
Programmable Logic Devices Verilog IV CMPE 415

1 (10/24/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Behavioral Descriptions
We have already discussed 3 types of abstract (non-structural) behaviors in
Verilog.

• continuous assignments
Implement implicit combinational logic through static bindings of
expressions and target nets.

• initial and always
Declare a description of functionality in computational activity flows,
modeling the relationship between the I/O ports of the module.

initial declares a one-shot sequential activity flow while always declares
a cyclic sequential activity flow.

Here, sig_a is assigned 0 at tsim = 0, which it retains indefinitely.

module demo_1 (sig_a)

reg sig_a;
output sig_a;

initial
sig_a = 0;

endmodule

Programmable Logic Devices Verilog IV CMPE 415

2 (10/24/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Behavioral Descriptions
The statements implementing a declared behavior (within initial and
always) will be referred to as procedural statements.

As indicated, procedural assignment can be made only to register variables,
i.e., reg, integer, real, realtime and time.

initial_construct ::= initial statement
always_construct ::= always statement
statement ::=
blocking_assignment; |
non_blocking_assignment; |

procedural_assignment; |
procedural_timing_control_stmt |
conditional_statement |
case_statement |
loop_statement |
wait_statement |
disable_statement |
event_trigger |
seq_block |
par_block |
task_enable |
system_task_enable;

Programmable Logic Devices Verilog IV CMPE 415

3 (10/24/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Behavioral Descriptions
A simple clock generator:

The #Half_cycle introduces 50 units of delay.

The simulation finishes after 10 clock cycles.

module clock_gen1 (clock)
parameter Half_cycle = 50;
parameter Max_time = 1000;
output clock;
reg clock;

initial
clock = 0;

always
begin

#Half_cycle clock = ~clock;
end

initial
#Max_time $finish;

endmodule

50 100 150 200

Programmable Logic Devices Verilog IV CMPE 415

4 (10/24/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Behavioral Descriptions
The statements with an initial and always behavior support sequential com-
putations that manipulate the values of data objects in memory.

However, Verilog behaviors also implicitly govern the activity flow of a sim-
ulation by influencing whether and when events are scheduled.

The procedural constructs can be organized into several categories:
• Assignment

Conditional (? ... :)
Procedural Assignment (=)
Procedural-continuous (assign ... deassign, force ... release)
Non-blocking assignment (<=)

• Code Management
Function calls
Task calls
Prog. lang interface (PLI)

Programmable Logic Devices Verilog IV CMPE 415

5 (10/24/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Behavioral Descriptions
• Timing and Synchronization

Assignment delay control
Intra-assignment delay
Event control
Wait
Named Events
Pin-pin delay

• Flow Control
Conditional (if)
Case
Branching
Loops
Parallel activity (fork ... join)

Procedural Assignment
A statement that assigns value to a register variable is called procedural
assignment.

Programmable Logic Devices Verilog IV CMPE 415

6 (10/24/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Procedural Assignment
There are three types of procedural assignments, as indicated in the previous
listing:

• Procedural assignment (=),
• Procedural continuous assignment (assign or force ... release)
• Non-blocking assignment (<=)

Bear in mind that assignment to register variables obey different rules than
assignments to nets.

When the input to a primitive or continuous assignment statement
changes, the output is evaluated and scheduled to change in the future.

For procedural assignments, assignment occurs only if control is passed
to it and the statement executes. Assignment is immediate.

Therefore, the mere appearance of a statement in a process does not guarantee
that the target register variable will ever be assigned to.

See text p. 167 for summary of rules for nets and registers.

Programmable Logic Devices Verilog IV CMPE 415

7 (10/24/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Procedural Continuous Assignment
In order to emulate level sensitive behavior within the hardware, e.g., a latch,
Verilog defines a procedural continuous assignment (PCA).

Continuous assignment establishes a static binding of the RHS expression and
LHS net variable, and can only be defined for nets, not registers.

A procedural continuous assignment (PCA) creates a dynamic binding to a regis-
ter variable when the statement executes.

There are two forms, one can be used only with register variables, while the
2nd can be used on registers or nets.

• assign ... deassign is similar to a continuous assignment to a net, but the
binding here can be removed dynamically.

It uses "=" as in procedural assignment with the keyword assign

It is used to model the level-sensitive behavior of combinational logic,
transparent latches and asynchronous control of sequential parts.

Programmable Logic Devices Verilog IV CMPE 415

8 (10/24/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Procedural Continuous Assignment
Bear in mind that some synthesis tools do NOT support this construct.

Here, the procedural assignment statement binds an assignment expression
(event scheduling rule) to a target register variable.

Similar to a continuous assignment binding an expression to a net.

The assignment takes effect when executed and stays in effect until another
procedural assignment is made or a deassign statement is made to the reg.

module mux4_PCA (a, b, c, d, select, y_out)
input a, b, c, d;
input [1:0] select;

always @ (select)
if (select == 0) assign y_out = a; else

output y_out;
reg y_out;

if (select == 1) assign y_out = b; else
if (select == 2) assign y_out = c; else
if (select == 3) assign y_out = c; else y_out = 1’bx;

endmodule

Programmable Logic Devices Verilog IV CMPE 415

9 (10/24/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Procedural Continuous Assignment
While a PCA is in effect, it overrides all procedural assignments to the target
variable.

It models behavior in which an asynchronous control signal, the set-reset signal
of a FF, must override a synchronous signals, such as the clock.

It also effectively models a latch, which responds to input signal changes
when enabled (clk is high for example) but ignore them when disabled.
module Flop_PCA (preset, clear, q, qbar, clock, data)

input preset, clear, clock, data;
output q, qbar;
reg q;
assign qbar = ~q;
always @(negedge clock)

q = data;
always @(clear or preset)

begin
if (!clear) assign q = 0;
else if (!preset) assign q = 1;
else deassign q;

end...

// overridden if clear/preset unset

Programmable Logic Devices Verilog IV CMPE 415

10 (10/24/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Procedural Continuous Assignment
• force ... release is similar to assign ... deassign but applies to registers or

nets.
When force is applied to a net, the expression forced overrides all other
drivers until a release is executed.

It can override a primitive driver, a continuous assignment, a procedural
assignment and an assign .. deassign PCA to a register.

Used in test benches mainly -- don’t expect the synthesis tool to support
this one.

force sig_a = 1;
force sig_b = 1;
force sig_c = 0;
sig_in1 = 0;
#5 sig_in1 = 1;
#5 sig_in1 = 0;
// other code
release sig_a;
release sig_b;
release sig_c;

in1 in2 in3 in4

sig_a sig_b sig_c

sig_in1

A test to sensitive a path

Programmable Logic Devices Verilog IV CMPE 415

11 (10/24/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Procedural Timing Controls and Synchronization
Verilog provides 4 mechanisms to provide explicit control over time of execu-
tion of a procedural statement.

• Delay control
• Event control
• Named events
• wait construct

We already saw an example of delay control in the clock generator example.

Event control, named events and wait are event-sensitive mechanisms, that syn-
chronize activity within and between behaviors.

When a behavior executes, it continues until it encounters a delay control
operator (#), an event control operator (@) or wait construct.

When it suspends, other processes can execute.

Programmable Logic Devices Verilog IV CMPE 415

12 (10/24/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Delay Control Operator
Suspends the activity flow within a behavior by postponing the execution of
a procedural statement.

The actual delay can be expressed as a number, an identifier (with implicit
numeric value) or an expression.

If expression evaluates to #0 (no delay), the stmt executes at the end of
the current simulation cycle.

If # delay_value proceeds an assignment statement, the assignment is not per-
formed until after the specified time elapses.

Also, all statements following it are suspended.

delay_control ::= # delay_value | #(expression)

initial //Note: at time 0, IN3, IN4 and IN5 are initialized to value ’x’
begin

#0 IN1 = 0; IN2 = 1; // Executes at t_sim = 0
#100 IN3 = 1; // Executes at t_sim = 100
#100 IN4 = 1, IN5 = 1; //Executes at t_sim = 200
#400 IN5 = 0; // Executes at t_sim = 600

end

Programmable Logic Devices Verilog IV CMPE 415

13 (10/24/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Event Control Operator
Synchronizes the execution of a procedural statement(s) to a change in the
value of either an identifier or an expression.

The "@" symbol implements this control.

Here, the assignment is carried out when Signal_1 changes:

Activity control suspends at the @ symbol and the simulator monitors
Signal_1 for an event.

NOTE: Activity control MUST be suspended at the @ symbol in order for the
simulator to monitor changes in it.

event_control ::= @ event_identifier stmt_or_null |
@ (event_expression) stmt_or_null

stmt_or_null ::= statement |;

begin
...
@ Signal_1 register_A = register_B;...

end

Programmable Logic Devices Verilog IV CMPE 415

14 (10/24/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Event Control Operator
If event_A has occurred but event_B has not, control will be suspended at
event_B and further events on event_A are ignored.

For synchronous sequential circuits that synchronize on clock edges, Verilog
provides edge qualifiers posedge (0 --> 1, 0 --> x, x --> 1) and negedge.

q_register gets the value of data_path 10 times units after the positive edge
of clock.

The event_expression and event_identifier used in event control must reference
a net or register (not a parameter, which is a constant).

Also, the register referred to in the control expression can not be assigned to
within the behavior that it synchronizes.

...
@ (event_A) begin

...
@ (event_B) begin

always @(posedge clock) #10 q_register = data_path;

Programmable Logic Devices Verilog IV CMPE 415

15 (10/24/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Event Control Operator
A better model of a D-flipflop, with synchronous set/reset.

Verilog also allows "event OR-ing", the use of disjunction to form complex
event_expressions.

module df_behav (data, clk, q, q_bar, set, reset)
input data, clk, set, reset;
output q, q_bar;
reg q;

assign q_bar = ~q;

always @(posedge clk)
begin

if (reset == 0) q = 0;
else if (set == 0) q = 1;
else q = data;

end
endmodule

always @(Signal_1 or Signal_2) register_A = register_B;

Programmable Logic Devices Verilog IV CMPE 415

16 (10/24/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Event Control Operator
Asynchronous set/reset can be introduced easily using or.

For latches.

module asynch_df_behav (data, clk, q, q_bar, set, reset)
input data, clk, set, reset;
output q, q_bar;
reg q;
assign q_bar = ~q;
always @(negedge set or negedge reset or posedge clk)

begin
if (reset == 0) q = 0;
else if (set == 0) q = 1;
else q = data;

end
endmodule

module t_latch (q_out, enable, data)
input enable, data;
output q_out;
reg q_out;
always (@(enable or data))

begin
if (enable) q_out = data;

end
endmodule

Programmable Logic Devices Verilog IV CMPE 415

17 (10/24/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Named Events
Provides a high-level mechanism of communication and synchronization
within and between modules in Verilog

A named event or abstract event provides interprocess communication without
the details of the physical implementation (nothing is passed in portlist).

module Demo_mod_A(...)
...

event event_a; // variable of type event is declared in one module.
always

begin
...
-> event_a // Event trigger operator -- triggers an abstract event.

end
endmodule

module Demo_mod_B(...)
always @(Top_Module.Demo_mod_A.event_a) // Event monitor

begin
... // do something when event is triggered.
end

endmodule

Programmable Logic Devices Verilog IV CMPE 415

18 (10/24/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Wait Construct
Models level-sensitive behavior by suspending (not terminating) activity flow
until an expression is TRUE.

If true when evaluated, no suspension occurs.
If false, the simulator suspends the activity thread and sets up a monitor.

For example:

wait_statement ::= wait (expression) stmt_or_null
stmt_or_null ::= statement |;

module wait_example(...)
...
always

begin
...
wait (enable) register_a = register_b;

end
endmodule

#10 register_c = register_d;

Programmable Logic Devices Verilog IV CMPE 415

19 (10/24/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Intra-Assignment Delay -- Blocked Assignments
When a timing control operator (# or @) precedes a procedural stmt, the
delay is referred to as a blocking delay.

All stmts following a blocked stmt are also suspended.

Verilog supports another form of delay, intra-assignment delay, where the tim-
ing control is placed on the righthand side (in RHS) in an assignment stmt.

Here, the RHS is evaluated immediately but the assignment doesn’t take
place until the future.

Here, B is sampled but A is not assigned the value of B for 5 more time units.
This separates referencing and evaluation from the actual assignment.

The stmt, C = D; does not execute until the assignment is made 5 time units in
the future.

...
A = #5 B;
C = D;
...

// A = @(event_expression) var; can also be used.

Programmable Logic Devices Verilog IV CMPE 415

20 (10/24/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Non-Blocking Assignments
Procedural assignments using ’=’ operator execute sequentially and are
called blocking assignments.

Verilog also provides a non-blocking procedural assignment construct, <=,
which does NOT block the execution of stmts that follow.

Non-blocking assignments execute in two steps
• First the RHS is evaluated and the simulator schedules the assignment at a

time determined by an optional intra-assignment delay or event control.

• At the end of the designated future time step, the actual assignment is car-
ried out.

Note, during the actual time step, the non-blocking assignments are usually
performed last (if other assignments are also being made) to prevent races.

non_blocking_assignment ::= reg_lvalue <= [delay_or_event_control] expr;

Programmable Logic Devices Verilog IV CMPE 415

21 (10/24/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Non-Blocking Assignments

The non-blocking stmts evaluate concurrently and independently of their order,
once evaluated, the assignments are made.

The results of either code sequence are identical (swaps the values).

In contrast

initial
begin
A = 1;
B = 0;
...
A <= B; // Uses B = 0
B <= A // Uses A = 1
end

initial
begin
A = 1;
B = 0;
...
B <= A; // Uses A = 1
A <= B // Uses B = 0
end

initial
begin
A = 1;
B = 0;
...
A = B; // Uses B = 0
B = A // Uses A = 0
end

initial
begin
A = 1;
B = 0;
...
B = A; // Uses A = 1
A = B // Uses B = 1
end

Programmable Logic Devices Verilog IV CMPE 415

22 (10/24/05)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Non-Blocking Assignments
Non-blocking assignments are useful in modeling concurrent transfers of data
in sequential circuits.

Synthesis tools recommend non-blocking assignments for this purpose.

Here, the order of the execution of these stmts is not important, and it models
the concurrent assignment to a set of register variables in the same time step.

Normally, all RHS are evaluated before any assignments are made and there-
fore order doesn’t matter.

However, if 2 non-blocking assignments assign to the same register vari-
able, Verilog uses the last assignment in the ordered list.

Warning: Synthesis tools do NOT support a mixture of blocking and non-
blocking assignments within the same behavior.

Even though Verilog does.

