).(The upper trace in b) is the complement of the input data stream.)

- One of the promising applications of MOBILEs is analog-to-digital-converter (ADC)
- Figure (fig 22) shows a block diagram of a ΔΣ ADC

- ΔΣ modulator converts analog input into a pulse density at a frequency much higher than the Nyquist rate
- The filter cuts the high frequency component and down converts pulse density into the high-resolution digital output at Nyquist rate
- Higher resolution can be obtained by increasing sampling rate
- This method does not require a high accuracy analog component

- MOBILEs can be used to fabricate high performance $\Delta\Sigma$ modulator
- Adder and shifter circuits used in digital filter can also be fabricated by MOBILEs
- Figure (fig 23) shows a ΔΣ modulator based on MOBILE

