
Programmable Logic Devices Verilog VII CMPE 415

1 (11/30/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Synthesis of Combinational Logic
In theory, synthesis tools automatically create an optimal gate-level realization
of a design from a high level HDL description.

In reality, the results depend on the skill of the designer using the tool, and
his/her knowledge of how the HDL infers logic from language constructs.

It is important to adopt a vendor-specific style that is amenable to synthesis.
Otherwise synthesis may fail or produce unexpected results.

It is important to know which constructs to avoid, and to be able to predict
what the outcome will be for a particular construct.

A Verilog description consisting only of a netlist of combinational primitives
without feedback can always be synthesized.

Some general rules:
• All storage elements should be controlled by an external clock and possibly

a reset line.

Programmable Logic Devices Verilog VII CMPE 415

2 (11/30/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Synthesis of Combinational Logic
Some general rules:
• The combinational part should be driven by primary inputs (through the

ports) or internal storage elements.

• Avoid referencing the same variable in more than one always behavior.
This can cause races, resulting in differences in pre-synthesized and
post-synthesized behavior.

• Use only synchronous, resettable FFs in the design.

primary
inputs

reset
clock

COMBINATIONAL LOGIC

primary
outputs

Programmable Logic Devices Verilog VII CMPE 415

3 (11/30/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Synthesis of Combinational Logic
Some general rules:
• Timing constructs are ignored.
• Avoid code expressions that perform explicit Boolean operations on the

logic values "x" and "z".

Commonly Supported Verilog Constructs
• Module declaration
• Port modes: input, output and inout
• Port binding by name or position
• Parameter declaration
• Connectivity nets: wire, tri, wand, wor, supply0 and supply1
• Register variables: reg and integer
• Integer types in binary, decimal, octal and hex formats
• Scalar and vector nets
• Subranges of vector nets on RHS of assignment
• Module and primitive instantiation
• Continuous assignment
• Shift operator

Programmable Logic Devices Verilog VII CMPE 415

4 (11/30/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Commonly Supported Verilog Constructs
• Conditional and concatenation operators
• Arithmetic, bitwise, reduction, logical and relational operators
• Procedural-continuous assignments (assign ... deassign)
• Procedural block statements (begin and end)
• case, casex, casez, default
• Branching: if, if ... else,
• disable (of procedural block)
• for loops
• Tasks: task ... endtask
• Functions: function ... endfunction

Synthesis tools do not support constructs used for transistor/switch level
descriptions of behavior.

Constructs to avoid:
• Assignment with a variable used as bit select on LHS
• Global variables
• case equality, inequality (===, !===)

Programmable Logic Devices Verilog VII CMPE 415

5 (11/30/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Constructs To Avoid
• defparam
• event and fork ... join
• forever, while, repeat and wait
• initial
• pulldown, pullup
• force ... release
• cmos, rcmos, rnmos, nmos, pmos, rpmos
• tran, tranif0, tranif1, rtran, rtranif0, rtranif1
• primitive ... endprimitive
• table ... endtable
• intra-assignment timing control
• delay specifications
• scalared, vectored
• small, medium, large
• specify, endspecify
• $time
• weak0, weak1, strong0, strong1, pull0, pull1
• $keyword

Programmable Logic Devices Verilog VII CMPE 415

6 (11/30/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Styles For Synthesis of Combinational Logic
In general, do not include any aspects that attempt to model a specific tech-
nology.

Although Verilog supports feedback loops, e.g., cross-couple nand gates,
they are to be avoided for synthesis.

If the rules are violated, synthesis will fail or produce a sequential circuit!

Commonly synthesized combinational logic:
• Multiplexer
• Encoder/Decoder
• Comparator
• Random Logic
• Lookup Table
• Adder/Subtractor/Multiplier
• ALU
• PLA Structure
• Parity Generator

Programmable Logic Devices Verilog VII CMPE 415

7 (11/30/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Styles For Synthesis of Combinational Logic
The following descriptive styles can be used:
• Netlist of Verilog primitives
• Combinational UDP
• Continuous assignment
• Behavioral statement
• Function
• Task without delay or event control
• Interconnected modules of the above

Synthesis should be used even if the design is expressed as a netlist of primi-
tives because it will remove redundant logic.

Redundant logic causes serious problems for test tools.

Continuous assignment statically bind an expression to a net variable.

Synthesis tools translate continuous assignment statements into a set of
equivalent Boolean equations.

Programmable Logic Devices Verilog VII CMPE 415

8 (11/30/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Styles For Synthesis of Combinational Logic
For example:

Combinational Synthesis from a Cyclic Behavior
Key here is to make sure the behavior assigns value to the output under
all events that affect the RHS expression of the assignment.

Failure to do so will produce unwanted latches!!!

module or_nand (enable, x1, x2, x3, x4, y);
input enable, x1, x2, x3, x4;
output y;

assign y = ~(enable & (x1 | x2) & (x3 | x4));
endmodule

x1
x2
enable
x3
x4

y

x1
x2
x3
x4
enable

oai22_a

nand2i_a

synthesized result

Programmable Logic Devices Verilog VII CMPE 415

9 (11/30/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Combinational Synthesis from a Cyclic Behavior
All inputs to a behavior designed to implement combinational logic must be
included in the event control expression, either explicitly or implicitly.

assign dynamically binds and implicitly adds to the event control.

Also, any control signals whose transitions affect the assignments to the target
register variables in the behavior are considered to be inputs to the behavior.

Any operands that appear on the RHS of any procedural or procedural-con-
tinuous assignment must not appear on the LHS of an expression.

Otherwise, the behavior has implicit feedback and will not synthesize
into combinational logic.

module or_nand_2 (enable, x1, x2, x3, x4, y);
input enable, x1, x2, x3, x4;
output y;

always @(enable or x1 or x2 or x3 or x4)

endmodule

y = ~(enable & (x1 | x2) & (x3 | x4));
begin

end

// Synthesis is identical
// to previous circuit

reg y; // Does NOT imply a hardware register

Programmable Logic Devices Verilog VII CMPE 415

10 (11/30/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Combinational Synthesis from a Cyclic Behavior

module and4_behav(y, x_in)
parameter word_length = 4;
input [word_length - 1: 0] x_in;
output y;
reg y;
integer k;

always @ x_in
begin: check_for_0

y = 1;
for (k = 0; k <= word_length -1; k = k + 1)

if (x_in[k] == 0)
begin

y = 0;
disable check_for_0;

end
end

endmodule

// This guarantees that y is assigned
// to within the behavior

x_in

y

// Synthesis result shows no sign of the for loop

Programmable Logic Devices Verilog VII CMPE 415

11 (11/30/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Combinational Synthesis from a Cyclic Behavior

module comparator(a, b, a_gt_b, a_lt_b, a_eq_b);
parameter size = 2;
input [size:1] a, b;
output a_gt_b, a_lt_b, a_eq_b;

reg a_gt_b, a_lt_b, a_eq_b;
integer k;

always @(a or b)
begin: compare_loop

for (k = size; k > 0; k = k - 1)
if (a[k] != b[k])

begin
a_gt_b = a[k];
a_lt_b = ~a[k];
a_eq_b = 0;
disable compare_loop;

end
a_gt_b = 0;
a_lt_b = 0;
a_eq_b = 1;

end
endmodule

a_eq_b

m
u
x

m
u
x

a_lt_b

a_gt_b

b[]

b[]

a[]

a[]

// compare_loop

Programmable Logic Devices Verilog VII CMPE 415

12 (11/30/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Implicit Event Control
This appears to violate the previous "general rule" that the event control
expression must contain all the inputs of a behavior.

Avoid for combinational synthesis: all of these imply a sequential behavior:
• Multiple event controls with the same procedural block
• Named event with edge-sensitive event control expression
• Procedural loops w/ timing controls, feedback and data-dependent loops
• Procedural continuous assignment containing event or delay control
• Parallel threads of activity: fork ... join and suspended activity: wait
• External disable statement, tasks w/ timing controls and sequential UDPs

module or_nand_6 (enable, x1, x2, x3, x4, y);
input enable, x1, x2, x3, x4, y;
output y;
reg y;
always @(enable)

if (enable)
assign y = ~((x1 | x2) & (x3 | x4));

else
assign y = 1;

endmodule

// This synthesizes to the same circuit shown
// earlier but is more efficient w.r.t. simulation

// deassign implies sequential behavior

Programmable Logic Devices Verilog VII CMPE 415

13 (11/30/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Unexpected and Unwanted Latches
The golden rule is combinational logic must specify the value of the output
for all values of the input.

If violated, the description implies that the output should retain its residual
value under the unspecified conditions.

Be sure that case and conditional if stmts are complete (an incomplete condi-
tional operator, i.e., ? ... :, causes a syntax error).

A latch is added and enabled by the conditions handled.

module mux_latch(y_out, sel_a, sel_b, data_a, data_b);
input sel_a, sel_b, data_a, data_b;
output y_out;
reg y_out;

always @(sel_a or sel_b or data_a or data_b)
case ({sel_a, sel_b})

2’b10: y_out = data_a;
2’b01: y_out = data_b;

endcase
endmodule

Programmable Logic Devices Verilog VII CMPE 415

14 (11/30/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Unexpected and Unwanted Latches
One possible synthesis result:

Text gives other examples that show when this happens.

Synthesis of Priority Structures
The case and if stmts implicitly assign priority, i.e., first block has higher
priority than the second, etc.

Synthesis tool will determine if the case items are mutually exclusive,
and if so, will give them equality priority and use a MUX.

sel_a

sel_b

data_b

data_a

en
Latch

y_out

Programmable Logic Devices Verilog VII CMPE 415

15 (11/30/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Synthesis of Priority Structures
Otherwise, a priority structure is synthesized.

For the if stmt, a MUX is used when the branching is specified by mutually
exclusive conditions.

module mux_4pri(y, a, b, c, sel_a, sel_b, sel_c);
input a, b, c, d, sel_a, sel_b, sel_c;
output y;
reg y;

always @(sel_a or sel_b or sel_c or a or b or c or d)
begin

if (sel_a == 1) y = a; else
if (sel_b == 0) y = b; else
if (sel_c == 1) y = c; else
y = d;

end
endmodule

mux2
mux2

mux2
d

c

b

a

sel_c
sel_b

y

sel_a

// Priority because sel_a decodes
// a independently of sel_b or
// sel_c

Programmable Logic Devices Verilog VII CMPE 415

16 (11/30/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Synthesis of Priority Structures
In contrast:

This code is optimized and synthesized as three 4-input OR gates, each one
receiving one of Data[7:0] signals and generating a bit of Code[2:0]

module encoder(Data, Code);
input [7:0] Data;
output [2:0] Code;
reg [2:0] Code;

always @(Data)
begin

if (Data == 8’b00000001) Code = 0; else
if (Data == 8’b00000010) Code = 1; else
if (Data == 8’b00000100) Code = 2; else
if (Data == 8’b00001000) Code = 3; else
if (Data == 8’b00010000) Code = 4; else
if (Data == 8’b00100000) Code = 5; else
if (Data == 8’b01000000) Code = 6; else
if (Data == 8’b10000000) Code = 7; else Code = 3’bx;

end
endmodule

//Default conditions
// are treated as don’t
// cares in synthesis

Programmable Logic Devices Verilog VII CMPE 415

17 (11/30/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Synthesis of Priority Structures
For an 8:3 priority encoder, an implied priority needs to be present.

The synthesized circuit, here, is much more complex, so care should be taken
to make sure conditions are mutually exclusive when priority is not needed.

module encoder(Data, Code);
input [7:0] Data;
output [2:0] Code;
reg [2:0] Code;

always @(Data)
begin

if (Data[7]) Code = 7; else
if (Data[6]) Code = 6; else
if (Data[5]) Code = 5; else
if (Data[4]) Code = 4; else
if (Data[3]) Code = 3; else
if (Data[2]) Code = 2; else
if (Data[1]) Code = 1 else
if (Data[0]) Code = 0; else

end
endmodule

Code = 3’bx;

8’b1xxxxxxx Code = 7; else
8’b01xxxxxx Code = 6; else
8’b001xxxxx Code = 5; else
8’b0001xxxx Code = 4; else
8’b00001xxx Code = 3; else
8’b000001xx Code = 2; else
8’b0000001x Code = 1 else
8’b00000001 Code = 0; else
default Code = 3’bx;

OR casex (Data)

endcase

Programmable Logic Devices Verilog VII CMPE 415

18 (11/30/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Other Topics Covered in the Text
Sharing datapath resources.
Specifying bi-directional buses
Specifying three-state outputs

