Programmable Logic Devices Verilog VI CMPE 415

(Tasks and Functions h
Verilog supports two types of sub-programs, tasks and functions.

e Tasks create a hierarchical organization of the procedural stmts within a
behavior.
* Functions substitute for an expression.

Tasks are declared within a module and may be referenced only from within
a behavior.
Task parameters are copied when the task is called, i.e., are passed by
value.
See text for examples, and other rules.

Functions may implement only combinational behavior.
No timing controls are permitted, it must have at least once input argu-
ment, output and inout arguments are not permitted.

The definition implicitly defines an internal reg variable with the same
name, range and type as the function itself, that is assigned to within
the function (see text).

. J

(*) UMBC 1 (11/21/05)

& N

3

Programmable Logic Devices Verilog VI CMPE 415

(Behavioral Models of FSMs h
Two basic forms of Finite State Machines

Inputs Outputs
—> -
Next State and Output /
Combinational Logic
— e State
Register Asynchronous
N\ and subject to
clock glitches in the
inputs
Mealy
Synchronous \
Inputs Outputs
Next state
— Output
—| Combinational Logic State - CombirI:ational .
Register Loo:
N ogic
clock
Moore

J

“ UMBC) (11/21/05)

Programmable Logic Devices Verilog VI CMPE 415

(Behavioral Models of FSMs)
There are two descriptive styles of FSMs.

o Explicit: declares a state register to encode the machine’s state. A behavior
explicitly assigns values to the state register to govern the state transitions.

e Implicit: uses multiple event controls within a cyclic behavior to implicitly
describe an evolution of states.

Explicit FSMs, several styles are possible:

module FSM_stylel (...)
input ...;
output ...;
parameter size = ...,
reg [size-1 : 0] state, next_state;

assign the_outputs = ... // a function of state and inputs
assign next_state = ... // a function of state and inputs.

always @ (negedge reset or posedge clk)
if (reset == 1’b0) state <= start_state;
else state <= next_state;

endmodule

J
3 (11/21/05)

Programmable Logic Devices Verilog VI CMPE 415

(Explicit FSMs)
A second style replaces the continuous assignment generating the next_state
with asynchronous (combinational) behavior:

module FSM_style2 (...)
input ...;
output ...;
parameter size = ...;
reg [size-1 : 0] state, next_state;

assign the_outputs = ... // a function of state and inputs

always @ (state or the_inputs)
// decode next_state with case or if stmt

always @ (negedge reset or posedge clk)
if (reset == 1'b0) state <= start_state;
else state <= next_state; //Non-blocking or procedural assignment

endmodule

This latter style can exploit the case stmt and other procedural constructs for
descriptions that are complex.

Note that in both styles, the outputs are asynchronous.

J
4 (11/21/05)

Programmable Logic Devices Verilog VI CMPE 415

(Explicit FSMs)
It may be desired to register the outputs, and make them synchronous:

module FSM_style3 (...)
input ...;
output ...;
parameter size = ...;
reg [size-1 : 0] state, next_state;

always @ (state or the_inputs)
/ / decode next_state with case or if stmt

always @ (negedge reset or posedge clk)
if (reset == 1'b0) state <= start_state;
else begin
state <= next_state;

outputs <= some_value (inputs, next_state);
end
endmodule

State machines can be represented in
e Tabular format (state transition table)

e Graphical format (state transition graph)
* Algorithmic state machine (ASM) chart

J
5 (11/21/05)

Programmable Logic Devices Verilog VI CMPE 415
(Explicit FSMs: Craps example)
0
L y
C rolling) S_repeat
1 0
J

(11/21/05)

Programmable Logic Devices Verilog VI CMPE 415

fExplicit FSMs: Craps example)
Player roles the die with 3 possible outcomes:

® Sum is 7 or 11, player wins
® Sum is 2, 3, or 12, player loses.
e Otherwise, sum is declared to be the player’s point.

To win, player must roll repeatedly until the point is made, but before rolling
a7, 1i.e., if 7 rolled before the point, the player loses.

In our machine, a rolling unit generates random values

At the rising edge of clock, with roll asserted, the rolling unit generates 2
values D_left and D_right.

When roll is de-asserted, the scoring unit computes the sum, D_left and
D_right.

Then win, lose or roll_again may be asserted, depending on the result.

Reset must be asserted before another player can play.

J
7 (11/21/05)

Programmable Logic Devices Verilog VI CMPE 415

fExplicit FSMs: Craps example)

module Crap_shoot
(clk, reset, point, roll, win, match, lose, roll_again, rolling, blank, D_left, D_right,
sum)
input clk, reset, roll;
output win, lose, match, roll_gain, rolling, blank;
output [3:0] point;
output [2:0] D_left, D_right;
output [3:0] sum;
parameter S_idle = 0;
parameter S_rolling = 1;
parameter S_pause = 2;
parameter S_repeat = 3;
parameter S_lose = 4;
parameter S_win = 5;

wire match, rolling, roll_again, win, lose, save_point;
reg [2:0] D_left, D_right;

wire [3:0] sum = D_left + D_right;

reg [2:0] state, next_state;

reg [3:0] point;

J
8 (11/21/05)

Programmable Logic Devices Verilog VI CMPE 415

fExplicit FSMs: Craps example)

// Rolling Unit

always @(posedge clk or posedge reset)
if (reset) begin D_left <= 1; D_right <= 1; end
else begin
if (D_left < 6) D_left <= D_left + 1; else D_left <= 1;
if (D_left == 6 && D_right < 6) D_right <= D_right + 1; else
if (D_left == 6 && D_right == 6) D_right <= 1;
end

/I Scoring Unit

assign match = (sum == point);

assign roll_again = (state == S_pause && !roll);

assign rolling = ((state == S_rolling && roll) Il (state == S_repeat & & roll));
assign save_point = ((state == S_rolling) && !roll &&

sum =2 &&
sum !=3 &&
sum =12 &&
sum =7 &&
sum !=11);

assign win = (state == S_win);
assign lose = (state == S_lose);
assign blank = (point < 2);

J
9 (11/21/05)

Programmable Logic Devices Verilog VI CMPE 415

fExplicit FSMs: Craps example)
// Control Unit
always @ (posedge save_point or posedge reset)
if (reset) point <= 0;
else point <= sum;
always @ (posedge clk or posedge reset)
if (reset) state <= S_idle;
else state <= next_state;
always @(state or sum or roll or match)
case (state)
S_idle: if (roll) next_state <= S_rolling; else next_state <= S_idle;
S_rolling: if (roll) next_state <= S_rolling; else
if (sum == 2 |l sum == 3 |l sum == 12) next_state <= S_lose;
else
if (sum == 7 |l sum == 11) next_state <= S_win;
else next_state <= S_pause;
S_pause: if (roll) next_state <= S_repeat; else next_state <= S_pause;
S_repeat: if (roll) next_state <= S_repeat; else
if (match) next_state <= S_win; else
if (sum == 7) next_state <= S_lose; else next_state <= S_pause;
S _win: next_state <= S_win;
S lose: next_state <= S_lose;
endcase endmodule y

10 (11/21/05)

Programmable Logic Devices Verilog VI CMPE 415
\

Gmplicit FSMs
Here, the state of the machine is not explicitly-declared in state registers.

Instead, the state is implied by the evolution of the activity flow.

It is more abstract and can require less code.

However, it is only good for machines in which a given state can be reached
from only one other state.

Also, FSMs with multiple event controls make reset control more compli-
cated because it needs to be possible to reset from every state.

Consider the alternatives for a state machine for an Up Down counter.

e Up_Down_Implicitl: count is the output, no state register declared.

e Up_Down_Implicit2: same except state logic and combinational logic is in
separate event control blocks.

e Up_Down_Explicit: state transitions are explicitly enumerated by the case
statement. Here, the size of the FSM (not shown) depends on the word
length of count.

. J

% UMBC ! vz

3

Toe

Programmable Logic Devices Verilog VI CMPE 415
(Implicit FSMs)
ASM for Up Down Counter
i
S idle
2 l l 1
0,3 0,3
< S decr 2 1 S _incr
A A
1 2
module Up_Down_Implicitl(count, up_dwn, clk, reset)

output [2:0] count;
input [1:0] up_dwn;
input clk, reset;
reg [2:0] count;
always @(negedge clk or negedge reset)

if (reset == 0) count = 3°b0;

else if (up_dwn == 2’b00 Il up_dwn == 2’b11) count = count;

else if (up_dwn == 2’b01) count = count + 1;

else if (up_dwn == 2’b10) count = count - 1;

endmodule
J

(11/21/05)

Programmable Logic Devices Verilog VI CMPE 415

(Implicit FSMs)

module Up_Down_Implicit2(count, up_dwn, clk, reset)
output [2:0] count;
input [1:0] up_dwn;
input clk, reset;

reg [2:0] count, next_count;

always @(negedge clk or negedge reset)
if (reset == 0) count = 3’b0;
else count = next_count;

always @(count or up_dwn)
if (up_dwn ==2"b00 Il up_dwn == 2’b11) next_count = count;
else if (up_dwn == 2’b01) next_count = count + 1;
else if (up_dwn == 2’b10) next_count = count - 1;
else next_count = count;

endmodule

J
13 (11/21/05)

Programmable Logic Devices Verilog VI CMPE 415
(Explicit FSM Variant)
module Up_Down_Explicit(count, up_dwn, clk, reset)
output [2:0] count;
input [1:0] up_dwn;
input clk, reset;
reg [2:0] count, next_count;
always @(negedge clk or negedge reset)
if (reset == 0) count = 3’b0;
else count = next_count;
always @ (count or up_dwn) begin
case (count)
0: case (up_dwn)
0, 3 next_count = 0;
1: next_count = 1;
2: next_count = 3’bl11;
default next_count = 0;
endcase
1: case (up_dwn)
0, 3 next_count = 1;
1: next_count = 2;
2: next_count = 0;
default next_count = 1;
endcase
J

(11/21/05)

Programmable Logic Devices Verilog VI CMPE 415

Explicit FSM Variant)

2: case (up_dwn)
0, 3 next_count = 2;
1: next_count = 3;
2: next_count = 1;
default next_count = 2;
endcase
3: case (up_dwn)
0, 3 next_count = 3;
1: next_count = 4;
2: next_count = 2;
default next_count = 3;
endcase

4,5,6,7:if (up_dwn == 0 Il up_dwn == 3) next_count = count;
else if (up_dwn == 1) next_count = count + 1;
else if (up_dwn == 2) next_count = count - 1;
else next_count = 0;

endcase
end
endmodule

J
15 (11/21/05)

Programmable Logic Devices

Verilog VI CMPE 415
(FSM for Handshaking h
Handshaking occurs between a "client" (receiver of service) and a "server"

(provider of service).
Server 4 Client
data_out —~ » data_in
server_ready
client_ready

server_ready

client_ready
S_idle /SR =0 |e— communication | C_idle /CR =0}«
l \ss' "l |‘I # 3
—| S_wait /SR=0 S Vo [Cowait /CR=1
‘~s ________ #+
------ 0
0 e SR
ﬁ CR ‘s~‘ ————————— '# 1
#Y1 | .-
1 | PP .. |Cl_client /CR=1
S_serve /SR=1["" 73
#/K —[&_done /CR=0
1 0 #| eeeeemT] T
R 1 #
NS &R
#: Time elapses in a physical system

N

J
16 (11/21/05)

Programmable Logic Devices Verilog VI CMPE 415

(FSM for Handshaking h
The S_idle and C_idle states are wait states where communication signals,

server_ready (SR) and client_ready (CR), are not asserted.

S_idle corresponds to an interval of time required to prepare for service.
S_wait indicates server is awaiting a service request from a client.

C_idle corresponds to a period in which service is not desired.

The server remains in state S_wait until the client asserts CR.
When asserted, the server moves to state S_serve and asserts SR.

This action signals the client that the server has made the data available
on the bus.

The client then enters state C_client and, after some interval, removes data
from the bus, then de-asserts CR.
The server then returns to S_idle and de-asserts SR.
The client returns to C_idle on detecting this action.

. J

(*) UMBC 17 (11/21/05)

& N

3

Programmable Logic Devices Verilog VI

CMPE 415

(FSM for Handshaking

module server(data_out, server_ready, client_ready);
output [3:0] data_out;
output server_ready;
input client_ready;

reg server_ready;
reg [3:0] data_out;

reg [3:0] delay;

begin
delay = $random,; if (delay == 0) delay = 1;
#delay;

end endtask

always
begin
server_ready = 0;
pause;
wait (client_ready)
pause; data_out = $random:;
pause; server_ready = 1;
wait (!client_ready)
pause;
end
endmodule

~\

task pause; // To emulate the delay in a real system

J

(11/21/05)

Programmable Logic Devices Verilog VI CMPE 415

(FSM for Handshaking h

module client(data_in, server_ready, client_ready);
input [3:0] data_in;
input server_ready;
output client_ready;

reg client_ready;
reg [3:0] data_reg;

task pause; // To emulate the delay in a real system
reg [3:0] delay;
begin
delay = $random,; if (delay == 0) delay = 1;
#delay;
end endtask

always
begin

client_ready = 0;

pause; client_ready = 1;

forever begin
wait (server_ready)
pause; data_reg = data_in;
pause; client_ready = 0;
wait (!server_ready)
pause; client_ready = 1;

end
endmodule

J
19 (11/21/05)

