
DYNAMIC LOAD BALANCING ACROSS MIRRORED MULTIMEDIA SERVERS

Ashwatha Matthur, Padmavathi Mundur

Department of Computer Science and Electrical Engineering
University of Maryland, Baltimore County

Baltimore, MD 21250, USA
{ashwath1, pmundur}@csee.umbc.edu

ABSTRACT

The purpose of this paper is to present protocols for effi-
cient load balancing across replicated multimedia servers in
a Metropolitan Area Network. Current multimedia infras-
tructures, even when they use mirrored servers, do not have
standardized load balancing schemes. Existing schemes fre-
quently require participation from the clients in balancing
the load across the servers efficiently. We propose two
protocols in this paper for fair load balancing without any
client-side processing being required. Neither protocol re-
quires any change to the network-level infrastructure. Us-
ing network packet loss and packet transmission delay as
the chief metrics, we show the effectiveness of the proto-
cols through extensive simulations.

Keywords: Media streaming, Mirrored Servers, Load
Balancing.

1. INTRODUCTION

Streaming applications such as directly usable online video
and audio are becoming increasingly popular on the Inter-
net. With this increasing popularity, several mechanisms
have been introduced to improve the quality and avail-
ability of streaming media. The mechanisms are critical
since streaming applications require more stringent QoS
than usual Web services. In this paper, we provide two pro-
tocols for load balancing and QoS in mirrored multimedia
servers for streaming applications.

The first of the two protocols we propose uses a cen-
tralized load distribution algorithm. The different mirrored
servers communicate the degree to which they are loaded
to a central server. All client requests are received by the
central server, which uses the information it has about the
global state to distribute client requests evenly. The second
protocol does not use a central server and has a token pass-
ing scheme to split and distribute each client request equally
across the servers. The distribution achieves diffusion of the
traffic across several different routes. Through simulation
experiments, we evaluate both protocols against an infras-
tructure with no load balancing in effect. The metrics used
to evaluate the quality of streaming are the average packet
loss rate and the average packet transmission latency. The
results show significant decrease in the packet loss rates and
latencies with our protocols.

In this and the following paragraph, we describe research
that is relevant to the current work. Starting with tech-
niques related to mirrored servers and load balancing, My-
ers, Dinda and Zhang[1] evaluate the techniques for se-
lecting a server given a set of mirrored servers. Crovella
and Carter use probes in [2] to evaluate bandwidth and dy-
namically select a server. Conti, Gregori and Panzieri[3]
propose several load distribution mechanisms to achieve
higher availability and quality of data. Bunt et al[4] cou-
ple load balancing with caching to handle requests to clus-
tered Web servers under very high loads. Colajanni, Yu and
Dias[5] use DNS as a centralized scheduler for load balanc-
ing. Nguyen and Zakhor[10] use a set of mirrored servers
which co-ordinate using rate allocation and packet parti-
tion algorithms to achieve high throughput. Padmanabhan
et al[11] use a scheme where data is distributed among the
clients, which forward the data in case of a server overload.
The above approaches differ from the present one because
we focus on multimedia streaming and thus take packet loss
into consideration as a QoS parameter. We also eliminate
client-side processing for higher efficiency.

For Internet simulation, we use the Tiers topology gen-
eration mechanism, proposed in Doar[6]. The topology is
generated in terms of several tiers such as LAN, MAN and
WAN. Mellia, Carpani and Cigno[8] illustrate tools such as
Tstat to collect data about Internet traffic on large scales.
Recent research indicates that it is possible to provide gen-
eral models that fairly represent traffic on the World Wide
Web, using distributions such as M/Pareto for sessions and
Poisson for arrival patterns[7]. Trace collection for video
traces is illustrated in Fitzek and Reisslein[9].

The rest of the paper is organized as follows.Section 2
explains our load balancing protocols in detail. Section 3
provides the details of the simulation model, simulation pa-
rameters and results. We conclude this paper in Section 4.

2. PROTOCOLS

In this section, we present details of the proposed proto-
cols for load balancing and QoS. The Centralized Control
Protocol achieves load balancing by having a central server
distribute client requests across a set of video servers. In
the Distributed Control Protocol, each client request is split
into several substreams and different video servers process



Figure 1: Centralized Control Protocol

different substreams.

2.1. Centralized Control Protocol (CCP)

In this protocol, the video servers periodically send state in-
formation to the central server, indicating their current load.
The central server maintains the global state, and thus has
knowledge about how loaded each of the video servers is.
The precision of this knowledge depends on how often the
video servers send information about their loads to the cen-
tral server. Whenever a connection request comes in, the
central server forwards it to the least loaded video server. Ir-
respective of the streaming protocol, TCP is used for inter-
server communication so as to prevent losses of messages
from the video servers to the central server and vice versa.

If a video server fails to send any message about its state
information to the central server, the video server is as-
sumed to be inactive or overloaded. No client requests are
forwarded to the video server until it becomes active again
and resumes sending status messages. The protocol can be
thought of as a single-stream, single-server protocol, since
exactly one server services each client request, and there is
no breaking up of the stream among servers.

2.2. Distributed Control Protocol (DCP)

Most centralized control solutions suffer from the overhead
of having a single point of failure. Limited resource avail-
ability at the central server can also be an overhead under
high load. However, they have the advantage of simplicity.
To evaluate these factors, we present our second protocol
using a distributed control architecture.

In the distributed control protocol, a set of video servers
form a token passing arrangement to serve each client re-
quest. Let the number of servers be K. When a connec-
tion request comes to a server from a client, it breaks up
the requested stream into K segments, where K is the num-
ber of servers. Let each segment take n seconds to stream.
Each segment has a sequence number i, 1 ≤ i ≤ K. The
server streams the first segment. A period D seconds be-
fore it completes transmission of the first segment, it hands
over control to another server, chosen at random. The sec-
ond server processes the second segment, and hands over
control to a third server, and so on. While forwarding the

Figure 2: Distributed Control Protocol

request, a sequence number and a server-list are also for-
warded. The sequence number indicates the segment that is
to be processed by the next server. The server-list contains
a list of servers which have already processed segments of
this stream. While choosing a new server, a server not in
server-list is chosen. While forwarding the request, each
server appends its id to the server-list. This protocol can be
thought of as multiple-server, single-stream, since a single
stream is serviced in several segments and each request is
processed by several servers.

In case the new server does not respond, a different server
not present in server-list is chosen. In case none of the
servers not in server-list respond, a server already in server-
list has to be chosen.

Event: Connection request from client to a server.
1. Start processing segment 1. (i=1)
2. D secs before completion, send to a server chosen

at random, {Connection req, Seq num i+1 (next segment),
server-list = (Server-id) }

Event : {Connection req, seq num i, server-list} received
from another server.

1. start processing segment i.
2. server-list = server-list + (Server id)
3. if (i=K), end of stream. Otherwise,
4. D secs before completion, choose a server not in

server-list, and forward {conn req, i+1, server-list} to the
server.

3. SIMULATION SETUP AND RESULTS

Network Simulator 2.0 is used for simulating the network
and the multimedia architecture. The multimedia files are
simulated by traces of actual videos encoded in MPEG-4
format[9].

3.1. SIMULATION SETUP

A Metropolitan scale network with LANs being connected
to different corporate networks is used for simulation. The
topology is simulated using the topology generator Tiers
1.1[6]. Realistic values for different network parameters,
such as nodes/LAN, LANs/MAN, are used as illustrated
in Table 1. In order to model background Internet traffic,



Parameter Details

Network MANs, generated by Tiers1.1
Number of nodes Approx. 1100
Traffic arrival pattern Poisson, Mean 50-300/hr
Telnet and FTP sessions M/Pareto 0.9 < a < 1.1
Background traffic M/Pareto ON/OFF periods
Simulation period 500 hours
Link capacity 10 Mbps
Ave Length of video 15 min; heavy-tailed
MANs Nm = 10
Nodes/MAN Sm = 10
LANs/MAN NL = 5
Nodes/LAN SL = 20
Total number of links approx 1250
Intranetwork redundancy RM = 2, RL = 1

Table 1: Simulation Parameters

we note a few general characteristics of Web traffic: Traf-
fic on the Internet is characterized by a large proportion of
TCP traffic and a relatively smaller proportion of UDP traf-
fic. TCP traffic, notably Telnet and FTP, have a Poisson
arrival pattern. Telnet and FTP sessions can be modeled
by a Pareto distribution with heavy tail. Background traffic
can be modeled as superpositions of ON/OFF periods ex-
pressed as Pareto distributions; 0.9 < a < 1.1[7]. We use
all of the above factors to generate realistic background traf-
fic. Results from Tstat, a network monitoring tool described
in [8] are used to provide quantitative information regard-
ing the proportion of TCP and UDP flows and other data in
our simulation. Table 1 summarizes information about the
simulation. Results from Doar[6] are used to apply various
parameters for the topology of the network. The intranet-
work redundancy parameter refers to the number of edges
between nodes of the same type.

The simulation architecture consists of 4 identical video
servers and 100 multimedia clients connected over a
metropolitan area network. The multimedia clients gener-
ate requests in a Poisson arrival pattern. The average num-
ber of requests per hour is varied from 50 to 300 during the
experiments.

Constraint on packet transmission periods: To deter-
mine the maximum acceptable packet delay, we use the fol-
lowing approach: Let playback begin at the receiver after n
seconds worth of video has been cached. Let the average
download rate be X bytes/sec, and let the playback rate be B
bytes/sec. Let the instant at which playback begins be t = 0.
Therefore, nB bytes of data have already been transmitted.

We derive an expression for a constraint that must hold
for the packet to reach the destination in time and be usable.
Consider the mth byte of the stream. Since the playback is
at B bytes/sec, it should be, ideally, played at Tplay = m/B
sec. Since downloading is at X bytes/sec, the instant at
which it will be transmitted is: Tsent = (m − nB)/X ,
because nB bytes have already been transmitted. The fol-
lowing inequality must hold if the packet is to reach the

0 50 100 150 200 250 300 350
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
Congestion Vs Streams/hour

Streams/hour

A
ve

 P
ac

ke
t L

os
s 

(%
)

No Load Balancing 

CCP 

DCP 

Figure 3: Congestion Vs Number of Streams/hr: Packet
losses are reduced significantly with distributed control

destination in time:
(Tsent + packetlatency) < Tplay

Or, packet latency < (m
B

− m−nB
X

)
While measuring packet loss rates, we identify packets

that have too high a delay to be played back, and treat them
on par with lost packets.

3.2. RESULTS

Experiments are conducted using the above simulation
setup to evaluate the performance of the two protocols.
They are compared against a base scenario where no load
balancing is involved. The base scenario uses the same in-
frastructure, but no attempts are made to distribute the traf-
fic across the servers. The server which receives a client
request processes it in its entirety. The average packet loss
percentage and the average packet transmission delay are
measured, with the number of streams per hour being in-
creased from 50 to 300. The results are averaged over five
trials; confidence interval analysis for 95% confidence is
conducted over the sets of five experimental values. The
graphs are provided with errorbars that show the half-widths
of the confidence intervals.

Figure 3 shows the average packet losses as the num-
ber of streams is increased. The distributed protocol fares
best, since it achieves the highest degree of load distribution
across the network. Each client request is diffused across
several different routes, and thus no particular route gets a
higher amount of traffic than others. Packet losses due to
local congestion conditions are minimized, since the traf-
fic is distributed evenly across the servers. The centralized
control protocol does slightly worse since the global state is
updated only once in a while and thus, the load distribution
is not ideal.

Figure 4 shows the average packet transmission delays
for the same increases in the number of streams per hour.
The distributed control protocol does slightly worse than the
centralized control protocol, since each stream is serviced
by all servers, both near and far from the client. It still does
better than when there is no load balancing, since delays



0 50 100 150 200 250 300 350
60

80

100

120

140

160

180

200

220
Packet Latencies Vs Streams/hour

Streams/hour

A
ve

 P
ak

ce
t L

at
en

cy
 (

m
s)

No Load Balancing 

DCP 

CCP 

Figure 4: Packet delays Vs Number of Streams/hr: Packet
delays are reduced significantly with centralized control

0 100 200 300 400 500 600
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Time (Sec)

Bu
ffe

r C
on

te
nt

 (K
b)

Buffer Size Vs Time

No Load Balancing
DCP

Figure 5: Buffer Level Vs Time: Buffer level is conserved
more effectively with load balancing

due to congestion are minimized. In the centralized control
protocol, the stream is either serviced by the nearest server
or, in case the nearest server is highly loaded, a server that
has lower load and thus can serve the stream faster.

Higher packet loss rates also lead to faster depletion of
client buffers. This is because higher packet loss rates im-
ply lower fill rates for the client buffer. Figure 5 shows the
results of an experiment that measures the amount of data
in the client buffer as a function of time. In the scenario
with no load balancing, higher packet losses are involved.
As a result, the client buffer runs out much sooner, and re-
quires to be refilled more often. This leads to more frequent
discontinuities in video playback. In the scenario with load
balancing using DCP, there are fewer packet losses, lead-
ing to slower depletion of the client buffer. This means that
there are less frequent discontinuities in playback. Figure 5
clearly illustrates this aspect.

4. CONCLUSIONS

In this paper, we have presented two protocols for load bal-
ancing in a mirrored multimedia server environment. The
protocols avoid client-side processing. The only ability

clients need to have is the ability to accept connections from
more than one server. The protocols do not require any
change to the network infrastructure either, since the inter-
server communication occurs at the transport level. The two
protocols have been evaluated in terms of their improve-
ments to packet losses and packet latencies to the client. The
reduction in packet loss is of particular significance to mul-
timedia transmission. Packet transmission delays are also
reduced significantly in both the protocols. Smaller packet
transmission delay helps in maintaining a smaller buffer on
the client side for streaming applications.

5. REFERENCES

[1] A. Myers, P. Dinda, and Hui Zhang, ”Performance
characteristics of mirror servers on the Internet,”
Proc. of IEEE INFOCOM, Mar 1999.

[2] M. Crovella and R. Carter, ”Dynamic Server Selec-
tion Using Bandwidth Probing in Wide-Area Net-
works,” Proc. of IEEE INFOCOM, 1997.

[3] M. Conti, E. Gregori, F. Panzieri, ”Load Distribution
among Replicated Web Servers: A QoS-Based Ap-
proach,” in WISP 1999, ACM Press, Atlanta.

[4] R.B. Bunt, D.L.Eager, et al., ”Achieving Load
Balance and Effective Caching in Clustered Web
Servers,” The fourth International Web Caching
Workshop, San Diego, CA, Mar-Apr 1999.

[5] M. Colajanni, P. S. Yu, and D. M. Dias, ”Analysis of
task assignment policies in scalable distributed Web-
server systems,” IEEE Transactions on Parallel and
Distributed Systems, 9(6):585–600, 1998.

[6] M. Doar, ”A Better Model for Generating Test Net-
works,” Proc. of IEEE GLOBECOM, 1996.

[7] T.D. Neame, M. Zukerman, ”Modeling Broadband
Traffic Streams,” Proc. of Globecom ’99, Rio de
Janeiro, Brazil, Dec, 1999.

[8] M.Mellia, A.Carpani, R.Lo Cigno, ”Measuring IP
and TCP behavior on an Edge Node,” Planet-IP and
Nebula Joint Workshop, Jan 2002.

[9] Frank H.P Fitzek, Martin Reisslein, ”MPEG-4 and
H.263 Video traces for Network Performance Evalua-
tion,” IEEE Network Magazine, Vol. 15, No. 6, pages
40-54, Nov-Dec 2001 .

[10] T. Nguyen, A. Zakhor, ”Distributed Video Streaming
over the Internet,” Proc. of MMCN 2002, San Jose,
CA.

[11] V. N. Padmanabhan, H. J. Wang, P. A. Chou, and
K. Sripanidkulchai, ”Distributing Streaming Me-
dia Content Using Cooperative Networking,” ACM
NOSSDAV, Miami Beach, FL, May 2002.


