
Programmable Logic Devices Verilog V CMPE 415

1 (11/14/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Intra-Assignment Delay: Non-Blocking Assignment
Here, accum is sampled on the rising edge of clock and the assignment is
scheduled to occur when a_bus changes.

D is also immediately sampled, and assigned to C.
This differs from the blocking version, which would prevent C <= D;
from executing until the previous stmt completed its assignment.

What happens if 2 clock edges arrive before a_bus changes?

The simulator issues a warning (queueing of values is not supported) and G
gets the last evaluated value of accum.

initial begin
@(posedge clock)

G <= @(a_bus) accum;
C <= D;

end

always begin
@(posedge clock)

G <= @(a_bus) accum;
end

Programmable Logic Devices Verilog V CMPE 415

2 (11/14/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Intra-Assignment Delay: Non-Blocking Assignment
How does behavior differ between blocked and non-blocked stmts which
contain intra-assignment delay?

t a b c d e f
0 x x x x x x
2 x x x x 0 x
3 x x x x 0 1
10 1 x x 1 0 1
12 1 0 x 1 0 1
15 1 0 1 1 0 1

module nb1;
reg a, b, c, d, e, f;

// blocking assignments
initial

begin
a = #10 1;
b = #2 0;
c = #3 1;

end

// non-blocking assignments
initial

begin
d <= #10 1;
e <= #2 0;
f <= #3 1;

end
endmodule

Programmable Logic Devices Verilog V CMPE 415

3 (11/14/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Intra-Assignment Delay: Non-Blocking Assignment
Combinational logic can be modeled by both one-shot and cyclic forms of Ver-
ilog behavior.

This one shot example is similar to the continuous assignment example given
in Chapter 2.

Here, the behavior is activated at t_sim = 0 and stays in effect after the behav-
ior expires.

Although it is valid, it is not the preferred style and will not be accepted by a
synthesis tool.

module bit_or8_gate3(y, a, b)
input [7:0] a, b;
output [7:0] y;
reg [7:0] y;
initial begin // Alternative in Ch. 2 does not include initial begin...

assign y = a | b;
end

endmodule

Programmable Logic Devices Verilog V CMPE 415

4 (11/14/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Intra-Assignment Delay: Non-Blocking Assignment
A second acceptable alternative uses procedural assignment.

But not as simple as the Ch. 2 version.

Be careful when using behavioral models designed to model delay.

module bit_or8_gate4(y, a, b)
input [7:0] a, b;
output [7:0] y;
reg [7:0] y;
always @(a or b) begin

y = a | b;
end

endmodule

module bit_or8_gate4(y, a, b)
input [7:0] a, b;
output [7:0] y;
reg [7:0] y;
always @(a or b) begin

#5 y = a | b;
end

endmodule

Programmable Logic Devices Verilog V CMPE 415

5 (11/14/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Intra-Assignment Delay: Non-Blocking Assignment
There are two problems here.
• y gets old data, i.e., the values of a and b 5 time units after the activating

event.
• While the delay control is blocking, i.e., waiting to assign to y, the event

control expression cannot respond to events on a and b.

Does this model actual hardware?

Alternatively, intra-assignment delay can be used to get the proper values of a
and b, i.e., the values at the moment they change, but the 2nd problem
remains.

module bit_or8_gate4(y, a, b)
input [7:0] a, b;
output [7:0] y;
reg [7:0] y;
always @(a or b) begin

y = #5 a | b;
end

endmodule

Programmable Logic Devices Verilog V CMPE 415

6 (11/14/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Intra-Assignment Delay: Non-Blocking Assignment
The solution is to use a non-blocking assignment with intra-assignment delay.

Simulation of Simultaneous Procedural Assignments
The simulator needs rules to handle multiple behaviors assigning value
to the same register in the same time step.

• (1) Evaluate the expressions on the RHS of all assignments to reg vari-
ables at that time step.

• (2) Execute the blocking assignments to registers.
• (3) Execute non-blocking assignments that can execute in the current

time step (no intra-assignment timing).
• (4) Execute past procedural assignments with expired wait times.

module bit_or8_gate4(y, a, b)
input [7:0] a, b;
output [7:0] y;
reg [7:0] y;
always @(a or b) begin

y <= #5 a | b;
end

endmodule

Programmable Logic Devices Verilog V CMPE 415

7 (11/14/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Simulation of Simultaneous Procedural Assignments
• (5) Advance the simulator time (tsim).

Verilog defines the rules using a stratified event queue, where the queue of
pending simulation events are organized into 5 different regions.

The rules for execution order are fairly complex (see text) and some are
implementation dependent.

Repeated Intra-Assignment Delay
The event_expression in intra-assignment delay can be repeated a speci-
fied number of times.

The assignment to reg_a will be made after 5 falling edges of the clock.

reg_a = repeat (5) @ (negedge clock) reg_b;

begin // The above is equivalent to.
temp = reg_b;
@ (negedge clock); @ (negedge clock); @ (negedge clock);
@ (negedge clock); @ (negedge clock);
reg_a = temp;

end

Programmable Logic Devices Verilog V CMPE 415

8 (11/14/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Repeated Intra-Assignment Delay
Another example:
module repeater;

reg clock;
reg reg_a, reg_b;

initial
clock = 0;

initial begin
#5 reg_a = 1;
#10 reg_a = 0;
#5 reg_a = 1;
#20 reg_a = 0;

end

always
#5 clock ~= clock;

initial
#100 $finish;

initial begin
#10 reg_b = repeat (5) @(posedge clock) reg_a;

end
endmodule

Note that t_sim = 55, reg_b get the
value reg_a had at t_sim = 10, not
the value at t_sim = 55.

100 20 30 40 50 60 70 80

Programmable Logic Devices Verilog V CMPE 415

9 (11/14/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Other Examples
Using non-blocking assignments with intra-assignment delay to create a
schedule of assignments to a target register variable.

module multiple_no_block_1;
reg wave;
reg [2:0] i;

initial begin

end

for (i = 0; i <= 5; i = i+1)
wave <= #(i*10) i[0];

endmodule

module multiple_no_block_2;
reg wave1, wave2;

initial begin

end

#5 wave1 = 0;

endmodule

wave2 = 0;
wave1 <= #5 1;
wave2 <= #10 1;
wave2 <= #20 0;

#10 wave1 = 1;
wave1 <= #5 0;

Draw the waveforms associated with these modules.

All RHS are sampled at the same
time, but the value depends on
i (the for loop executes in 0 time).

Programmable Logic Devices Verilog V CMPE 415

10 (11/14/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Other Examples

You should be able to draw the wfms from these descriptions.

module non_block(sig_a, sig_b, sig_c);
reg sig_a, sig_b, sig_c;
initial

begin
sig_a = 0;
sig_b = 1;
sig_c = 0;

end
always sig_c = #5 ~sig_c;
always @ (posedge sig_c)

begin
sig_a <= sig_b;
sig_b <= sig_a;

end
endmodule

// Non-overlapping wfms generated
// (sig_a and sig_b) from a clock signal
// sig_c

Programmable Logic Devices Verilog V CMPE 415

11 (11/14/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Constructs for Activity Flow Control
These types of statements modify the activity flow within a behavior.
• ?...:, case, if (conditional)
• repeat, for, while, forever (loop)
• wait (suspend)
• fork ... join (branch)
• disable (terminate)

Conditional Operator (? ... :)
Discussed previously when used with continuous assignment stmts --
can also be used with procedural stmts.

module mux_behavior (y_out, clock, reset, sel, a, b);
input clock, reset, sel;
input [15:0] a, b;
output [15:0] y_out;
reg [15:0] y_out;
always @ (posedge clock or negedge reset)

if (reset == 0) y_out = 0;
else y_out = (sel) ? a + b : a - b;

endmodule

Programmable Logic Devices Verilog V CMPE 415

12 (11/14/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Constructs for Activity Flow Control: Case stmt
The case stmt requires an exact bitwise match.

Correct implementation of a MUX but inefficient because it reacts to all activ-
ities independent of the selection.

case_stmt ::= case (expression) case_item {case_item} endcase |
casex (expression) case_item {case_item} endcase |
casez (expression) case_item {case_item} endcase

case_item ::= expression {, expression}: stmt_or_null |
default [:] stmt_or_null

module mux4_case(a, b, c, d, select, y_out);
input a, b, c, d;
input [1:0] select;
output y_out;
reg y_out;
always @(a or b or c or d or select) begin

case (select)
0: y_out = a;
1: y_out = b;
2: y_out = c;
3: y_out = d;
default y_out = 1’bx;

endcase endmodule

Programmable Logic Devices Verilog V CMPE 415

13 (11/14/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Constructs for Activity Flow Control: Case stmt
The case expression is evaluated in Verilog’s 4-value logic system.

The case_item expression are evaluated in the order listed, and if a match is
found, the other cases are not examined or executed.

The other two variants of the case treat don’t care situations in simulation.
casex ignores values in those bit positions of the case expression or
case_item that have the value "x" or "z" -- matches anything, 0, 1, x or z.

casez ignores any bit position of the case expression or case_item that have
value "z". It also uses "?" as an explicit don’t care.

For simulation, the default case is optional.

For synthesis, be sure to cover all possible combinations of the expression in
the case_item list (or use default) to avoid unwanted latches.

always @(decode_pulse)
casez (instruction_word)

16’b0000_????_????_????:; // Null stmt for no-op.

Programmable Logic Devices Verilog V CMPE 415

14 (11/14/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Constructs for Activity Flow Control: if else stmt
Alter the normal sequential activity flow within a behavior.

As always, stmt_or_null can be a single or block stmt. Null stmts must termi-
nate with a semicolon.

The value of the Boolean expression evaluated in the if stmt is treated as false
if it has numerical value of 0, or the values x or z

The meaning of the else clause conforms to the notion you’ve learned for
other programming languages.

if_stmt ::= if (expression) stmt_or_null [else stmt_or_null]
stmt_or_null ::= stmt |;

(a) if (A < B) some_register = some_value + 1;
(b) if (C < D); // null stmt
(c) if (k == 1)

begin : A_Block
sum_out = sum_reg(4);
c_out = c_reg(2);

end

Programmable Logic Devices Verilog V CMPE 415

15 (11/14/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Constructs for Activity Flow Control: Loops
Verilog has 4 loops mechanisms, repeat, for, while and forever

Repeat executes a stmt or block a specified number of times.

When reached, expression is evaluated once to determine the number of
iterations.

If expression evaluates to x or z, the result is treated as 0 and no loop iter-
ations occur.

Otherwise, the loop executes unless terminated by a disable stmt.

repeat_loop ::= repeat (expression) stmt

...
word_address = 0;
repeat (memory_size)

begin
memory[word_address] = 0;
word_address = word_address + 1;
end

...

Programmable Logic Devices Verilog V CMPE 415

16 (11/14/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Constructs for Activity Flow Control: Loops
The for loop semantics are identical to those in other prog. languages.

register variable must be an integer or reg

See carry look-ahead example in text.

for_loop ::= for (reg_assignment; expression; reg_assignment) stmt

reg [15:0] demo_register;
integer K;
...
for (K = 4; K; K = K - 1)

begin
demo_register[K + 10] = 0;
demo_register [K + 2] = 1;

end
...

reg [3:0] K;
for (K = 0; K <= 15; K = K + 1) ...

// Beware, loops forever...

Programmable Logic Devices Verilog V CMPE 415

17 (11/14/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Constructs for Activity Flow Control: Loops
The while loop is also semantically identical to its definition in C.

Loop while Bool_expr remains true.

Caution -- the following usage will choke simulator:

while_loop ::= while (Bool_expr) stmt

begin: count_of_1s
reg [7:0] temp_reg;

count = 0;
temp_reg = reg_a;
while (temp_reg)

begin
if (temp_reg[0]) count = count + 1;
temp_reg = temp_reg >> 1;

end
end

module Asking_for_trouble(some_external_input);
input some_external_input;

always begin
while (some_external_input); //Wait for external variable

end
endmodule

Programmable Logic Devices Verilog V CMPE 415

18 (11/14/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Constructs for Activity Flow Control: Loops
The forever loop is unconditional and is terminated via a disable stmt.

Clocks and pulse-trains in testbenches are easily implemented using forever
loops:

forever_loop ::= forever stmt

parameter helf_cycle = 50;

initial
begin : clock_loop

clock = 0;
forever
begin

#half_cycle clock = 1;
#half_cycle clock = 0;

end
end

initial
#350 disable clock_loop;

Programmable Logic Devices Verilog V CMPE 415

19 (11/14/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Constructs for Activity Flow Control: Loops
Do not confuse always and forever.

The always construct declares a concurrent behavior, that can NOT be
nested and becomes active at the beginning of simulation.

The forever loop is a computational activity, that can be nested and does
not execute until it is reached within an activity flow.

The disable stmt is used to prematurely terminate a named block or task.
When executed, activity flow is transferred to the stmt immediately fol-
lowing the named block.

module find_first_one(A_word, trigger, ind_val);
input [15:0] A_word;
input trigger;
output [3:0] ind_val;
reg [3:0] ind_val;
always @ trigger

begin
ind_val = 0;
for (ind_val = 0; ind_val <= 15; ind_val = ind_val + 1)

if (A_word[ind_val] == 1) disable;
end

endmodule

Programmable Logic Devices Verilog V CMPE 415

20 (11/14/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Constructs for Activity Flow Control: fork...join
The fork...join construct is NOT supported by synthesis tools but is useful to
generate wfms in testbenches.

It creates parallel threads of activity, each executing concurrently with the
others.

...
fork //tsim = 0

#50 sig_wave = ’b1; // Order of stmts here is not important
#100 sig_wave = ’b0;
#150 sig_wave = ’b1;
#300 sig_wave = ’b0; // Executes at tsim = 300

join // Resynchronize all parallel threads here

