
Programmable Logic Devices Verilog VIII CMPE 415

1 (11/30/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Synthesis of Sequential Logic
A Verilog description of sequential logic can be synthesized only if certain
conditions are met.

In general, the event control expression of a cyclic behavior must be synchro-
nized to a single edge (posedge or negedge but not both) of a single clk.

Multiple behaviors need not have the same synchronizing signal, nor the
same edge of the same signal, but all clks should have the same period.

This yields a single clock domain for optimization.

Commonly synthesized sequential logic:
• Data register, latch, shift register
• Accumulator, parallel/serial converter, binary counter, BCD counter
• FSM, synchronizer, pulse generator, timing generator, clk generator
• Event counter, memory address counter, FIFO memory pointer
• Sequencer, controller, edge detector

Programmable Logic Devices Verilog VIII CMPE 415

2 (11/30/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Synthesis of Latches
Level-sensitive behavior is characterized by an output that is affected by the
input only while a control signal is asserted.

Otherwise, the input is ignored and the output remains constant.

Synthesis tools infer a latch when they
• Detect a level-sensitive behavior (no edge constructs)
• A register variable is assigned value in some threads of activity but not oth-

ers, e.g., an incomplete if stmt.

The synthesis tool must identify the datapaths and their control signals.

The control signal is the signal whose value controls the branching of the
activity flow to the stmts that assign/don’t assign value to a reg variable.

If a register is assigned value in all activity flows, a latch is inferred if a path
assigns a variable its own value, i.e., if it has feedback.

Otherwise, it’s combinational.

Programmable Logic Devices Verilog VIII CMPE 415

3 (11/30/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Synthesis of Latches
General rules:
• Latches implement incompletely-specified assignments in case and if

stmts.
• If a case stmt has a default assignment in which the variable is explicitly

assigned to itself, synthesis will choose a MUX structure with feedback.
• If an if stmt assigns a variable to itself, a MUX with feedback is used.
• If the behavior is edge-sensitive, incomplete case and if stmts synthesize to

FFs.
• If feedback is present, the FF output is fed back using MUX.
• A latch is inferred when the conditional operator, ? ... :, is implemented

with feedback. Actual implementation depends on the context.
If conditional operator is used in a continuous assignment, the result is a
MUX with feedback.

If used in an edge-sensitive cyclic behavior, the result is a register with a
gated datapath in a feedback configuration.

If used in a level-sensitive cyclic behavior, the result is a hardware latch.

Programmable Logic Devices Verilog VIII CMPE 415

4 (11/30/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Synthesis of Latches
Be aware that explicit gate-level latches, e.g., cross-coupled nand gates, and
other combinational feedback, will not be synthesized into hardware
latches.

The synthesis tools will detect this and issue a warning.

Here, the case list is incomplete (only 5 of 8)

Simulates efficiently but does not synthesize by all tools.

module latch_case_assign(latch_out, latch_in, set, clear, enable);
input latch_in, enable, set, clear;
output latch_out;
reg latch_out;

always @(enable or set or clear)
case ({enable, set, clear})

3’b000: assign latch_out = latch_in; //Transparent mode
3’b110: assign latch_out = 1’b1; // Set
3’b010: assign latch_out = 1’b1; // Set
3’b101: assign latch_out = 1’b0; // Clear
3’b001: assign latch_out = 1’b0; // Clear
default: deassign latch_out; // Hold residual value

endcase
endmodule

Programmable Logic Devices Verilog VIII CMPE 415

5 (11/30/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Synthesis of Latches
This one is synthesizable by all tools but yields feedback logic.

module latch_case1(latch_out, latch_in, set, clear, enable);
input latch_in, enable, set, clear;
output latch_out;
reg latch_out;

always @(enable or set or clear or latch_in) // latch_in in activity list.
case ({enable, set, clear})

3’b000: assign latch_out = latch_in;
3’b110: assign latch_out = 1’b1;
3’b010: assign latch_out = 1’b1;
3’b101: assign latch_out = 1’b0;
3’b001: assign latch_out = 1’b0;
default: latch_out = latch_out; // Explicit assignment of residual value

endcase
endmodule

MUX

latch_in

enable

set
clear

latch_out

Programmable Logic Devices Verilog VIII CMPE 415

6 (11/30/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Synthesis of Latches
This one is synthesizable by all tools and generates a latch.

module latch_case2(latch_out, latch_in, set, clear, enable);
input latch_in, enable, set, clear;
output latch_out;
reg latch_out;

always @(enable or set or clear or latch_in) // latch_in in activity list.
case ({enable, set, clear})

3’b000: assign latch_out = latch_in;
3’b110: assign latch_out = 1’b1;
3’b010: assign latch_out = 1’b1;
3’b101: assign latch_out = 1’b0;
3’b001: assign latch_out = 1’b0;

endcase
endmodule

latch_in

enable
clear

// Incomplete specification

Latch

latch_out

MUX

set

Programmable Logic Devices Verilog VIII CMPE 415

7 (11/30/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Synthesis of Latches
As another example:

module latch_if1(data_out, data_in, latch_enable);
input [3:0] data_in;
output [3:0] data_out;
input latch_enable;
reg [3:0] data_out;

always @(latch_enable or data_in)
if (latch_enable) data_out = data_in;
else data_out = data_out;

endmodule

// MUX with feedback

module latch_if2(data_out, data_in, latch_enable);
input [3:0] data_in;
output [3:0] data_out;
input latch_enable;
reg [3:0] data_out;

always @(latch_enable or data_in)
if (latch_enable) data_out = data_in;

endmodule

// Incompletely specified
// yields an array of latches.

assign data_out[3:0] = latch_enable ? data_in[3:0] : data_out[3:0];

Programmable Logic Devices Verilog VIII CMPE 415

8 (11/30/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Synthesis of FFs
A register variable will be synthesized into a FF (a memory element) if
• It is referenced outside the scope of the behavior.
• It is referenced within a behavior before it is assigned value
• It is assigned value in only some branches of the activity.

A register will be synthesized as the output of a FF when its value is assigned
synchronously with the edge of a signal.

By decoding signals immediately after the event control expression allows the
synthesis tool to determine:

• Which of the edge-sensitive signals are control signals
• Which is the synchronizing signal.

If the event control expression is sensitive to the edge of more than one signal,
an if stmt must be the first stmt in the behavior.

The control signals must be decoded explicitly in the branches of the if stmt.
Decode the reset condition first.

Programmable Logic Devices Verilog VIII CMPE 415

9 (11/30/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Synthesis of FFs
The synchronizing signal is not tested explicitly in the body of the if stmt, but
by default, the last branch must describe the synchronous activity.

See text for synthesized circuit, which includes two FFs and logic to explicitly
decode set1 and set2.

The outputs of the FFs are feedback to implement else.

module swap_synch(set1, set2, clk, data_a, data_b);
output data_a, data_b;
input clk, set1, set2;
reg data_a, data_b;

always @(posedge clk)
begin

if (set1) begin data_a <= 1; data_b <= 0; end
else if (set2) begin data_a <= 0; data_b <= 1; end
else

data_b <= data_a;
data_a <= data_b;

end
end

endmodule

begin
//These assignments implicitly
// synchronized with rising edge
// of clk

Programmable Logic Devices Verilog VIII CMPE 415

10 (11/30/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Synthesis of FFs
As we have seen, not every register variable synthesizes to a hardware stor-
age device, e.g., the nand gate example covered previously.

Here temp is used only within the behavior and is not referenced before it
is assigned value.

In this example, the synthesis tool is able to correctly infer the need for a
resettable FF.

module D_reg4_a(Data_in, clock, reset, Data_out);
input [3:0] Data_in;
input clock, reset;
output [3:0] Data_out;
reg [3:0] Data_out;

always @(posedge clock or posedge reset)
begin

if (reset == 1’b1) Data_out <= 4’b0;
else Data_out <= Data_in;

end
endmodule

Programmable Logic Devices Verilog VIII CMPE 415

11 (11/30/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Synthesis of FFs
An alternative, that may not be synthesizable:

module D_reg4_b(Data_in, clock, reset, Data_out);
input [3:0] Data_in;
input clock, reset;
output [3:0] Data_out;
reg [3:0] Data_out;
always @(posedge clock)

begin
Data_out <= Data_in;

end

endmodule
if (reset) assign Data_out <= 4’b0; else deassign Data_out;

always @(reset)

Data_in[3] Data_in[2] Data_in[1] Data_in[0]

D Q D Q D Q D Q

Data_out[3] Data_out[2] Data_out[1] Data_out[0]

R R R Rclock
reset

Programmable Logic Devices Verilog VIII CMPE 415

12 (11/30/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Registered Combinational Logic
When a cyclic behavior that implements combinational logic is changed to be
sensitive only to the clk signal, the combinational logic output is registered.

module reg_and(a, b, c, clk, y);
input a, b, c, clk;
output y;
reg y;

always @(posedge clk)
begin

y <= a & b & c;
end

endmodule

D Q y

a

b

c

clk

Programmable Logic Devices Verilog VIII CMPE 415

13 (11/30/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Shift Registers and Counters

module Shift_reg4(Data_in, Data_out, clock, reset);
input Data_in, clock, reset;
output Data_out;
reg [3:0] Data_reg;

always @(negedge reset or posedge clock)
begin

if (reset == 1’b0) Data_reg <= 4’b0;

end
endmodule

assign Data_out = Data_reg[0];

else Data_reg <= {Data_in, Data_reg[3:1]};

Data_in
D Q D Q D Q D Q

Data_out

R R R Rclock
reset

//Referenced before
// it is assigned to.

Programmable Logic Devices Verilog VIII CMPE 415

14 (11/30/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Shift Registers and Counters

Implemented with FFs and XOR gates -- see text.

module ripple_counter(clock, toggle, reset, count);
input clock, toggle, reset;
output [3:0] count;
reg [3:0] count;

always @(posedge reset or posedge clock)
begin

if (reset == 1’b1) count[0] <= 1’b0;

end

endmodule

assign c0 = count[0]; // Synthesis tool requires a simple variable in

else if (toggle == 1’b1) count[0] <= ~count[0];

wire c0, c1, c2;

assign c1 = count[1]; // event control expression -- no bit-select.
assign c2 = count[2];

always @(posedge reset or negedge c0)
begin

if (reset == 1’b1) count[1] <= 1’b0;

end
else if (toggle == 1’b1) count[1] <= ~count[1];

...

// Ripple effect with c0

Programmable Logic Devices Verilog VIII CMPE 415

15 (11/30/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Synthesis
Output variables that are assigned values within a synchronized behavior
will be synthesized as FFs or latches (depending on edge or level stmt).

A signal that is assigned value
• outside a behavior
• or within a behavior that does not include a synchronizing signal in its event

control expression
will be synthesized as combinational logic, provided that it does not have an
incomplete if or case operator.

Synthesis of FSMs
Verilog offers several options for modeling the combinational part, as we
have seen in previous examples.

• Continuous assignment stmts
• A behavior whose event control expression consists of an ’event-or ’ of

the state and inputs.

Programmable Logic Devices Verilog VIII CMPE 415

16 (11/30/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Synthesis of FSMs
Separate behaviors are recommended for defining the state transitions and
next-state logic, b/c it improves readability.

Also, non-blocking assignments should be used, and you cannot mix non-
blocking and blocking assignments to the same variable.

reset

start_state

0/0 1/0

Output is asserted in
present state while the
input has the indicated
value.

read_1_zero read_1_one

read_2_zero read_2_one

1/11/0

input bit

1/0
0/0

0/00/1

1/0

0/0

FSM to parse for
two successive 0s
or 1s.

Programmable Logic Devices Verilog VIII CMPE 415

17 (11/30/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

FSM to Parse two 0s or 1s: Explicit Mealy
Since the machine is active on the rising edge of clk, the input is synchro-
nized to change on the falling edge of the clk.

module seq_det_mealy_1exp(clk, reset, in_bit, out_bit);
input clk, reset, in_bit;
output out_bit;
reg [2:0] state, next_state;
parameter start_state = 3’b000;
parameter read_1_zero = 3’b001;
parameter read_1_one = 3’b010;
parameter read_2_zero = 3’b011;
parameter read_2_one = 3’b100;

always @(posedge clk or posedge reset)
if (reset == 1) state <= start_state;
else state <= next_state;

always @(state or in_bit) // Asynchronous logic
case (state)

start_state:

else if (in_bit == 1) next_state <= read_1_one;
else next_state <= start_state;

if (in_bit == 0) next_state <= read_1_zero;

Programmable Logic Devices Verilog VIII CMPE 415

18 (11/30/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

FSM to Parse two 0s or 1s: Explicit Mealy

read_1_zero:

else if (in_bit == 1) next_state <= read_1_one;
else next_state <= start_state;

if (in_bit == 0) next_state <= read_2_zero;

read_2_zero:

else if (in_bit == 1) next_state <= read_1_one;
else next_state <= start_state;

if (in_bit == 0) next_state <= read_2_zero;

read_1_one:

else if (in_bit == 1) next_state <= read_2_one;
else next_state <= start_state;

if (in_bit == 0) next_state <= read_1_zero;

read_2_one:

else if (in_bit == 1) next_state <= read_2_one;
else next_state <= start_state;

if (in_bit == 0) next_state <= read_1_zero;

default: next_state <= start_state;
endcase

assign out_bit = (((state == read_2_zero) && (in_bit == 0)) ||
((state == read_2_one) && (in_bit == 1))) ? 1 : 0;

endmodule

Programmable Logic Devices Verilog VIII CMPE 415

19 (11/30/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

FSM to Parse two 0s or 1s: Explicit Mealy
next_state is set asynchronously (actually on the falling edge of clk when the
in_bit value changes) since the event control expr includes in_bit.

out_bit can go high only on the rising edge of clk, b/c the continuous assign-
ment includes state, but can go low asynchronously (thus Mealy).

See text for timing diagrams and synthesis result.

reset
start_state

0 1

read_1_zero read_1_one

read_2_zero read_2_one

11

1
0

00

1

0

FSM to parse for
two successive 0s
or 1s.

Moore machine

input0
output

0 0

1 1

Programmable Logic Devices Verilog VIII CMPE 415

20 (11/30/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

FSM to Parse two 0s or 1s: Explicit Moore
Here, out_bit can only change at the state boundaries (rising edge of clk).

module seq_det_moore_1exp(clk, reset, in_bit, out_bit);
input clk, reset, in_bit;
output out_bit;
reg [2:0] state, next_state;
parameter start_state = 3’b000;
parameter read_1_zero = 3’b001;
parameter read_1_one = 3’b010;
parameter read_2_zero = 3’b011;
parameter read_2_one = 3’b100;

always @(posedge clk or posedge reset)
if (reset == 1) state <= start_state;
else state <= next_state;

always @(state or in_bit) // Asynchronous logic
case (state)

start_state:

else if (in_bit == 1) next_state <= read_1_one;
else next_state <= start_state;

if (in_bit == 0) next_state <= read_1_zero;

Programmable Logic Devices Verilog VIII CMPE 415

21 (11/30/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

FSM to Parse two 0s or 1s: Explicit Moore

read_1_zero:

else if (in_bit == 1) next_state <= read_1_one;
else next_state <= start_state;

if (in_bit == 0) next_state <= read_2_zero;

read_2_zero:

else if (in_bit == 1) next_state <= read_1_one;
else next_state <= start_state;

if (in_bit == 0) next_state <= read_2_zero;

read_1_one:

else if (in_bit == 1) next_state <= read_2_one;
else next_state <= start_state;

if (in_bit == 0) next_state <= read_1_zero;

read_2_one:

else if (in_bit == 1) next_state <= read_2_one;
else next_state <= start_state;

if (in_bit == 0) next_state <= read_1_zero;

default: next_state <= start_state;
endcase

assign out_bit = ((state == read_2_zero) ||
(state == read_2_one)) ? 1 : 0;

endmodule

Programmable Logic Devices Verilog VIII CMPE 415

22 (11/30/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Synthesis of Explicit State Machines
The state register of an explicit state machine must be assigned as an aggre-
gate -- bit-select and part-select assignments are not allowed.

Asynchronous control signals, e.g., set and reset must be scalars in the event
control expression.

The value assigned to a state register must be a constant or a variable that
evaluates to a constant after static evaluation.

The state transition diagram must specify a fixed relationship.

The synchronous activity of an explicit state machine may contain only one
clk-synchronized event control expression.

state_reg == data; // NOT allowed

state_reg == state_reg + 1; // allowed

