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Proxy-Assisted Techniques for Delivering
Continuous Multimedia Streams

Lixin Gao, Zhi-Li Zhang, and Don Towsley, Fellow, IEEE

Abstract—We present a proxy-assisted video delivery architec-
ture that can simultaneously reduce the resources requirements at
the central server and the service latency experienced by clients
(i.e., end users). Under the proposed video delivery architecture, we
develop and analyze two novel proxy-assisted video streaming tech-
niques for on-demand delivery of video objects to a large number
of clients. By taking advantage of the resources available at the
proxy servers, these techniques not only significantly reduce the
central server and network resource requirements, but are also ca-
pable of providing near-instantaneous service to a large number of
clients. We optimize the performance of our video streaming archi-
tecture by carefully selecting video delivery techniques for videos of
various popularity and intelligently allocating resources between
proxy servers and the central server. Through empirical studies,
we demonstrate the efficacy of the proposed proxy-assisted video
streaming techniques.

I. INTRODUCTION

T HE past few years have seen a dramatic growth of multi-
media applications which involve video streaming over the

Internet. Server and network resources (in particular, server I/O
bandwidth and network bandwidth) have proven to be a major
limiting factor in the widespread usage of video streaming over
the Internet. In order to support a large population of clients,
techniques that efficiently utilize server and network resources
are essential. In designing such techniques, another important
factor that must be taken into consideration is theservice la-
tency, i.e., the time a client has to wait until the object he/she
has requested is started to playback. The effectiveness of a video
delivery technique must be evaluated in terms of both the server
and network resources required for delivering a video object and
the expected service latency experienced by clients. Clearly, the
“popularity” or access pattern of video objects (i.e., how fre-
quently a video object is accessed in a given time period) plays
an important role in determining the effectiveness of a video de-
livery technique.
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In this paper, we propose a proxy-assisted video streaming ar-
chitecture that takes advantage of the resources (processing and
disk storage) available at proxy servers to significantly reduce
the server and (backbone wide-area) network resource require-
ments, while at the same time providing near-instantaneous ser-
vice to clients. The central server multicasts video objects pe-
riodically, using, for example [13], source-specific multicast.
Proxy servers are strategically placed between, say, local access
networks and the backbone wide-area network. A proxy server
stores a fixed number of initial frames or a “prefix” of the mul-
timedia stream [12] so as to serve the future requests: when a
new request arrives, the client joins an on-going multicast group
to retrieve the multicast stream from the central server and re-
trieves the missing initial frames from the proxy server. The
missing portion of the prefix is delivered by the proxy using
a unicast channel and played back immediately by the client.
Hence, the proxy server reduces the service latency experienced
by the user by unicasting a prefix of the multimedia stream.

This proxy-assisted video delivery environment has several
advantages over the traditional stand-alone video server envi-
ronment. First, since it requires only network resources between
the proxy and the client, latency reduction is achieved without
increasing the demand on backbone network resources. Second,
unlike the proxy caching schemes proposed for conventional
Web objects such as text and image objects, the proxy needs to
store only prefixes of the multimedia streams. Thus it is feasible
even with the large data volume typically associated with mul-
timedia objects. Third, since the proxy server delivers only the
prefixes and is only responsible for a limited number of clients,
the I/O bandwidth requirement imposed on the proxy server is
not significant.

Under the proposed proxy-assisted video delivery archi-
tecture, we develop a novel video delivery technique called
proxy-assisted catching, which can efficiently utilize server
and proxy resources while providing near instantaneous service
to clients. This technique is particularly suitable for “hot”
(i.e., frequently access) video objects. The effectiveness of the
technique is achieved through the intelligent integration of
the “server-push” and “client-pull” video delivery paradigms.
Using this technique, the server periodically “broadcasts” a
video object via a number ofdedicated multicast channels.
A client who wishes to watch the video immediately joins
an appropriate multicast channel without waiting for the
beginning of the next broadcast period. At the same time, the
client sends a request to a proxy server to retrieve the missing
prefix of the video object. Using a smart broadcast scheme
such as theGreedy Disk-conserving Broadcast(GDB) scheme
[7], we present an analytical framework to determine design
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parameters such as the size of the prefix stored in the proxy
server. Furthermore, we show that the total resource required
by the central server and proxy servers combined is close to the
minimum achievable by any broadcasting scheme that supplies
near-instantaneous service.

In order to account for the diverse access patterns for a col-
lection of video objects in a video server, we design an efficient
video delivery scheme calledproxy-assisted selective catching
which combines proxy-assisted catching with another video de-
livery technique—controlled multicast[8]. Controlled multicast
is a “client-pull” technique which is most effective in delivering
“cold” video objects. Based on video access patterns, we intro-
duce a simple policy for classifying “hot” and “cold” video ob-
jects and apply catching and controlled multicast accordingly to
deliver the video objects to clients. Through empirical studies,
we demonstrate that, in terms of both network resource require-
ments and service latency,proxy-assisted selective catchingout-
performs either proxy-assisted catching or controlled multicast
applied alone.

The remainder of this paper is organized as follows. The re-
lated work is briefly surveyed in Section I-A. Section II presents
the proxy-assisted video delivery architecture. In Section III,
we describe a specific proxy-assisted video delivery technique
called proxy-assisted catching. Section IV introduces proxy-as-
sisted selective catching and evaluates the scheme via empirical
studies. The paper is concluded in Section V.

A. Related Work

In recent years, a variety of multicast techniques for video
delivery have been proposed (see, e.g., [1], [3], [4], [6], [7],
and [18]). These techniques can be broadly classified into
either “client-pull” or “server-push.” The simplest “client-pull”
technique is to deliver a separate video stream upon each
client request. This technique, while providing minimal ser-
vice latency to a client, is obviously not efficient in terms of
server and network resource utilization. Clever “client-pull”
techniques such asbatching[1], [6] andpatching[5], [8], [15],
[16] have been proposed that take advantage of the underlying
network multicasting capabilities to reduce server and network
resource requirements. In the case of batching, this reduction in
server and network resource requirements is achieved through
increased service latency, as it delays earlier requests for a video
object until a certain number of requests for the same object
arrive before the video object is scheduled to be delivered.
Hence, batching is less effective for “cold” video objects. On
the other hand, “patching,” which allows multiple clients to
share a multicast channel whenever possible, is most effective
in reducing the server and network resource requirements for
“cold” video objects without introducing service latency. A
similar technique—the split and merge (SAM) protocol—is
proposed in [14] forinteractiveVOD systems, where a unicast
stream is scheduled on demand upon a client’s request.

“Server-push” techniques [3], [4], [7], [17]–[19] are typically
designed for “hot” video objects. They employ a fixed number
of multicast channels to periodically broadcast video objects
to a group of subscribers. The difference between various
“server-push” techniques lies in the broadcast schemes used.
These broadcast schemes determine the server and network re-

sources required for broadcasting a video object. “Server-push”
techniques have the advantage that they utilize server and
network resources more efficiently. But this efficiency is
achieved through increased service latency, as a client can only
start receiving a video object at the beginning of next broadcast
period.

The problem of delivering continuous media streams using
proxy servers has been studied in a number of contexts. In [11],
Wanget al.develop video staging techniques to store a pre-de-
termined amount of video streams in strategically placed proxy
servers to reduce the backbone network bandwidth requirement
for delivering variable-bit-rate (VBR) video streams across a
wide-area network. In [12], a prefix caching scheme is pro-
posed to reduce the latency while delivering smoothed VBR
continuous streams between the proxy and clients. Proxy-as-
sisted video delivery is also proposed in the context of the dy-
namic skyscraper delivery scheme in [9].

II. PROXY-ASSISTEDVIDEO DELIVERY ARCHITECTURE

In this section we propose a proxy-assisted video delivery
architecture that employs a central-server-based periodic broad-
cast scheme to efficiently utilize central server and network re-
sources, while in the same time exploiting proxy servers to sig-
nificantly reduce service latency experienced by clients. Under
the proposed proxy-assisted video delivery architecture, we de-
velop two novel video streaming techniques—proxy-assisted
catchingandproxy-assisted selective catching. The proxy-as-
sisted catching technique eliminates the shortcoming associ-
ated with periodic-broadcast-based “server push” techniques,
namely, the increased service latency, by taking advantage of
the resources available at the proxy servers. The proxy-assisted
selective catching technique further improves the overall per-
formance by combining proxy-assisted catching and controlled
multicast to account for diverse user access patterns. In addition,
unlike [9], our video streaming techniques can handle variable
size video objects, and is based on formal analysis of multicast
scheduling policies. From this analysis, the design parameters
can be derived in a straightforward manner. As a result, our solu-
tion can be optimized accordingly. In the following we describe
the proposed proxy-assisted video delivery architecture and in-
troduce the necessary notation and terminology. The proxy-as-
sisted catching and proxy-assisted selective catching techniques
are presented and studied in Sections III and IV, respectively.

Fig. 1 shows a simple example of a proxy-assisted video de-
livery system. A central video server delivers video streams
from a video object repository to a large number of clients across
an inter-network (e.g., the Internet). A number of proxy servers
are strategically placed between the wide-area backbone net-
work and the local access networks where clients reside. The
central server organizes the central server and network resources
required to deliver a video stream1 into a data channel. The
server uses a multicast channel to deliver a video streamperi-
odically to a group of clients (this group of clients is referred to

1In this paper we use the termvideo streamto denote a continuous flow or
“stream” of video data (belonging to a certain video object) delivered from the
server to a client or a group of clients. As will be clear later, a single video object
can be partitioned into segments and delivered using multiple video streams via
several delivery channels.
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Fig. 1. An overview of proxy-assisted video delivery architecture.

as amulticast group). In addition to the logical channels used
for delivering video streams (i.e., the data channels), we also
assume that there arecontrolchannels to deliver signaling mes-
sages to a client or a group of clients and vice versa for con-
trol purposes (e.g., which video object is requested by a client,
which data channels a client should tune in to, when to start
video play-back, etc.). The video server has a scheduler which
receives client requests for video objects via control channels,
processes them and determines when and which video delivery
channels to deliver requested video objects to clients. Since the
bandwidth required by control channels is negligible comparing
to that required by data channels, we concern ourselves only
with the bandwidth required by the data channels throughout
this paper.

The proxy serversstage(i.e., pre-store) a fixed number of
initial frames of (some) video objects. When a client requests
for a video object, it tunes to the central server to fetch its de-
sired video data. However, to ensure near-instantaneous play-
back, the central server directs client to immediately fetch the
initial frames of the video object that is staged at a proxy server
that is “closest” to the client.2 These initial frames are deliv-

2The issue of how to locate the “closest” proxy server is outside the scope
of this paper. Such issue has been studied by a number of researchers, e.g., in
the context of replicated servers [20]. Other related issues such as proxy server
placement, i.e., the number of proxy servers required and where to place them
over the Internet are also important to the deployment of the proposed proxy-
assisted video delivery architecture; likewise, they are beyond the scope of this
paper. Some proposals can be found in, e.g., [21]–[23].

ered from the proxy server by initiating a unicast channel. By
staging a small amount of video data at the proxy, we see that
proxy servers can effectively reduce the service latency experi-
enced by the client without increasing the server network band-
width requirement. In other words, the proxy-assisted video de-
livery architecture leverages the strategical location of the proxy
servers and their storage and processing capacity by appropri-
ately distributing the responsibility of video delivery between
the central video server and the proxy servers.

In our work, we assume that each client contains a disk and
a video display monitor. A client selects one or more network
channels to receive a requested video object according to the
instructions from the server. The received video data are either
sent to the display monitor for immediate playback, or tem-
porarily stored on the disk which is retrieved and later played
back on the display monitor. Theclient storagespaceis the max-
imum disk space required throughout the client playback period.
For ease of exposition, we assume that the client disk space is
sufficiently large to store at least half a video.3 Theclient net-
work bandwidthis the maximum client network bandwidth re-
quired to receive video data from the network throughout the
client playback period. We also assume that a client has the ca-

3This assumption is not essential, since our proposed schemes can be easily
extended to a general case where clients have any given amount of disk storage
space, as we will point out in Section III. In all of our empirical studies, the
amount of client disk storage space used is actually only at most one third of a
video object.
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pability of receiving video data from two channels at the same
time.4

Throughout the paper, we assume that that there arevideo
objects in the central server object repository. The length of the
th object, , is minutes long. The requests

for the th video object arrive according to a Poisson distribu-
tion with an expected inter-arrival time of , where is the
request rate of video. Given a client request for a video ob-
ject, theservice latencyexperienced by a client is the amount
of time that the client has to wait until he/she can start the play-
back of the requested video object. A key issue in the design
of proxy-assisted video streaming techniques is how to effi-
ciently utilize server, proxy server and network resources (i.e.,
use the least number of video delivery channels necessary for
delivering a video object) while keeping the (expected) service
latency experienced by clients as small as possible. In the re-
mainder of this paper we will illustrate how this issue can be
effectively addressed under our proposed proxy-assisted video
delivery architecture by introducing two novel video streaming
techniques—the proxy-assisted catching and proxy-assisted se-
lective catching techniques.

III. PROXY-ASSISTEDCATCHING

In this section, we present the proxy-assisted catching tech-
nique developed under our proposed video delivery architecture.
The basic scheme is described in Section III-A, and its opti-
mality is analyzed in Section III-B. In Section III-Cwe compare
the performance of the proxy-assisted catching technique with
that of a previously proposed “client-pull” video streaming tech-
nique, thecontrolled multicast[8].

A. The Basic Scheme

Although proxy-assisted video delivery techniques can be
combined with any video multicast scheme, we illustrate the
idea based on a specific periodic broadcasting scheme called
Greedy Disk-conserving Broadcast (GDB) [7] (see Appendix I
for a detailed description of GDB). We refer to the video
delivery technique illustrated here asproxy-assisted catching.
Proxy-assisted catching achieves the resource efficiency of
periodic broadcast schemes while providing near instantaneous
service to clients. This technique synergetically combines the
“server-push” and “client-pull” video delivery paradigms: like
periodic broadcast, proxy-assisted catching dedicates a certain
number of server channels for periodic broadcasting. But unlike
periodic broadcast, it reduces the service latency by allowing
clients to join an on-going broadcast cycle at any time instead
of waiting for the next broadcast cycle. Clients catch up with
the current broadcast cycle by retrieving the missing initial
frames (or a prefix) of the video object from a local proxy
server via a separate unicast channel. Clients play back the
prefix as it is received from the proxy, while at the same time
temporarily storing the video data received from the broadcast
channel into the disk.

We illustrate how proxy-assisted catching works through a
simple example. As shown in Fig. 2, a video object is partitioned

4With the advent of high-speed access technologies such as ADSL and cable
modems, this is not an unreasonable assumption.

Fig. 2. Illustration of proxy-assisted catching.

into four segments, A, B, C, and D, where A, B, and C are of
equal length and D is twice as long. The server dedicates four
channels to broadcast the four segments separately. We assume
that a proxy server stores segment A on its disk. Consider client
1 who arrives seconds after the beginning of the current broad-
cast cycle of segment A. It joins the ongoing broadcast cycle of
segment A to receive the remaining data of segment A. At the
same time it initiates a unicast “catch-up channel” over which
the proxy delivers the firstseconds of video data of segment A
to client 1. This “catch-up” stream is played back immediately
by client 1, while the broadcasted data of segment A is tem-
porarily stored. At the end of the current broadcast cycle of seg-
ment A, client 1 starts receiving segment B by joining the next
broadcast cycle of segment B, while continuing the playback
of segment A. At the end of the broadcast cycle of segment B,
client 1 starts receiving both segments C and D. By temporarily
storing video data that does not need to be played back imme-
diately, client 1 ensures the continuous playback of the video
object. The behavior of client 2 is similar. The only difference
is that, at the end of the broadcast cycle of segment B, client 2
only needs to join the next broadcast cycle of segment C. As a
result, client 2 needs to buffer at mostseconds of video data
at any time, whereas client 1 needs to buffer up to seconds
of video data. Note that, in both cases, clients 1 and 2 receive
video data from at most two channels at any given time.
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From the above example, we see that we can use a function
to partition the video into segments. The partition function rep-
resents the relative length of each segment. See Appendix I for
the partition function used for GDB. The partition function for
the proxy-assisted catching is derived directly from that used
in GDB. For example, given that the network bandwidth on the
client side is only sufficient to supporttwo channels, the parti-
tion function for catching is given by

if
if
if
if
if .

(1)

We see that is derived from in Appendix I by adding
two initial segments whose length is the same as that of the first
segment of . In other words,
and for . These two segments are
added to ensure that a client needs to join only one broadcast
channel while receiving the “catch-up” stream from the server.
Note that no matter when a client arrives during a broadcast
cycle of the first segment, by the end of the broadcast cycle of the
second segment, the “catch-up” stream of the first segment must
have completely received and played back. Hence, after the end
of broadcast cycle of the second segment, a client only needs
to join the broadcast channels to receive the appropriate video
segments. The client schedule for determining which channels
to join and when to join is exactly the same as the one used in
GDB. The only difference is that, in proxy-assisted catching,
a client always needs to fetch the firstseconds of video data
from the proxy server via a unicast channel, if it arrivesseconds
later than the beginning of an on-going broadcast cycle of the
first segment.

B. Optimality of Proxy-Assisted Catching

Clearly, the ability of proxy-assisted catching to achieve
near-instantaneous service lies in the fact that, besides the
dedicated broadcast channels, there are additional proxy or
central server channels that unicast “catch-up” prefix streams
on-demand. Hence the performance of catching is determined
by the number of dedicated channels used by the server for pe-
riodic broadcast as well as by the number of proxy’s “catch-up”
channels. The rest of this section is devoted to the analysis of
theoptimalperformance of proxy-assisted catching for a video
object with a known user access pattern.

Since the server and network bandwidth is the major bot-
tleneck, our goal is to minimize the total number of channels
that the server has to dedicate and needed by the proxy server.
There is a trade-off however; the fewer channels the server ded-
icates for periodic broadcast, the longer the first video segment
must be and, therefore, the more “catch-up” channels and the
more storage space are required by the proxy. Clearly, there is
a trade-off between the server and proxy resources. Since the
storage space is less expensive comparing to disk or I/O band-
width, we take the total number of channels required by the
server and proxies combined as the optimization criteria. Ad-
mittedly, the server and proxy channels have different cost. We

argue, however, that our analytical approach presented here can
be easily generalized to any cost model. In this paper, we present
only the analysis that minimizes the total number of the server
and proxy channels.

For simplicity of exposition, we will analyze the performance
of proxy-assisted catching based on the partition function
defined in (1). Namely, we assume that the network bandwidth
on the client side is only sufficient to support two channels at the
same time, and that clients have sufficient disk storage space to
buffer at least half of the length of a video object in question. At
the end of this section, we will briefly discuss how the analysis
can be extended to more general cases.

Consider video objectwhose length is . Given the parti-
tion function , suppose server channels are dedicated to
broadcast video objectand let denote the length of the first
broadcast segment of video object. Then from the definition
of the partition function, we have

(2)

Under the assumption that client requests for video object
arrive according to Poisson distribution with an average rate

, the expectednumber of proxy channels needed to deliver
“catch-up” streams to clients is

(3)

This is because the expected length of the “catch-up” streams
is . Hence, the totalexpectednumber of channels required
for delivering video object to clients is

(4)

From (2), we see that the smaller the number of dedicated
server channels is, the larger the first broadcast segment

becomes. On the other hand, from (3), it is clear that the
larger results in more proxy channels are needed to deliver
“catch-up” streams to clients. Therefore, there is tradeoff be-
tween the number of server channels and the expected number
of proxy channels required for catching up. In order to optimize
resource efficiency, we minimize the total expected number of
channels required to deliver each video object. This leads to the
following optimization problem:

Let be the solution to the above optimization problem.
Namely, is the optimal number of server channels such that
the total expected number of channels required for delivery of
video object is minimized, i.e.,

(5)
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Therefore, the expected number of channels required is

(6)

For the partition function given in (1), can be derived
analytically, the detail of which is relegated to Appendix II. Here
we provide an order estimate for . From (1), it is not too hard
to verify that . Substituting this into (6)
and taking the first-order derivative, we have

(7)

Furthermore, the total expected number of channels required for
video is

(8)

since the expected number of proxy channels required [see (6)]

with optimal .
Although the analysis in this section is carried out based on

the assumptions that clients only have sufficient network band-
width to support two channels and that clients have sufficient
disk storage space to store half of a video object, these assump-
tions are not essential. We can easily extend our analysis to cases
where clients can support more than two channels by choosing
the appropriate partition functions [7]. Furthermore, since the
amount of disk storage space required at clients equals to the
size of the largest broadcast segment [7], we can restrict the par-
tition function in such a manner that the largest broadcast seg-
ment size is always smaller than the available client disk storage
space (please refer to [7] to see how this can be done).

We now proceed to prove that the total number of channels
required by proxy-assisted catching is close to the minimum
achievable by any broadcast scheme that supplies near-instan-
taneous service. Formally, for a video of lengthand whose
request arrival is a Poisson process with arrival rate, any
broadcast scheme needs at least channels to supply
the instantaneous service. Consider theth frame of the video.
First, we prove that we need at least channels for
broadcasting frame.

Let random variable denote the time between two con-
secutive th frame multicast. Here we use one frame time as our
time unit. We claim that .

Suppose frameis broadcast at time. Any client that arrives
between time and might be able to retrieve the same
frame multicast at time. However, the first client that arrives
after time could not. Let denote the time that the first client
arrives after time. Frame has to be broadcast once between
time and time to ensure the continuous playback of the
first client arriving after time . Therefore, .
Since the arrival process is Poisson with rate, we know that

. Therefore, .

Since we need to use at least channels for the th
frame, we need at least channels for frame. Sum-
ming all frames, we need at least

channels for the whole video. Comparing with (8), we see that
the number of channels required by proxy-assisted catching is
within a constant factor from the minimum achievable by any
broadcasting scheme. The constant factor depends on the op-
timal in (5), which in turn depends on the broadcasting
scheme used.

C. Comparison With Proxy-Assisted Controlled Multicast

In this section, we compare proxy-assisted catching with a
previously proposed video delivery technique—controlled mul-
ticast [8]. Controlled multicast is a “client-pull” technique that
allocates channels at the request of clients, and is amenable
to deployment in a proxy-assisted video delivery architecture.
Here we briefly review the idea of controlled multicast. See [8]
for details. Controlled multicast only allows clients to share a
multicast channel to receive a video streamwhen the later client
requests for the same video object arrive within a certain time
from the first client request. Otherwise, a complete video trans-
mission for the video object is scheduled using a new multicast
channel. In other words, for each video object, a threshold
is defined to control the frequency at which a complete stream
of video is delivered.

In the proxy-assisted controlled multicast, proxies pre-store
the first frames of the video. When the first request for video

arrives at time, the central server multicasts a complete video
stream of video. Any subsequent request for videoretrieves
the data from the same multicast stream so long as the request
arrives within minutes from the starting time of the previous
multicast (which is time in this case). The missing portion of
the prefix (which is at most frames of the video) can be
retrieved directly from a local proxy via a unicast channel. Oth-
erwise, the request is served by initiating a new multicast trans-
mission of video from the server. This process repeats forever.
The expected total number of channels required by controlled
multicast to deliver video is

(9)

as given in [8]. It is clear that, for reasonably large, the
total expected number of channels required by proxy-assisted
catching to deliver a video object is considerably less than that
required by proxy-assisted controlled multicast. In other words,
for “hot” video objects, proxy-assisted catching is much more
efficient than proxy-assisted controlled multicast. To verify this
observation, let us consider an numerical example. In Fig. 3,
we plot the total expected number of channels required to de-
liver a 90-min-long video object under proxy-assisted catching
and proxy-assisted controlled multicast, respectively, as the ar-
rival rate of client requests for the video object varies from 0.1
to 0.9. We can see that proxy-assisted catching requires fewer
channels than proxy-assisted controlled multicast when the re-
quest rate is greater than 0.4. When the request rate drops below
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Fig. 3. Total number of channels versus arrival rate.

0.4, proxy-assisted controlled multicast has better performance.
This is because for a “cold” video, client requests for the video
object do not come frequently enough to take advantage of pe-
riodic broadcast.

IV. PROXY-ASSISTEDSELECTIVE CATCHING

In Section III, we developed the proxy-assisted catching
video delivery technique and showed that it is most effective
for “hot” video objects. For “cold” video objects, proxy-as-
sisted controlled multicast is more efficient. In this section,
we design a new video streaming technique, referred to as
proxy-assisted selective catching, that combines proxy-assisted
catching and controlled multicast to account for diverse user
access patterns of video objects. The proxy-assisted selective
catching broadcasts “hot” videos using the proxy-assisted
catching technique, while it delivers “cold” videos using the
proxy-assisted controlled multicast technique. In Section IV-A,
we provide a formal definition of “hot” and “cold” videos. The
rest of this section is devoted to the performance evaluation of
the proxy-assisted selective catching technique under various
performance metrics.

A. Classification of “Hot” and “Cold” Videos

The key issue in the design of proxy-assisted selective
catching is to determine when to apply catching and when to
apply controlled-multicast. To address this issue, we present
a simple and straightforward criterion for classifying video
objects based on their access patterns. A video object is consid-
ered“hot” if the expected total number of channels required
to deliver it using catching is less than that required using
controlled multicast. Otherwise, the video object is considered
“cold” . More specifically, a video objectis considered “hot”
if and only if

(10)

where is defined in (5).
This definition of “hot” and “cold” video objects is based on

the assumption that there are always sufficient server channels

TABLE I
PARAMETERS CHOSEN FOR THESIMULATION

available (i.e., at least ) that can be dedicated to broadcast a
video object . The definition can be extended to the case where
this is not true by allocating server channels to only “hottest”
video objects among the “hot” video objects (say, based on user
access patterns). For simplicity of exposition, we will not con-
sider this case.

In the remainder of this section, we conduct simulations
to demonstrate that using this simple policy for classifying
“hot” and “cold” video objects, the proxy-assisted selective
catching technique can achieve superior performance over
proxy-assisted catching and proxy-assisted controlled multicast
alone. We further show that proxy-assisted selective catching
can significantly reduce the server bandwidth requirement.

B. Simulation Setting

In our simulations, we assume that client requests arrive at
a video server according to a Poisson distribution with an av-
erage rate (i.e., the average interarrival time between consec-
utive requests is ). For a given request, the probability dis-
tribution of video selection obeys a Zipf-like distribution [10]:
for a collection of video objects, the probability of selecting
video object , , is , where

. Here denotes the skew factor in video access
patterns. In our simulations, we use . This value of

is known to closely match the video popularity distributions
observed by video rental stores [2].

Unless noted otherwise, the workload and system parameters
chosen for our simulations are listed in Table I. Each run of our
simulations simulates 150 hours of client requests. In our sim-
ulations, the server dedicates a fixed number of broad-
casting channels for each “hot” video objects. The remaining
channels are used for broadcasting complete video streams for
controlled multicast. These channels are scheduled on an on-de-
mand basis, and requests for these channels are served in First-
Come-First-Serve order. In the next two subsections, we demon-
strate through an empirical study that the proposed proxy-as-
sisted selective catching can drastically reduce the total number
of channels required and the number of channels required on
the server alone. Furthermore, the expected service latency of
clients can be significantly improved.

C. Total Number of Channels

We first compare the proxy-assisted catching, controlled
multicast and selective catching in terms of the total number
of channels required. We assume that we have sufficient proxy
resources to store prefixes for all videos. Specifically, we
assume that each proxy server has 40GBytes of storage space
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Fig. 4. Expected waiting time versus number of server channels.

These assumptions are not unreasonable with current trend in
disk storage technologies. Fig. 4 compares the expected service
latency experienced by clients under proxy-assisted controlled
multicast, proxy-assisted catching and proxy-assisted selective
catching, as the total number of channels varies from 600 to
1000. The average arrival rateof client requests is fixed at 50
requests per minute. From the figure, we see that proxy-assisted
catching performs worse than proxy-assisted controlled multi-
cast when the number of total channels is small. This is because
proxy-assisted catching dedicates a fixed number of broadcast
channels for each video objects no matter whether it is “hot”
or “cold”. Hence when the total number of channels is small,
there are not sufficient channels left for delivering “catch-up”
streams. As a result, clients may experience large service
latency. But as the number of channels increases, this problem
becomes less severe. In these cases, proxy-assisted catching has
significantly better performance than proxy-assisted controlled
multicast. Proxy-assisted selective catching, however, attains
the best performance among the three in all cases. In particular,
we observe that with 710 or more channels, proxy-assisted
selective catching achieveszero expected service latency. To
obtain the same result, proxy-assisted controlled multicast
requires at least 900 channels.

Fig. 5 shows the effect of the arrival rate on the expected
service latency for proxy-assisted controlled multicast,
proxy-assisted catching and proxy-assisted selective catching.
In this simulation, the request arrival rate varies from 40 to
80 requests per minute, and the total number of channels
is fixed at 700. From the figure we see that in most cases,
proxy-assisted catching and proxy-assisted selective catching
outperform controlled multicast. In particular, as the arrival rate
increases from 40 to 80, the benefit of proxy-assisted catching
and proxy-assisted selective catching becomes significant. As
the arrival rate increases further, we expect that proxy-assisted
catching and proxy-assisted selective catching has the same
performance since all videos become hot. However, we do
not expect the VOD system to perform in the region where
the arrival rate is greater than 80 when the number of server
channels is 700, since the service latency is unacceptably high
and our optimization criteria is based on the assumption that
the expected service latency is close to zero. Also note that
proxy-assisted selective catching can provide a zero expected

Fig. 5. Expected waiting time vs. arrival rate.

Fig. 6. Expected total number of channels versus arrival rate.

service latency even when the request arrival rate is 50 requests
per minute, while proxy-assisted catching can provide a zero
expected service latency only when the request arrival rate is
40 requests per minute.

Fig. 6 compares the total expected number of channels
required for proxy-assisted controlled multicast, proxy-assisted
catching and proxy-assisted selective catching as a function of
the request arrival rate. In this simulation, we vary the request
arrival rate from 40 to 100 requests per minute. The results
show that proxy-assisted selective catching requires at least 150
channels fewer than that required by proxy-assisted controlled
multicast, while proxy-assisted catching requires at least 100
fewer channels. As the request arrival rate increases, more video
objects become “hot.” As a result, the difference between the
total number of channels required by proxy-assisted selective
catching (or proxy-assisted catching) and proxy-assisted con-
trolled multicast is further widened. In general, proxy-assisted
selective catching requires few channels than proxy-assisted
catching, and the difference between them diminishes as the
request arrival rate increases. As the request arrival rate reaches
close to 100, the expected total number of channels required
by proxy-assisted catching approaches to that required by
proxy-assisted selective catching. This is because as all videos
become “hot” proxy-assisted selective catching coincides with
proxy-assisted catching.
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Fig. 7. Expected waiting time versus total number of server channels.

Fig. 8. Expected number of server channels versus arrival rate.

D. Number of Server Channels

We now demonstrate the efficacy of proxy-assisted selective
catching scheme in reducing the number of server channels re-
quired. We first assume that we have sufficient proxy resources
to store prefixes for all videos. Specifically, we assume that each
proxy server has 40GBytes of storage space and a disk I/O band-
width of 88 Mb/s. These assumptions are not unreasonable with
current trend in disk storage and LAN access technologies.

Fig. 7 compares the expected service latency of selective
catching without proxy assistance and proxy-assisted selective
catching, as the number of channels available at the central
server increases. We see that that proxy-assisted selective
catching can provide an expected service latency close to 0
with only 460 server channels. Whereas, to provide the same
service, selective catching without proxy assistance needs 700
channels. We see that proxy-assisted selective catching yields
a 36% saving in the number of channels required at the central
server. Fig. 8 plots the expected number of channels required
at the central server as a function of the request arrival rate. We
see that proxy-assisted selective catching achieves significant
reduction in the number of central server channel requirement
in all the range of the request arrival rates.

In the next set of simulations, we study the resource tradeoff
between the central server and the proxy server. We assume that

Fig. 9. Expected waiting time versus number of server channels.

the proxy server has limited amount of the storage space. Con-
sequently, we only stage the prefixes of the most popular (i.e.,
“hottest”) videos for a given storage constraint. In Fig. 9 we
show the performance of proxy-assisted selective catching as
the amount of storage space at the proxy server varies among 5,
10, 15, and 16 GBytes. The expected service latency of proxy-
assisted selective catching under these proxy storage constraints
as well as that of selective catching without proxy-assistance are
plotted. Comparing with the performance of proxy-assisted se-
lective catching, we see that with relative small amount (e.g.,
5 GBytes) of proxy storage space, there still is a significant
reduction in the expected service latency using proxy-assisted
selective catching. Hence, the advantage of proxy-assisted se-
lective catching does not critically hinge on the availability of
proxy storage space.

V. CONCLUSION

In this paper, we have presented a novel and efficient
proxy-assisted video delivery architecture that employs a
central-server-based periodic broadcast scheme to efficiently
utilize central server and network resources, while in the same
time exploiting proxy servers to significantly reduce service
latency experienced by clients. Under the proposed proxy-as-
sisted video delivery architecture, we have developed two novel
video streaming techniques—proxy-assisted catching and
proxy-assisted selective catching. By staging at proxy servers
the initial streams (i.e., prefixes) of a certain number of video
objects, the proxy-assisted catching technique retains the re-
source efficiency of the periodic-broadcast-based “server-push”
schemes, while in the same providing near-instantaneous ser-
vice to a large number of clients. This technique is particularly
effective for “hot” (i.e., frequently accessed) video objects.
The proxy-assisted selective catching technique combines the
proxy-assisted catching technique for delivery of “hot” video
objects with the proxy-assisted controlled multicast technique
for delivery “cold” video objects to account for the diverse
video access patterns. We presented a simple criterion for
classifying video objects into “hot” and “cold” sets. Through
simulations we demonstrated that the proposed proxy-assisted
selective catching can achieve superior performance over
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Fig. 10. Example of periodic broadcast scheme.

existing techniques in terms of both server/network resource
requirements and service latency.

APPENDIX I
GDB: AN EFFICIENT PERIODIC BROADCAST

Greedy Disk-conserving Broadcast (GDB) [7] is a
“server-push” video delivery technique based on the in-
novative periodic broadcast schemes developed recently [1],
[3], [4]. Under these schemes, a video object is partitioned into
segments and each segment is periodically broadcasted via a
dedicated channel. The sizes of these segments are carefully
designed in such a manner that clients who wish to receive the
video object can join the appropriate channels to receive various
segments atscheduledtimes to ensure continuous playback
of the video object. Fig. 10 illustrates how the schemes work
through a simple example. A video is partitioned into four
segments: A, B, C, D. Each segment is broadcast periodically
via a dedicated channel. Clients prefetch video data according
to a schedule that ensures the continuous playback. Further-
more, clients are guaranteed a maximum service latency of
minutes with only four dedicated channels, where periodically
broadcasting the video stream everyminutes would require 11
dedicated channels to guarantee the same maximum service la-
tency. In effect, a complete stream is multicast everyminutes
but using only four channels. The key issue in periodic broad-

cast schemes is to determine how to partition video objects
into segments so as to enable continuous playback at clients. A
method for partitioning video objects is referred to as aparti-
tion function, which determines the performance of a periodic
broadcast scheme. Given dedicated multicast channels, a
partition function divides a video object into segments,

, as follows. For , segment
contains minutes of video data, and its
data starts at the th minute of the
video and ends at the th minute
of the video. In [7], a set of constraints on partition functions
are derived based on resource availability at the client side. In
particular, GDB is shown to be most efficient among all the
existing schemes, given the same client resource constraints.
For example, if the network bandwidth at the client side is only
sufficient to support two channels (i.e., receiving from two
channels simultaneously), the optimal partition function
used in GDB has the following form:

if
if
if
if
if .

(11)

Given this partition function, it can be shown that the disk
storage requirement at the client is equal to
times the first segment size for a video object.

APPENDIX II
DETERMINING THE OPTIMAL NUMBER OF

DEDICATED CHANNELS

In this Appendix, we describe how to determine the optimal
number of dedicated broadcast channels, i.e.,defined in (5).
To proceed, we define . It is not hard to
verify that

if
if
if
if
if
if

if

if

if

Note that, for , is convex in ,
. Therefore, there exists a such that

is minimized. Let denote this value of
. Then .

Determining is thus quite straightforward since ,
, can be easily derived from the convexity of

.
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