
QoS Scalability for Streamed Media Delivery

Charles Krasic Jonathan Walpole

Oregon Graduate Insitute of Science & Technology
Department of Computer Science and Engineering

P.O. Box 91000, Portland, OR 97291-1000, USA
email:

�
krasic,walpole � @cse.ogi.edu

Abstract

Applications with real-rate progress requirements, such as media-
streaming systems, are difficult to deploy in shared heteroge-
nous environments such as the Internet. On the Internet, media-
streaming systems must be capable of trading off resource require-
ments against the quality of the media streams they deliver, in order
to match wide-ranging dynamic variations in bandwidth between
servers and clients. Since quality requirements tend to be user- and
task-specific, mechanisms for capturing quality of service require-
ments and mapping them to appropriate resource-level adaptation
policies are required. In this paper, we describe a general approach
for automatically mapping user-level quality of service specifica-
tions onto resource consumption scaling policies. Quality of ser-
vice specifications are given through utility functions, and priority
packet dropping for layered media streams is the resource scaling
technique. The approach emphasizes simple mechanisms, yet fa-
cilitates fine-grained policy-driven adaptation over a wide-range of
bandwidth levels. We demonstrate the approach in a streaming-
video player that supports user-tailorable quality adaptation poli-
cies both for matching its resource consumption requirements to
the capabilities of heterogeneous clients, and for responding to dy-
namic variations in system and network load.

Keywords: QoS — streaming — Internet — adaptive

1 Introduction

The Internet has become the default platform for distributed mul-
timedia, but the computing environment provided by the Internet
is problematic for streamed-media applications. Most of the well-
known challenges for streamed-media in the Internet environment
are consequences of two of its basic characteristics: end-point
heterogeneity and best-effort service. The end-point heterogneity
characteristic leads to two requirements for an effective streamed-
media delivery system. First, it must cope with the wide-ranging
resource capabilities that result from the large variety of devices
with access to the Internet and the many means by which they are
connected. Second, it must be able to tailor quality adaptations
to accomodate diverse quality perferences that are often task- and
user-specific. A third requirement, due to best-effort service, is
that streamed-media delivery should be able to handle frequent load
variations. Much of the research in the field of quality of service
(QoS) is now concerned with addressing these requirements in the
design of distributed multimedia systems.

The term QoS is often used to describe both presentation level
quality attributes, such as the frame-rate of a video, and resource-
level quality attributes, such as the network bandwidth. To avoid
potential confusion in this paper, we distinguish presentation QoS

from resource QoS. We use the term QoS scalability to mean the
capability of a streamed-media system to dynamically trade-off
presentation-QoS against resource-QoS.

The simplest approach to QoS scalability, used by many pop-
ular streamed-media applications, is to provide streamed-media at
multiple canned quality levels. In this approach, end-host hetero-
geneity is addressed in the sense that a range of resource capabili-
ties can be covered by the set of canned levels, but it fixes the choice
of quality adaptation policy. Furthermore, dynamic load variations
are left to be dealt with by the client-side buffering mechanism.
Normally a buffering mechanism is associated with concealment
of jitter in network latency, but it can also be used to conceal short-
term bandwidth variations—if the chosen quality level corresponds
to a bandwidth level at, or below, the average available bandwidth.
In practice, this approach is too rigid. Client-side buffering is un-
able to conceal long-term variations in available bandwidth, which
leads to service interruptions when buffers are overwhelmed. From
a user’s perspective, interruptions have a very high impact on the
utility of a presentation. To avoid interruption, the user must sub-
scribe to quality levels that drastically under-utilize their typical
resource capabilities. The canned approach is also difficult from
the provider’s perspective. Choosing which canned levels to sup-
port poses a problem because it is difficult for a provider to know in
advance how to best partition their service capacities. The canned
approach fails to deal with best-effort service or heterogeneity.

Recently, in search of Internet compatible solutions, re-
searchers have begun to explore more-adaptive QoS-scalability ap-
proaches. There are two classes of such approaches. The first class,
data rate shaping (DRS), performs some or all of the media encod-
ing dynamically so that the target output rate of the encoder can
be matched to both the end-host capabilities and the dynamic load
characteristics of the network [5]. The other class of approaches
is based on layered transmission (LT), where media encodings are
split into progressive layers and sent across multiple transmission
channels [8, 11]. The advantage of DRS is that it allows fine-
grained QoS scalability, that is, it can adjust compression level to
closely match the maximum available bandwidth. Since LT binds
layers to transmission channels, it can only support coarse-grain
QoS scalability. On the other hand, LT has advantages stemming
from the fact that it decouples scaling from media-encoding. In
LT, QoS scaling amounts to adding or removing channels, which
is simple, and can be implemented in the network through existing
mechanisms such as IP multicast. In stored-media applications, LT
can perform the layering offline, greatly reducing the burden on
media servers of supporting adaptive QoS-scalability.

A universal problem for QoS scalability techniques arises from
the multi-dimensional nature of presentation-QoS. QoS dimensions
for video presentations include spatial resolution, temporal resolu-



Net 
Streamer

File 
Source

SPEG 
(transcode)

QoS 
Mapper

MPEG MPEG

Utility Spec

Figure 1: Server Side Pipeline

Net 
Streamer

SPEG-1 
(transcode)

MPEG-1 
(decode)

Render 
Video

Figure 2: Client Side Pipeline

tion, color fidelity, etc. Yet QoS scalability mechanisms such as
DRS and LT expose only a single adaptation dimension, output
rate in the case of DRS, or number of channels in the case of LT.
The problem is mapping multi-dimensional presentation-QoS re-
quirements into the single resource-QoS dimension. In both LT and
DRS, the approach has been to either limit presentation-QoS adap-
tation to one dimension, or to map a small number of presentation-
QoS dimensions into resource QoS with ad-hoc mechanisms. DRS
and LT provide only very primitive means for specification of QoS
preferences.

In this paper we present a new model for adaptive QoS scalabil-
ity, based on two mechanisms: utility functions, for capturing pre-
sentation QoS requirements; and priority packet-dropping (PPD)
with layered media, a technique for resource-QoS scaling. Util-
ity functions are a general declarative means for specification of
user- and task-specific presentation-QoS preferences. In PPD, an
alternative to DRS and LT, layered media streams are split into
packets in such a way that data corresponding to distinct presen-
tation QoS dimensions are assigned to distinct packets. PPD of-
fers a middle ground between DRS and LT. On the one hand, like
DRS, QoS scaling can be fine grained, since the unit of adapta-
tion in PPD is the packet. On the other, like LT, encoding and
scaling actions are decoupled because PPD doesn’t require a full
encoder at delivery time. Furthermore, we show that PPD fa-
cilitates mapping multi-dimensional presentation-QoS preferences
into resource-QoS adaptation plans encoded in packet priorities;
that is, we describe how to derive the appropriate packet-priority
labeling from utility functions.

We demonstrate this approach to adaptive QoS scalability in
an implementation of a streamed video player. We characterize
the player’s performance by showing the measured relationships
between user requirements, presentation quality, and resource con-
sumption. Our characterization shows that together, utility func-
tions and the PPD mechanism lend themselves well to supporting
user-tailorable adaptation in multiple quality dimensions. We also
show that at the resource level, adaptation can be done at a fine
granularity.

The rest of this paper is organized as follows. Section 2 de-
scribes our model of streamed-media delivery, and outlines the or-
ganization of our player. Section 3 explains how we use utility
functions to capture presentation QoS requirements. Section 4 de-
scribes the SPEG extension, which adds SNR-scalability layers to
MPEG-1 video. Section 5 explains the QoS Mapper algorithm.
Section 6 presents our experimental results. Section 7 discusses
related work; and section 8 concludes.

2 Media Streaming with Priority Packet Dropping

Our model of streamed-media delivery is based on pipelines com-
posed of producer-consumer elements. The player we have imple-
mented has a video pipeline consisting of a server side and client
side as illustrated in figures 1 and 2. The pipeline contains the fol-
lowing elements:

� A pair of transcoders, to convert between standard MPEG-1
video and our own layered format, SPEG.

� A QoS mapper. This element translates a QoS policy into a
packet priority labelling for the video stream.

� An assortment of standard elements: a file source, a standard
MPEG video decoder, and an uncompressed video renderer.

Media streams flow through the pipeline as a sequence of
priority-labelled packets, and priority-based packet dropping is the
exclusive means of quality adaptation. Normally, the effects of
packet dropping on presentation QoS of continuous media streams
are non-uniform, and can quickly result in an unacceptable presen-
tation. For example, dropping the MPEG header bits of a picture
typically renders the whole picture, and possibly a large segment of
surrounding video, unusable1 . In contrast, dropping several pixel
blocks may be almost imperceptible to a user. Critical data such
as the picture header bits are infrequent, but the consequences of
dropping them are so high that random dropping quickly degrades
playout. Our experience has been that random packet drop rates as
low as 5–10% cause the MPEG video to become unusable.

In contrast to random dropping, informed packet dropping can
achieve significant reductions in bandwidth while still delivering
statisfactory presentation quality. Strategic elimination of entire
pictures is the simplest and most common example of informed
packet dropping for video[2, 13]. However, there are other ways to
trade-off presentation QoS to reduce resource QoS requirements,
such as adapting the spatial resolution and the color fidelity[14].
The correct adaptation policy is often task- or user-specific. For
example, a user viewing streamed video on on a small portable
device such as a PDA might prefer preservation of temporal res-
olution, since spatial resolution is limited on their relatively small
screen anyway, whereas a desktop user receiving the same video
might give a higher preference to spatial detail.

The problem with supporting a tailorable adaptation policy is
that it leads to complex control problems in streamed media sys-
tems [2, 13, 10, 7]. To control the complexity of supporting tai-
lorable adaptation, we chose to explore the simple mechanisms of
utility functions and priority packet dropping.

We describe in section 4 how video data of orthogonal presen-
tation QoS dimensions are partitioned into packets in our SPEG
video format. In sections 3 and 5 we describe quality specification
through utility functions and the algorithm used by the QoS mapper
to translate utility functions into priorities.

3 QoS Specification

A utility function is a simple and general means for users to specify
their preferences. Figure 3 depicts the general form of a utility
function. The horizontal axis describes an objective measure of lost
quality, while the vertical axis describes the subjective utility of a
presentation at each quality level. The region between the �������
and � �	��
 thresholds is where a presentation is acceptable. The
������� threshold marks the point where lost quality is so small that

1In an MPEG movie using the common 15 picture group of pictures (GOP) pattern,
a missed I-Frame header would yield 0.5 second interruption.

2



lost quality

utility

unacceptable

excessive

quality

quality
threshold

threshold

Figure 4: A utility function with thresholds

qmax qmin

1

0

Figure 3: A utility function with thresholds

the user considers the presentation “as good as perfect.” The area
to the left of this threshold, even if technically feasible, brings no
additional value to the user. The rightmost threshold ���	� 
 demarks
the point where lost quality has exceeded what the user can tolerate,
and the presentation is no longer of any use. The utility levels on
the vertical axis are normalized so that zero and one correspond to
the “useless” and “as good as perfect” thresholds. In the acceptable
region of the presentation, the utility function should be continuous
and monotonically decreasing, reflecting the notion that decreased
quality should correspond to decreased utility.

lost quality

utility

unacceptable

excessive

quality

quality
threshold

threshold

Figure 4: A utility function with thresholds

qmin qmax

1

0

utility

Figure 4: A utility function with thresholds

30 5

1

0
15

temporal resolution (fps)

utility

56 40

1

0
48

spatial resolution/SNR (dB)
32

Figure 4: Sample Utility Functions: Temporal and Spatial Resolu-
tion. Temporal utility has its ��� ��� threshold at 30 frames per sec-
ond (fps), which corresponds to zero loss for a typical digital video
encoding. The ���	� 
 threshold, beyond which the presentation is
considered unusable, for temporal resolution corresponds to 5 fps.
Spatial resolution is expressed in terms of the Signal to Noise Ra-
tio (SNR). SNR is a commonly used measurement for objectively
rating image quality.

Utility functions are declarative, they do not specify anything
directly about how to deliver a presentation, in particular they do
not require any knowlege of resource-QoS trade-offs from the user.
Furthermore, they represent the adaptation space in an idealized
continous form, even though QoS scalability mechanisms can often
only make discrete adjustments in quality. By using utility func-
tions to capture user preferences, this declartive approach avoids
commitment to resource QoS and low-level adaptation decisions,
leaving more flexibility to deal with the heteregeneity and load-
variations of a best-effort environment. Figure 4 gives a pair of
example utility functions for video. In our model, a utility function
can be specified for each presentation-QoS dimension over which
the system allows control.

RLD
+

VLD

Slice
↓

Layers

RLE
+

VLC

Figure 5: MPEG to SPEG transcoding. The MPEG stream is par-
tially decoded, undoing the run-length (RLD) and variable-length
huffman (VLD) codings. Slices, sequences of pixel blocks, are par-
titioned into layers, and then run-length (RLE) and huffman (VLC)
coding are re-applied

4 SPEG: A simple extension to MPEG-1

In order to experiment with mapping multi-dimensional QoS re-
quirements into priority labeling for layered media, we needed a
suitable layered media codec. Although layered scalability exten-
sions are present in common standards such as MPEG-2, freely
available implementations are not available. For our purposes, the
easiest solution was to develop a rapid prototype with the com-
monly available MPEG-1 codec [9].

A scalable encoding allows the decode process to trade-off the
amount of work performed against the resulting quality of the de-
coded data. Scalable encodings often take a layered approach,
where the data in an encoded stream is divided conceptually into
layers. A base layer can be decoded into presentation form with
a minimum level of quality. Extended layers are progressively
stacked above the base layer, each corresponding to a higher level
of quality in the decoded data. An extended layer requires lower
layers to be decoded to presentation form.

4.1 Adding scalability to MPEG

One of the key parameters governing the compression rate in
MPEG encoders is the quantization level, that is the number of bits
dropped from the coefficients of the frequency domain represen-
tation of the image data. The degree to which an MPEG video
encoder can quantize is governed by the trade-off between the de-
sired amount of compression and the final video quality. Too much
quantization leads to visible video artifacts. In standard MPEG-1
video, the quantization levels are fixed at encode time. In SPEG,
we layer the video by iteratively increasing the quantization by one
bit per layer. At run time, quantization level may be adjusted by
selection of some or all of the layers.

Rather than constructing an entirely new encoder, our approach
is to transcode MPEG-1 video into the SPEG layering. Transcoding
has lower compression performance than a native approach, but is
easier to implement than developing a new scalable encoder. It also
has the benefit of being able to easily use existing MPEG videos.
For stored media, the transcoding is done offline.

Figure 5 describes the transcoder organization. Transcoding
starts by partially decoding the original MPEG-1 video. This pro-
cess involves parsing video headers, then applying inverse entropy
coding (VLD + RLD) to produce slices2. Data from slices is par-
titioned into layers and then re-compressed with a forward entropy
code (RLE + VLC).

Figure 6 depicts how SPEG partitions data from MPEG blocks
among SPEG layers. Consider � layers in SPEG, the base layer is
numbered 0 and the extension layers are numbered

�
to ���

�
. A

DCT block in the highest extension layer is coded as the difference
between the original MPEG DCT block, and the original block with
one bit of precision removed. Generalizing this approach, SPEG

2In MPEG video, slices are sequences of frequency-domain (DCT) coefficient
blocks

3



A00[3..n] A00[2] A00[1] A00[0]

A01[3..n] A01[2] A01[1] A01[0]

A10[3..n] A10[2] A10[1] A10[0]

A11[3..n] A11[2] A11[1] A11[0]

A00[3..n] A00[2] A00[1 A00[0]

A01[3..n] A01[2] A01[1 A01[0]

A10[3..n] A10[2] A10[1 A10[0]

A11[3..n] A11[2] A11[1 A11[0]

A00[0] A01[0]

A00[1] A01[1] A02[1]

A00[2] A01[2] A02[2]

A00[3..n] A01[3..n] A02[3..n]Base Layer

Ext. Layer 1

Ext. Layer 2

Ext. Layer 3

Figure 6: SPEG spatial resolution layers. MPEG transforms 8x8 blocks of pixels into 8x8 blocks of coefficients from the 2-dimensional
discrete-cosine transform (DCT). Each coefficient is denoted

�
� � , and the bits of an individual coefficient are indexed

�
� ��� ����� ��� . Quantiza-

tion, dropping low-order bits, is the main lossy component of the MPEG compression technique, resulting in loss of spatial detail. In SPEG
transcoding, the low-order bits of each MPEG coefficient are progressively assigned to layers starting from the highest extension layer and
ending with the lowest, with the base layer containing all remaining bits. Eliminating SPEG layers corresponds to increasing quantization in
the MPEG encoding process.

4



codes extension layers as the difference between the original block
with

�
bits removed and

� � � bits removed, where ���
�

equals
the extension layer number. The base layer is coded as the original
block with � �

�
bits removed. Notice that extension layers are

differences while base is not. Once layered, entropy coding is re-
applied. Our current SPEG implementation uses four layers, the
base plus three extension layers.

Partitioning of SPEG data occurs at the MPEG slice level. All
header information from the original MPEG slice goes unchanged
into the base layer slice, along with the base layer DCT blocks. Ex-
tension slices contain only the extension DCT block differentials.

The SPEG to MPEG transcode that returns the video to stan-
dard MPEG format is performed online as part of the streamed-
media pipeline, and consists of the same steps as the MPEG to
SPEG transcoding, only in reverse. This approach meant that we
had to make only minor changes to fit the public domain Berkeley
mpeg_play decoder into our pipeline.

5 QoS Mapper

In this section, we describe our algorithm for translating presenta-
tion QoS requirements, in the form of utility functions, into priority
assignments for packets of a media stream, such as SPEG. We call
the pipeline element that executes this algorithm the QoS mapper.
The key features of the mapper are the following: it is designed to
run dynamically as part of the streamed-media delivery pipeline; it
works on multiple QoS dimensions; and it does not require a priori
knowlege of the presentation to be delivered.

The mapper assumes several characteristics of the media for-
mats it processes. The first assumption is that data for orthogonal
quality dimensions are in separate packets. The second assump-
tion is that the presentation-QoS, in each available dimension, can
be computed or approximated for subsequences of packets. Fi-
nally, the third assumption is that any media-specific packet de-
pendencies are known by ost the mapper. Our player fragments an
SPEG stream into packets in way that ensures these assumptions
hold. The packet format we use for SPEG is based on the RTP
format for MPEG video[4], with additional header bits to describe
the SPEG spatial resolution layer of each packet. This approach is
an instance of application-level framing [3]. Our format requires
that each packet contain data for exactly one SPEG layer, enforc-
ing the first assumption of the mapper holds. Further, the packet
header bits convey sufficient information to compute presentation
QoS of sequences of packets and to describe inter-packet depen-
dencies, satisfying the second and third assumptions. Since all the
information needed by the mapper is contained in packet headers,
the mapping algorithm does not need to do any parsing or process-
ing on the raw data of the video stream, which is very important
in limiting the computational cost of mapping. With these assump-
tions in mind, we can now describe the mapping algorithm

The mapping algorithm computes a priority for each packet as
follows. The mapper starts by analyzing the packet stream head-
ers, and computing for each packet the lost presentation QoS that
would result if the packet were dropped. The lost presentation-
QoS calculation is done for each QoS dimension. The mapper then
converts, for each QoS dimension, lost presentation QoS into lost
utility by using the user-provided utility functions. The maximum
of the per-dimension lost utilties for a packet is used as the packet’s
overall priority. We describe these steps in greater detail next, with
an example based on the SPEG implementation.

0 5 10 15 20 25

Temporal Resolution (fps dropped)

0.0

0.2

0.4

0.6

0.8

1.0

U
ti

lit
y

(a) Temporal Utility

0 1 2 3

Spatial Resolution (levels dropped)

0.0

0.2

0.4

0.6

0.8

1.0

U
ti

lit
y

(b) Spatial Utility

Figure 7: Mapping Example: QoS Requirements

5.1 QoS Mapper: An SPEG example

Figure 7 presents utility functions for temporal and spatial resolu-
tions of SPEG video. We have applied non-even bias to the utility
functions to give spatial resolution more importance than temporal
resolution, as is apparant in the differing slopes of the two lines.

Now we consider an example input SPEG movie that contains
the following group of pictures (GoP) pattern:

���������
	��
���������������� � � � .
The letter denotes the MPEG frame type, and the subscript is

the frame number. For this example, we assume the SPEG packet
sequence contains four packets for each frame, one for each of the
four SNR layers supported by SPEG. The top-level of the mapper
calls subroutines that compute the lost presentation QoS for each
packet in the sequence, in each QoS dimension.

For the temporal resolution dimension, the lost QoS subroutine
groups packets by frame and works by assigning a frame drop or-
dering to the sequence of frames. This algorithm uses a simple
heuristic to pick an order of frames that minimizes the jitter effects
of dropped frames. The ordering heuristic is aware of the frame
dependency rules of SPEG. For example, the ordering always en-
sures that a

�
(bidirectional) frame is dropped before the

�
or


frames that it depends on. In our example packet sequence, the
drop ordering chosen by the heuristic is:

�������
���
���
�
���
	��
������������

where
�

denotes the dropped-before relationship. With this
ordering, the frame rate of each packet is computed according to
its frame’s position in the ordering. The packets of frame

���
are

assigned a reduced frame-rate value of
��� ��!�" � , since frame

� �
is the first frame dropped, and a frame rate of

" �$#&%(' is assumed.
Frame

��
is assigned a reduced frame rate value of ) �*�
!+" � since

it is the second last frame dropped. Notice that the lost QoS value
is cumulative—it counts lost QoS from dropping the packet under
consideration, plus all the packets dropped earlier in the ordering.
These cumulative lost-QoS values are in the same units as the utility
function’s horizontal axis.

For the spatial resolution dimension, the lost QoS calculation
is similar. Rather than computing ordering among frames, packets
are grouped first by SNR level, and then sub-ordered by an even-
spacing heuristic similar to the one used for temporal resolution.
As a simplification, we approximate the spatial QoS loss for each
packet by a function based on the average number of SNR levels,
rather than the actual SNR value, present in each frame when the
packet is dropped.

The mapper applies the utility functions from the user’s quality
specification to convert lost-QoS values of packets into cumulative
lost-utility values. The final step is to combine the lost-utilities in
the individual dimensions into an overall lost-utility that is the ba-
sis for the packet’s priority. We assign the priority as follows: If

5



in all quality dimensions the cumulative lost utility is zero, assign
minimum priority. If in any quality dimension the cumulative lost
utility is one, assign maximum priority. Otherwise, scale the max-
imum of the cumulative lost dimensional utilities into a priority in
the range [minimum priority + 1, maximum priority - 1]. Minimum
priority is reserved for packets that should never pass, because the
cumulative lost utility of the packet does not cause quality to fall
below the ������� threshold. Hence the quality level does not enter
the excessive region of the utility function. Similarly, the maxi-
mum priority is reserved for packets that should always pass since
in at least one of the quality dimensions, dropping the packet would
cause quality to drop below the ���	� 
 threshold. So in one or more
dimensions, dropping the packet would cause the presentation to
become useless.

Frame Priorities���
10 9 7 5� �
9 7 5 3� 	
9 7 5 3�
�
9 7 5 3 �

10 8 6 4� �
9 7 5 3� �
9 7 5 3���
9 7 5 3�

� 15 11 9 6
. . .

Figure 8: Mapping Example: Priority Assignment. Each row de-
scribes a single frame of the SPEG video.

� �
denotes frame number

0, which has an
�

type (intra coded). The columns describe the pri-
ority labelling for each spatial resolution layer within the frame,
with base-layer leftmost.

Figure 8 shows a fragment of a the priority assignment made
by the mapper for Jackie Chan, one of the movies used in our ex-
periments in section 6. This assignment was made using the utility
functions of figure 7, although the mapper considered more than
eight frames when it made the assignment. In section 6 we show
how this priority assignment translates to a quality adaptation pol-
icy, and discuss its resource implications (see figure 10).

5.2 Performance Considerations

If both the users’s quality preferences and the content of media
streams were known a priori, it would be possible to derive the
optimal packet labelling. Since this information is only available
dynamically, and then only a portion of the media content is known,
we approximate the optimal labelling by considering a finite con-
text, i.e. number of packets, from the packet sequence. As the
amount of context considered increases, computational costs in-
crease and the approximation of the optimal labelling improves.
We call the number of packets considered by the priority assign-
ment algorithm the priority window size. A related concern is the
finite number of bits allocated to store priorities in packet headers,
that is the number of available priorities, as it places another limit
on the accuracy of priority assignment. The two are related in that
the number of available priorities are only usable if the window
has at least as many distinct packets as there are priorities; con-
versely, if the window contains many more packets than priorities,
the optimality of the approximation is no better than with a smaller
window. Stated another way, to truly realize an optimal labelling
would require a window big enough to hold all of the packets of a
presentation, and enough priority bits to label each packet uniquely.

For the experiments of the next section, our mapper implemen-
tation classifies packets by frame number and resolution level, so

0 5 10 15 20 25

Temporal Resolution (fps dropped)

0.0

0.2

0.4

0.6

0.8

1.0

U
ti

lit
y

(a) Temporal Utility

0 1 2 3

Spatial Resolution (levels dropped)

0.0

0.2

0.4

0.6

0.8

1.0

U
ti

lit
y

(b) Spatial Utility

0 5 10 15

Drop Threshold

0

10

20

30

F
ra

m
e 

R
at

e 
(f

ps
)

(c) Temporal Quality

Giro d’Italia
Wallace and Gromit
Jackie Chan
Apollo 13
Phantom Menace

0 5 10 15

Drop Threshold

0

1

2

3

4

SN
R

 le
ve

l (
av

er
ag

e)

(d) Spatial Quality

0 5 10 15

Drop Threshold

0

20

40

60

80

100

B
an

dw
id

th
 (

%
)

(e) Bandwidth Resource Consumption

0 5 10 15

Drop Threshold

0

20

40

60

80

100

C
P

U
 t

im
e 

(%
)

(f) CPU Resource Consumption

Preferences Presentation QoS Resource QoS

Figure 10: Adaptation Characterization for a Mixed Drop Policy

the priority window is expressed in units of frames rather than pack-
ets. We used a window size of 32 frames. Since each frame has 4
spatial resolution levels, that gives 128 distinct classes of packet
per window. The priority field is 4 bits, giving 16 priorities, and so
our chosen window size corresponds to 8 distinct classes of packet
per priority level.

6 Experiments

In this section, we present results of experiments to characterize
the adaptation performance of our approach. The adaptation per-
formance is measured with respect to both presentation QoS and
resource QoS. The experiments were conducted for three adap-
tation policies, as specified by different sets of utility functions.
The presentation QoS results show that our approach supports tai-
lorable adaptation in multiple QoS dimensions. The resource QoS
results demonstrate that the adaptation covers a wide range and is
fine grained.

The following sections are organized according to the three
adaptation policies: a policy giving equal preference to spatial and
temporal resolution is used in section 6.1, then a policy with ex-
treme preference for temporal resolution in section 6.2, and finally
extreme preference for spatial resolution in 6.3. For each of the
three policies, two sets of results are given, one for presentation
QoS and another for resource QoS.

The presentation-QoS adaptation profile shows how effective
the QoS mapper algorithm is at assigning priority labeling that cor-
responds to the quality preferences specified by the utility func-
tions. The resource-QoS adaptation profile illustrates, for a given
priority labeling, how priority-drop threshold adjustments affect
two basic resource requirements: network bandwidth, and client-
side CPU. The profile data were gathered from instrumented runs
of our player on a set of test videos. Figure 9 describes the set of
videos we used, and the basic encoding parameters. The videos
were chosen for their diversity so we could evaluate the sensitivity
of our approach to different encoders and encoder parameters

6.1 An Evenly Balanced QoS Policy

In figures 10(a) and (b) we see simple linear utility functions for
temporal and spatial utility where the relative QoS preferences are

6



Video Resolution Length GOP
(frames) pattern

Giro d’Italia 352x240 1260 BBIBBPBBPBBPBBP
Wallice and Grommit 240x176 756 IPI
Jackie Chan 720x480 2437 IBBBPBBB
Apollo 13 720x480 864 BBIBBP
Phantom Menace 352x240 4416 BIBPBPBPBPBPBPBP

Figure 9: Movie Inputs. The movies were coded with several different MPEG encoders. A variety of content types, movie resolutions, and
GOP patterns were chosen to verify our techniques perform consistently.

equal across the respective ranges of adaptation. In this policy, and
the others that follow, the utility function for temporal resolution is
based on a 30 fps maximum rate, and a 1 fps minimum rate.

Figures 10(c) and (d), show the presentation QoS derived from
this policy for various priority-drop thresholds. That is, given the
priority-labeling produced by the QoS mapper, the graph shows
what quality level is realized at each priority-drop threshold. Our
current system implements sixteen priority levels. The priority drop
thresholds are on the horizontal axes of the graphs. An increased
priority drop threshold means more packets are dropped.

Ideally, the presentation-QoS graphs would look the same as
the utility functions they were derived from. In particular, the range
of acceptable presentation QoS would be covered, and the shape of
adaptation would follow the shapes of the utility functions. Figure
10(c) shows the relationship between presentation-QoS for tempo-
ral resolution (frame rate) and priority-drop threshold. It should be
noted that figure 10(c) contains lines for each of the test movies,
but they overlap very closely because the mapper is able to la-
bel packets to follow the utility function policy closely. Although
desirable, this result was not entirely expected because MPEG’s
interframe dependencies constrain the order in which frames can
be dropped, and some GOP patterns are particularly poorly suited
to frame dropping. On the spatial resolution side, in figure 10(d),
we note that our current mapper drops resolution levels uniformly
across all frames, resulting in a stair-shaped graph, since there are
only 4 SNR levels in SPEG. In as much as the SPEG format allows,
the presentation-QoS matches the specified user preferences.

0 5 10 15 20 25

Temporal Resolution (fps dropped)

0.0

0.2

0.4

0.6

0.8

1.0

U
ti

lit
y

(a) Temporal Utility

0 1 2 3

Spatial Resolution (levels dropped)

0.0

0.2

0.4

0.6

0.8

1.0

U
ti

lit
y

(b) Spatial Utility

0 5 10 15

Drop Threshold

0

10

20

30

F
ra

m
e 

R
at

e 
(f

ps
)

(c) Temporal Quality

Giro d’Italia
Wallace and Gromit
Jackie Chan
Apollo 13
Phantom Menace

0 5 10 15

Drop Threshold

0

1

2

3

4

SN
R

 le
ve

l (
av

er
ag

e)

(d) Spatial Quality

0 5 10 15

Drop Threshold

0

20

40

60

80

100

B
an

dw
id

th
 (

%
)

(e) Bandwidth Resource Consumption

0 5 10 15

Drop Threshold

0

20

40

60

80

100

C
P

U
 t

im
e 

(%
)

(f) CPU Resource Consumption

Preferences Presentation QoS Resource QoS

Figure 11: Adaptation Characterization for a Temporal Drop Policy

Resource QoS adaptation profiles are shown in the third pair of
graphs in Figures 10(e) and (f). We show the average bandwidth
of the movies at each drop threshold, as a percentage of the band-

width when no packets are dropped. Similarly, we show the CPU
time required for client side processing of the video (recall Figure
2) at each drop threshold. A good shape for these graphs would
be smooth and linear over a wide range of resource levels. We
see that bandwidth in Figure 10(e) does indeed range all the way
down to only a few percent, although there is a rather sharp drop
when the first SNR layer is dropped. CPU time in Figure 10(f) is
very nice and smooth, although it does not cover as much range as
bandwidth, and reaches a minimum of about 10 percent. We also
note that the movies are closely clustered in their resource-QoS
graphs, indicating that adaptation is independent from differences
in encoders or encoder parameters.

6.2 A Temporal Drop Policy

Figures 11(a) and (b) show utility functions for temporal and spa-
tial utility where the QoS dimensions have been biased to give an
extreme preference to temporal resolution. We see in figure 11(c)
that frame rate decreases over most of the adaptation space. Near
the end of the adaptation space, the frame rate reaches the mini-
mum allowed by the QoS utility function and spatial resolution is
dropped (figure 11(c)). The final drop in spatial resolution does
not drop to the minimum possible spatial resolution because of the
uniform near zero utility in the corresponding range of figure 11(a).

The resource implications of this adaptation policy are shown
in figures 11(e) and (f). Again, we see smooth and wide-ranging
adaptation spaces for both dimensions. There is still a noticeable
drop in bandwidth when the first SNR level is dropped, but it is less
pronounced than in the mixed-drop policy.

6.3 A Spatial Drop Policy

Figure 12 summarizes the next experiment, where we reverse the
preference between spatial and temporal resolution from the previ-
ous. The temporal utility function 12 (a) has the abrupt drop at the
minimum-loss threshold (1/30), emphasizing that the presentation
utility drops abruptly when temporal resolution is lost. The pre-
sentation QoS profiles in figures 12 (c) and (d) are similar to the
Temporal Drop policy, except that the spatial Quality can not be
adjusted in as smooth a manner as the frame rate. The interesting
result here is in the resource profiles of figures 12 (e) and (f). The
bandwidth reductions from increasing the drop threshold are more
pronounced than the reductions in CPU. This reflects the fact that
the MPEG decoder does a significant amount of work regardless
of the resolution level of the image. An implication of this is that
it might be better to allow more adaptation in the temporal resolu-
tion dimension when the CPU is a bottleneck resource. Since our
architecture allows for dynamic replacement of QoS policy quite
naturally, we can imagine implementing re-mapping according to
resource-bottleneck demands. This possibility will be examined in
future work.

7



Video MPEG SPEG Increase MPEG SPEG Increase
bandwidth bandwidth bandwidth CPU CPU CPU
(Mbps) (Mbps) (%) (secs) (secs) (%)

Giro d’Italia 1.823 2.121 16.3 45.8 72.9 59
Wallice and Grommit 0.968 1.081 12.7 12.1 16.6 37
Jackie Chan 1.839 2.479 34.8 216 252.2 17
Apollo 13 3.474 4.193 20.7 89.3 121.5 36
Phantom Menace 1.228 1.313 6.9 103.7 180.4 74

Figure 13: Overhead of SPEG

0 5 10 15 20 25

Temporal Resolution (fps dropped)

0.0

0.2

0.4

0.6

0.8

1.0

U
ti

lit
y

(a) Temporal Utility

0 1 2 3

Spatial Resolution (levels dropped)

0.0

0.2

0.4

0.6

0.8

1.0

U
ti

lit
y

(b) Spatial Utility

0 5 10 15

Drop Threshold

0

10

20

30

F
ra

m
e 

R
at

e 
(f

ps
)

(c) Temporal Quality

Giro d’Italia
Wallace and Gromit
Jackie Chan
Apollo 13
Phantom Menace

0 5 10 15

Drop Threshold

0

1

2

3

4

SN
R

 le
ve

l (
av

er
ag

e)

(d) Spatial Quality

0 5 10 15

Drop Threshold

0

20

40

60

80

100
B

an
dw

id
th

 (
%

)

(e) Bandwidth Resource Consumption

0 5 10 15

Drop Threshold

0

20

40

60

80

100

C
P

U
 t

im
e 

(%
)

(f) CPU Resource Consumption

Preferences Presentation QoS Resource QoS

Figure 12: Adaptation Characterization for a Spatial Drop Policy

6.4 The Price of Adaptation

We now describe some of the performance costs associated with
dynamic quality adjustment. Figure 13 compares performance for
MPEG and SPEG versions of movies at the same presentation QoS
level.

Given the wide range of adaptation shown in the adaptation ex-
periments, the relatively small bandwidth overhead of SPEG is en-
couraging, especially considering the simplicity of the approach
used in SPEG. The CPU overhead is more severe, but we know
there is great room for improvement. The choice of transcoding
SPEG back to MPEG was convenient for constructing the experi-
ment, but is an obvious major source of un-necessary overhead.

7 Related Work

There are several approaches to data-rate shaping of MPEG video
that relate to our SPEG extension. The basic approach we used to
drop spatial resolution information from MPEG video, post-encode
quantization, was taken from Yeadon’s dissertation work and proto-
type code for QoS filters[14]. Yeadon proposes an architecture and
signaling protocol for doing DRS in the network, for the purpose
of addressing heterogeneity in multicast distribution trees. Our pri-
ority packet-drop mechanism requires much more modest support
from the network, due to the decoupling of scaling (packet drop-
ping) from encoding (layering). Jacobs and Eleftheriadis [5] per-
formed more rigorous analyses of SNR scaling of MPEG video
than Yeadon, in their work on Data Rate Shaping (DRS). Their
analysis includes an optimality result for DRS, as well as a re-

sult showing that a much cheaper algorithm which avoids Huffman
decoding, thus having greatly reduced complexity, achieves near-
optimal results. Their work was focused on SNR scaling alone, and
did not consider adapting multiple dimensions. As with Yeadon’s
approach, we could adapt Jacobs and Eleftheriadis’ DRS to a lay-
ered packet encoding, most likely with a significant improvement
over our current SPEG format. We were unaware of these results
at the time of the initial SPEG implementation. However we be-
lieve the Yeadon derived approach delivered sufficient initial re-
sults. Zeng and Liu [15] introduce a novel variation on SNR scala-
bility where rather than re-quantize MPEG, they drop entire blocks
and then reconstruct the picture area using interpolation. Zeng and
Liu show that their approach has better rate-distortion performance
than DRS. On the other hand, their approach is likely to have higher
CPU cost at the client-side, and the interpolation would require
fairly major changes to the basic MPEG decoder. As with Jacobs
and Eleftheriadis, they did not consider multi-dimensional scaling.

Receiver-driven Layered Multicast (RLM) [8] is a comprehen-
sive solution for streamed delivery of media over IP multicast. In
RLM, each transport layer is assigned to a distinct multicast group.
Receivers adapt QoS by joining or leaving groups. The basic idea is
that when receivers detect congestion, they drop groups, and when
they detect available bandwidth, they join groups. Our work has
many of the same overall objectives as RLM, although we start
from one significantly different base assumption. We assume a
packet-drop model versus uniform layer dropping. We also explore
capture of user preferences and mapping in more detail than RLM.
Recently, the notion of TCP-friendliness has become a very promi-
nant research topic in networking. Part of our motivation in explor-
ing priority packet drop is that it is easier to map to TCP’s model
of sender-side congestion control, as opposed to RLM’s receiver
driven congestion control. Although, Vicisano et al. have proposed
a modification to RLM with the objective of TCP friendly conges-
tion control [12], and Bajaj et al. have conducted an interesting pre-
liminary, albeit inconclusive, comparison of priority dropping and
layered transmission [1], it remains unclear whether RLM can be
fine-grained enough or TCP friendly enough for wide scale adop-
tion. We leave these issues to future work.

Utility functions for capturing QoS specifications have been
studied by numerous groups. We note that our utility functions
relate utility to presentation QoS, where most other QoS specifi-
cations are concerned with relating utility to resource QoS. In the
QoS Resource Allocation Model (Q-RAM) by Rajkumar et al.[10],
a model for resource allocation based on spaces of � resource
dimensions and � quality dimensions is described. Application-
level specifications are given as graphs between user utility and
QoS, while architectural level specifications are graphs between
QoS and resource levels. Q-RAM includes QoS mapping algo-
rithms based on optimization heuristics, which are described for
various dimensionalities (combinations of � and � ) both when di-
mensions are independent and dependent. Our mapping algorithm
is significantly different to Q-RAM’s in that we take overall utility

8



to be the maximum of individual dimensional utilities, rather than a
weighted sum. This approach simplifies the optimization problem
greatly. Kravets et al. [6] describe how to deploy utility specifica-
tions, called payoff functions in their terminology, in layered dis-
tributed software architectures. They use payoff functions to guide
trade-offs between communication reliability and communication
latency. Since these payoff functions relate resource QoS to utility,
rather than presentation QoS to utility as we do, their approach is
suited for use at application design time rather than for capturing
preferences for dynamic user- and task-specific requirements.

8 Conclusions

QoS Scalability will be essential to reconciling the Internet’s char-
acteristics of end-point heterogeneity and best-effort service with
its vast potential as a platform for streamed-video delivery. We
have described a QoS scalability approach with two main contribu-
tions: utility functions for capturing user preferences, and priority-
packet drop delivery of layered media for resource-QoS scaling.
Our experiments have confirmed that this approach to QoS scala-
bility has the following major benefits: it allows sophisticated con-
trol by user-tailorable quality adaptation policies, it allows delivery
over a wide range of resource levels, and within that range resource
usage can be matched at a fine grain. In addition to showing the
effectiveness of the approach, our experiments show that the over-
head is low enough to perform online in software, making it feasi-
ble to deploy for Internet streaming.

9 Acknowledgements

This research was supported in part by DARPA contracts/grants
N66001-97-C-85222, N66001-97-C-8523, and F19628-95-C-
0193, and by Tektronix, Inc., and Intel Corporation.

We would like to thank Mark Jefferys for writing the SPEG
implementation, and the rest of the members of the Quasar project
who participated in the development of the video-pipeline software.
Anne-Francoise LeMeur, Calton Pu, David Steere, and Dylan Mc-
Namee provided many valuable comments on drafts of this paper.

References

[1] Sandeep Bajaj, Lee Breslau, and Scott Shenker. Uniform ver-
sus priority dropping for layered video. In Computer Com-
munication Review, Vancouver, B.C., October 1998.

[2] Shanwei Cen. A Software Feedback Toolkit and its Appli-
cation In Adaptive Multimedia Systems. PhD thesis, OGI,
October 1997.

[3] David D. Clark and David L. Tennenhouse. Architectural
considerations for a new generation of protocols. In Pro-
ceedings of SIGCOMM’90 Symposium Communications Ar-
chitectures & Protocols, Philidelphia, Pennsylvania, Septem-
ber 1990.

[4] D. Hoffman, G. Fernando, V. Goyal, and M. Civanlar. RTP
Payload Format for MPEG1/MPEG2 Video. RFC 2250, Jan-
uary 1998.

[5] Stephen Jacobs and Alexandros Eleftheriadis. Streaming
video using dynamic rate shaping and tcp flow control. Visual
Communication and Image Representation Journal, January
1998. (invited paper).

[6] Robin Kravets, Ken Calvert, and Karsten Schwan. Payoff
adaptation of communication for distributed interactive ap-
plications. The Journal for High Speed Networking: Special
Issua on Multimedia Networking, Winter 1999.

[7] Baochun Li, Dongyan Xu, Klara Nahrstedt, and Jane W.-S.
Liu. End-to-end QoS support for adaptive applications over
the internet. In Proceedings of SPIE Symposium on Voice,
Video and Data Communications, Boston, Massachusetts,
November 1998.

[8] Steven McCanne, Martin Vetterli, and Van Jacobson. Low-
complexity video coding for receiver-driven layered multi-
cast. IEEE Journal on Selected Areas in Communications,
16(6):983–1001, August 1997.

[9] K. Patel, B. C. Smith, and L. A. Rowe. Performance of a soft-
ware mpeg video decoder. In Proceedings ACM Multimedia
93, pages pp. 75–82, Anaheim, CA, August 1993.

[10] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek. A re-
source allocation model for QoS management. In In Proceed-
ings of the IEEE Real-Time Systems Symposium, December
1997.

[11] Dorgham Sisalem and Frank Emanuel. QoS control using
adaptive layered data transmission. In Proceedings of IEEE
International Conference on Multimedia Computing and Sys-
tems, Austin, Texas, June 1998.

[12] Lorenzo Vicisano, Luigi Rizzo, and Jon Crowcroft. TCP-
like congestion control for layered multicast data transfer. In
Proceedings of INFOCOM’98, San Francisco, March 1998.

[13] Jonathan Walpole, Rainer Koster, Shanwei Cen, Crispin
Cowan, David Maier, and Dylan McNamee. A player for
adaptive MPEG video streaming over the Internet. In Pro-
ceedings 26th Applied Imagery Patter Recognition Workship
AIPR-97, Washington, DC, October 1997. SPIE.

[14] Nicholas Yeadon. Quality of Service Filters for Multime-
dia Communications. PhD thesis, Lancaster University, Lan-
caster, May 1996.

[15] Wenjun Zeng and Bede Liu. Rate shaping by bock dropping
for transmission of MPEG-precoded video over channels of
dynamic bandwidth. In Proceedings of ACM Multimedia’96,
Boston, November 1996.

9


