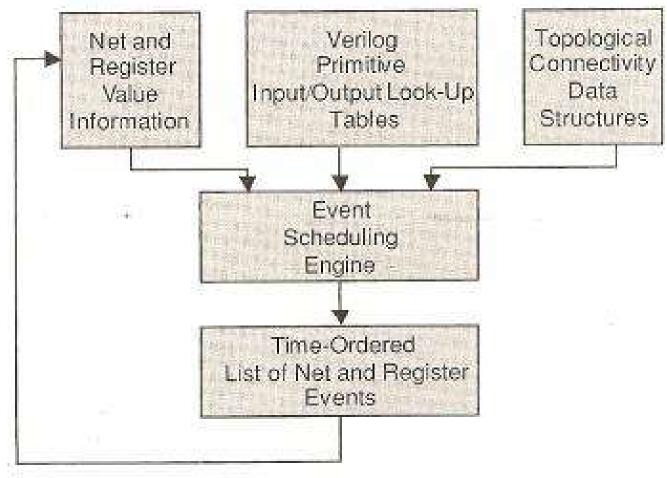
Event Driven Simulation and Test-benches

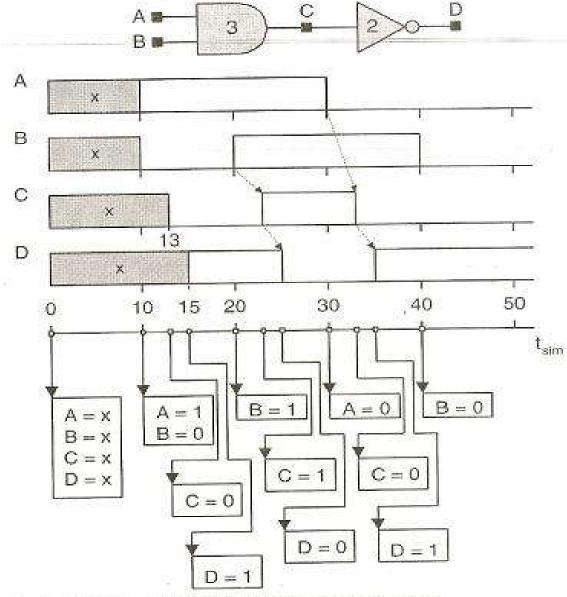

Event Driven Simulation

- Continuous time and value simulation used for analog circuits
- Differential equations should be solved
- Very slow, too much accuracy for digital circuits

Event Driven Simulation

- Discrete values used for digital circuits
- '1','0','Z' and 'X' used in verilog
- This reduces the complexity of simulation
- In digital circuits event driven approach is used instead of continuous time simulation
- This also reduces complexity of simulation

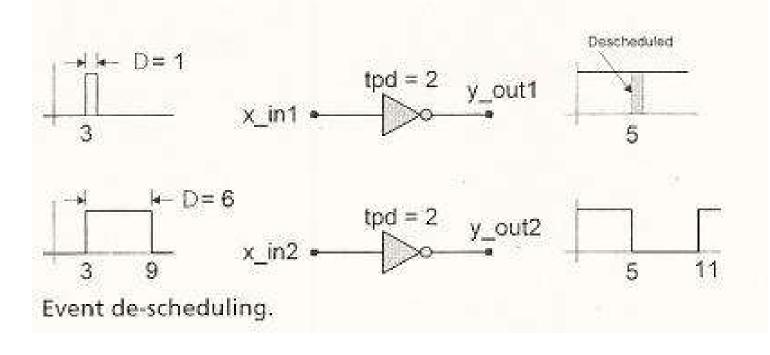
Event Driven Simulation


Organization of an event-driven simulator.

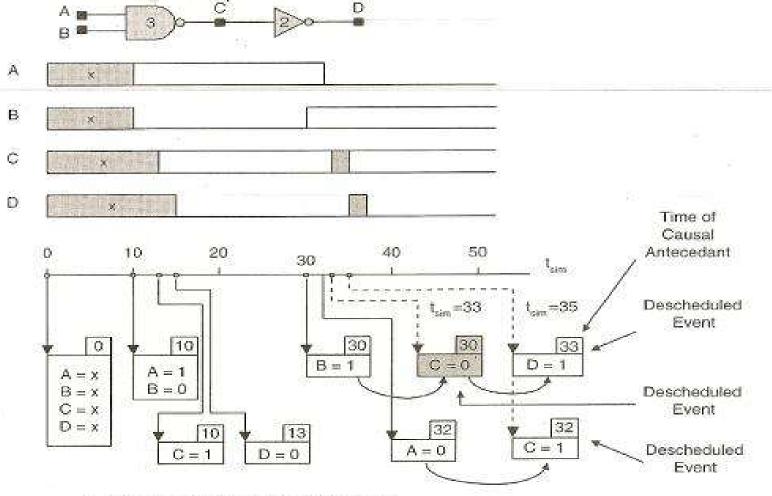
Example C D A Ba • Zero-delay A X B X С X D × У 40 30 50 20 10 12 î_{sim} A = 0B = 0B = 1A = xA = 1B = xB = 0 $\mathbf{C} = \mathbf{X}$ C = 0C = 1D = x $\mathbf{C} = \mathbf{0}$ D = 0D = 1D = 1

Representation of data structures for event-driven simulation.

Example


• Effect of delay

Data structures and event propagation delay.


The idea of Inertial Delay

- To model time required for charge transitions
- Close to what happens in RC circuits

Inertial Delay

 Verilog simulators work based on inertial delay model, event De-scheduling is required

Example of event de-scheduling.

Test-Benches

• Example

odule test_Nand_Latch_1;			// Design Unit Testt	
reg	preset, clea	ur;		
wire	q, qbar;			
Nand_Lat	ch_1 M1 (q,	qbar, pi	rese <mark>t</mark> , clear);	// Instantiate UUT
initial	// Create DUTB response mo			JTB response monitor
begin				
\$mo	nitor (\$time	, "prese	et = %b clear	= %b q = %b
2	105	qbar	= %b", prese	et, clear, q, qbar);
end				
initial				
begin			// Create DL	ITB stimulus generator
#10	preset	= 0;	clear = 1;	
#10	preset	= 1;	\$stop;	// Enter. to proceed
#10	clear	= 0;		
#10	clear	= 1;		
#10	preset	= 0;		
end				
initial				
#60	\$finish ;		// Stop watcl	ň 👘
ndmodule	u rwonorostradinica		010 AD2077 AD271 073	