Programmable Logic Devices Verilog II CMPE 415

Hardware Modeling h
Verilog is a descriptive language that describes the relationship between signals

in a circuit, and is not a computational program.

Verilog also has a semantic of time associated with signals, because it needs to
model their temporal relationships and evolution.

Module Declaration:

module_declaration ::= module_keyword module_id [list_of_ports]
{module_item}

endmodule

module_keyword ::= module | macromodule

module_item ::=
module_item_declaration
| parameter_override
| continuous_assign
| gate_instantiation
| upd_instantiation
| module_instantiation
| specify_block
| initial _construct
| always_construct

. J

% UMBC 1 onss

3

Toe

Programmable Logic Devices Verilog II CMPE 415

fVerilog Module Instantiation
Module ports can be scalar or vector objects (one dimensional).

Keywords to classify ports include input, output and inout

Modules can be instantiated in parents.
nodul e hal f _adder (sum c_out, a, b);

| nput a, b; NP sum
out put sum c_out; cin
: ~ — WL HA w3
W re c_out bar; a — c_out
— — ’ HA |[w2
xor (sum a, b); b _])

nand (c_out bar, a, b);
not (c_out, c_out bar);
endnodul e

nodul e full adder (sum c¢ _out, a, b, c_in);
| nput a, b, c_in;
out put sum c_out;
wire wl, w2, w3;
hal f _adder ml(wl, w2, a, b);
hal f _adder n2(sum w3, wl, c_in);
or (c_out, w2, w3);
endnodul e

\

\

J

I
L

2 (9/26/05)

Programmable Logic Devices Verilog II CMPE 415

fVerilog Primitives)
The predefined primitives implement the behavior of a combinational logic
function or transistor level switch.

e Combinational Logic

and, nand, or, nor, xor, xnor, buf, not
e Three state

bufifO, bufifl, notifO, notifl
* MOS gates

nnbs, pnNosS, rnNnNbs, rpnos
e CMOS gates

cnos, rcnos
* Bi-directional gates

tran, tranifO, tranifl, rtran, rtranifO, rtranifl
e Pull Gates

pul | down, pull up

Note that the first port in any primitive is the output port.

J
3 (9/26/05)

Programmable Logic Devices Verilog II CMPE 415
\

fVerilog Primitives
The primitives allow for gate level and switch level modeling.

They are idealized models because they ignore the time delays exhibited in
real gates by default.
However, delays can be assigned when they are instantiated.

nmodule AO 4 unit (y out, x inl, x in2, x in3, X_in4);
| nput x_inl, x in2, x_in3, Xx_in4,
out put y_out;
wre yl, y2;
and #1 (yl1, x_inl, x_in2);
and #1 (y2, x_in3, x_ind);
nor #1 (y_out, yl, y2);
endnodul e

Note that these delays are ONLY used during simulation, i.e., they have no
effect during synthesis.

J
4 (9/26/05)

Programmable Logic Devices Verilog II CMPE 415
\

fVerilog Primitives
Timing is a very important property of a circuit and Verilog allows accurate
timing information to be incorporated (if it is available).

For example, propagation delay may be different for rising and falling edges
and the designer may want to simulate worst, typical and best case corners.
Process variations make each chip a little bit different.

nmodul e nanf201 (O Al, Bl); instantiation of the nand

out put QO
min delay
nand 1(;0’ Al, Bl); typical delay
speci fy max delay
specpar am ¢////i;::::

Tpd 0 1 = 1.13:3.09:7.75 o

Tpd 1 0 = 0.93:2.50:7. 34 rising delay
——

(AL => O = (Tpd 0_1, Tpd 1 0);

(BL =0 = (Tpd 0 1, Tpd 1 0);

endspeci fy "____ rising delay

endnodul e
The individual path delays are given for each input-to-output path.

J
5 (9/26/05)

Programmable Logic Devices Verilog II CMPE 415

fVerilog Primitives)
Verilog primitives are "smart" because the same primitive, e.g., nand, can be
used for a gate with any number of inputs.

For example, nand(O, A1, A2, A3) instantiates a 3-input version of the Verilog
nand gate primitive.

Explicit and Implicit Structural Description
As indicated, explicit structural descriptions are analogous to placing
and wiring components on a schematic diagram.
We've seen examples of this style previously.

Implicit structural descriptions make use of Verilog built-in operators
within the continuous assignment statement.

nodul e nand2 RTL (y, x1, x2);

| nput x1, Xx2;

out put vy;

assign y = x1 ~& Xx2; Bitwise-nand
endnodul e

J
6 (9/26/05)

Programmable Logic Devices Verilog II CMPE 415
\

fExplicit and Implicit Structural Description
Here, the operators are not bound directly to physical gates.

The keyword assign declares a Verilog continuous assignment.

Continuous assignment corresponds to combinational logic, without requiring
explicit instantiation of gates.

Think of these as "event scheduling rules".
In this example, the continuous assignment defines how output, y,
depends on events that occur for signals x1 and x2.

This style is also called a data flow or RTL description.
Continuous assignment can be made in 2 ways.

The first, as we have seen, uses the keyword assign:
cont_assign ::= assign [drive_strength][delay3] list_of net_assignments;

J

UMBC 7 (9/26/05)

Programmable Logic Devices Verilog II CMPE 415

fExplicit and Implicit Structural Description)
The second method creates a continuous assignment implicitly within the dec-

laration.

nodul e bit _or8 gatel (y, a, b);
I nput [7:0] a, b;
output [7:0] v;
wre [7:0] y = a|b;

endnodul e

Port Connection Syntax
A connection to a port of a Verilog module can be made in 2 ways.
The first is by position, as we have seen, and the second is by naming.

modul e parent _nod; modul e child_nod (a, b, c, d);
wire [3:0] g; i nput a, b;
child_mod (.c(g[3], output ¢, d;
.d(g[2]), .b(g[0]), [l O her stuff
-a(gl1])); endnodul e
endnodul e

J

\ ‘“ '"WUMBC 3 (9/26/05)

Programmable Logic Devices Verilog II CMPE 415

(Behavioral Descriptions)
Consist of procedural statements that define input-output signal relation-

ships without reference to hardware or structure.

There are two basic styles of behavioral description.

* Register transfer level (RTL), defines input-output relationships in terms of
dataflow operations on signals and register values.

* Abstract, algorithmic description of operations, that need not conform to a
dataflow and which may not be synthesizable.

RTL/Data Flow Descriptions
Verilog language operators are used to define the flow of data.

For combinational logic, the continuous assignment statement is used (for
implicit structural model).
nmodul e and4 _rtl (y_ out, x1, x2, x3, x4);
| nput x1, x2, x3, x4,
out put y_out;
assign y out = x1 & x2 & x3 & x4,

endnodul e

J

 UMB C 9 (9/26/05)

Programmable Logic Devices Verilog II CMPE 415

RTL/Data Flow Descriptions)
A sequential example:
nodul e FF (g, dat _in, clk, set, rst);
| nput data_in, clk, set, rst;

out put q;
reg g
al ways @ (posedge cl k)
begi n
| f (rst == 0) q =
el se
if (set ==0) q =1
el se
g = data_in;
end
endnodul e

Here, the FF output, g, is updated synchronously, and retains its value
between clk edges.

reg types retain an assigned value until another assignment is made to them
(similar to variables in C).
They can be assigned a value ONLY by a procedural statement.

J

() 5 UMBC 10 (9/26/05)

Programmable Logic Devices Verilog II CMPE 415

fAlgorithm-Based Descriptions)

An algorithmic description of behavior assigns value to a register storage
(reg) by executing procedural statements.

The procedural statements are those common in high-level languages.
nodul e and4_algo (y_out, x_in);
| nput [3:0] x_in;
out put y_out;
reg y_out;
| nt eger Kk;
al ways @ (x_in)
begi n: and_| oop
y out = 1;
for (k =0; k <=3;, k =k +1)
I f (x_in[k] == 0)

begi n
y out = O;
di sabl e and_| oop;
end
end
endnodul e
Data objects of type reg and integer can only be changed by a procedural

stmt.

J

\ ‘“ '"WUMBC 3 (9/26/05)

Programmable Logic Devices Verilog II CMPE 415

fAlgorithm-Based Descriptions)
The always statement waits for an event on its event expression, i.e. for x_in

to change value.

The @ operator informs the simulator to monitor changes on the event
expression (in this case, if any of the bits with x_in change).

Verilog’s initial statement is very similar to the always statement, except it
only executes exactly once (does not wait and repeat like always).

Verilog for Synthesis
HDLs play a significant role in design fl ows that synthesize behavioral
descriptions to gate level netlists.

A given functionality can be synthesized from a variety of descriptions.

Al . A ltB
B1 TWO-BIT - tt— .
A0 COMPARATOR [A_g —

B0 —— Aeq B

J

% UMBC B onss

Programmable Logic Devices Verilog II CMPE 415

(Verilog for Synthesis A
The functionality of the comparator can be represented by the following

boolean expressions.

A_1lt B=A1B1+ A1 A0BO+ A0 B1 B0
A_gt B=A1B1+ A0B1 B0+ A1 A0 B0
A_eq_B=A1A0B1B0+ Al A0B1 B0+ A1 A0 B1 B0 + A1 A0 B1 BO

Using Karnaugh maps to reduce yields

Al > Wo wil
B1 ri)&é_\
} A lt B

1/
W3

A0 D A_gt B

BO \ w4

o

A_eq B

X
.

J
13 (9/26/05)

Programmable Logic Devices

Verilog II

CMPE 415

fVerilog for Synthesis

| nput A0, Al,

nor (A gt B,
and (A _eq_B,
and (wl, we,
and (w2, we,
and (w3, w7,
not (we, Al);
not (w7, AQ);
xnor (w4, A1,
xnor (wh, A0,

endnodul e

The structural Verilog description can be derived directly from the schematic.

nodul e conpare_2 str (A lt B, A gt B, Aeq B, A0, Al,
BO, Bl);

BO, B1;

output AIt B, Agt B, A eq B;
wre wl, w2, w3, w4, w5, w6, Ww/;

or (Alt B, wl, w2, w3);

Alt B, Aeq B),;
w4, wh);

Bl);

w7, BO);

BO, Bl);

Bl);
BO) ;

\

J

w UMBC

(9/26/05)

Programmable Logic Devices Verilog II CMPE 415

fVerilog for Synthesis A
Alternatively, the comparator can be described by a Verilog RTL model using
continuous assignment.

nodul e conpare 2a (A It B, A gt B, A eq B, A0, Al
BO, Bl);

| nput A0, Al, BO, BI1,

output AIt B, Agt B, A eq B;

assign AIt B=(~Al) &B1 | (~Al) & (~A0) & BO |
(~A0) & Bl & BO;

assign Agt B= A1 &(~Bl) | AO & (~Bl) & (~B0O) |
Al & AO & (~BO);

assign Aeq B = (~Al) & (~A0) & (~Bl) & (~B0O) |
(~Al) & AO & (~Bl1) & BO |;
Al & (~A0) & Bl & (~B0O) |;
Al & AO & Bl & BO;

endnodul e

Focus here is not on the detail but rather only on the input-output relation-
ship.

J

\ ‘“ '"WUMBC 15 (9/26/05)

Programmable Logic Devices Verilog II CMPE 415

(Verilog for Synthesis A
A simplier implementation that exploits Verilog operators.
nodul e conpare 2b (A It B, A gt B, A eq B, A0, Al
BO, Bl);
i nput A0, Al, BO, Bi1;
output AIt B, Agt B, A eq B;
assign AIlt B = ({Al, A0} < {B1, B0})
assign A gt B = {Al, A0} > {B1, B0})
assign A eq B = {Al, A0} == {B1, B0})
endnodul e
J

16 (9/26/05)

Programmable Logic Devices Verilog II CMPE 415

(Verilog for Synthesis A
The algorithmic model

nodul e conpare 2 algo (Alt B, Agt B, Aeq B A B);
| nput [1:0] A B;
output AIt B, Agt B, A eq B;
reg AIt B, Agt B, A eq B;
al ways @ (A or B)
begi n

Alt B=0;, Agt B=0; Aeq B = 0;
If (A==B) AeqB =1,
else if (A>B) Agt B =1;

else Alt B = 1;
end

endnodul e

J
17 (9/26/05)

