
Double Step Branching CORDIC : A New Algorithm for Fast
Sine and Cosine Generation

Dhananjay S. Phatak
Electrical Engineering Department

State University of New York, Binghamton, NY 13902-6000

(IEEE Transactions on Computers, vol 47, No. 5, May 1998, pp 587–602.

Algorithm and Architecture being patented;
Application number 09/287,281, filing date 04/07/99.)

ABSTRACT

Duprat and Muller [1] introduced the ingenious “Branching CORDIC” algorithm. It enables a fast
implementation of CORDIC algorithm using signed digits and requires a constant normalization factor.
The speedup is achieved by performing two basic CORDIC rotations in parallel in two separate mod-
ules. In their method, both modules perform identical computation except when the algorithm is in a
“branching” [1].

We have improved the algorithm and show that it is possible to perform two circular mode rotations
in a single step, with little additional hardware. In our method, both modules perform distinct computa-
tions at each step which leads to a better utilization of the hardware and the possibility of further speedup
over the original method. Architectures for VLSI implementation of our algorithm are discussed.

Index Terms : Double Step, Branching CORDIC, Constant Scale Factor, Redundant Signed-Digit
CORDIC

I Introduction

The CORDIC algorithm was introduced by Volder [2] for fast computations of trigonometric

functions and their inverses. In the classic reference [2], he also showed that the CORDIC method

can be used for multiplication/division, as well as for conversion between binary and mixed radix

number systems. Walther then demonstrated a “unified” CORDIC algorithm [3] that could be used

to calculate trigonometric, exponential and square root functions along with their inverses; as well

as to carry out multiply/divide operations. In essence, the CORDIC method evaluates elementary

functions merely by table-look-up, shift and add operations. A small number (of the order ofn, where

n bits of precision is required in the evaluation of the functions) of pre-calculated fixed constants

is all that is required to be stored in the look-up table. The CORDIC algorithm has nice geometri-

cal interpretations [2, 3]: trigonometric, exponential, multiply functions are evaluated via rotations

in the circular, hyperbolic and linear coordinate systems, respectively. Their inverses (i.e., inverse

trigonometric functions, logarithm and division) can be implemented in a “vectoring” mode in the

appropriate coordinate system.

Since its inception, CORDIC methods have been investigated by many researchers and have been

employed in software and/or hardware for a variety of applications such as performing

(i) Fourier and related Transforms (FFT/DFT, Discrete Sine/Cosine Transforms, etc.) [4];

(ii) Householder Transformations [5], Singular Value Decomposition (SVD) and other Matrix Oper-

ations [6, 7];

(iii) Filtering and Array Processing [8, 9, 10].

Indeed CORDIC has evolved into a very rich and useful area. A good introduction to the subject

can be found in [11]. For a fairly detailed list of CORDIC related references, tutorials, and simulation

programs, the reader is referred to the CORDIC bibliography site [12] (http://devil.ece.utexas.edu).

In this paper we demonstrate a fast double-stepping method applicable in the

CIRCULAR ROTATION mode (used to evaluate Sine/Cosine/Tangent) functions. We begin

with an explanation of the circular rotations which are based on the iteration [1]

Xi+1 = Xi �si Yi2
�i (1)

Yi+1 = Yi +si Xi2
�i (2)

Zi+1 = Zi �si arctan2�i where si 2 f�1;0;+1g (3)

Using complex numbers, equations (1) and (2) can be rewritten as [11]

W i+1 = Wi � (1+ jsi2
�i) where (4)

complex variable Wi = (Xi + j �Yi) and j =
p�1 (5)

Using the polar form of complex numbers,

Wi+1 = Wi

q
1+(si2�i)2 �ejθi = Wi �Ki �ejθi where (6)

θi = arctan(si2
�i) and Ki =

q
1+(si2�i)2 (7)

1

Starting withW0, if m iterations are carried out, then

Wm = W0 �K �ejθ where (8)

K =
m�1

∏
i=0

Ki =
m�1

∏
i=0

q
1+(si2�i)2 and (9)

θ =
m�1

∑
i=0

θi =
m�1

∑
i=0

arctan(si 2�i) (10)

If si; i = 0; � � � ;m�1, are selected so that
m�1

∑
i=0

arctan(si 2�i) �! θ0 then (11)

Wm �! W0 �K(cosθ0+ jsinθ0) = (X0+ jY0) �K(cosθ0+ jsinθ0) or (12)
Xm �! K(X0cosθ0�Y0sinθ0) and (13)
Ym �! K(X0sinθ0+Y0 cosθ0) (14)

If the initial valuesX0 andY0 are set to 1 and 0, respectively, then

Xm�! K cosθ0 and Ym�! K sinθ0 (15)

In general, the coefficientssi at each step of the CORDIC iteration can take any of the three values

f�1, 0, +1g. If si = 0 is allowed, then the scaling factorK is not a constant, but depends on the actual

sequence ofsi values. On the other hand, ifsi can be restricted to�1, thenK is a constant (since the

number of iterationsm that are to be executed for a given precision are known ahead of time).

In this case, selectingX0 =
1
K

and Y0 = 0 yields (16)

Xm�! cosθ0 and Ym�! sinθ0 (17)

This method falls under the category of “additive normalization” since the initial angleZ0 = θ0

gets zeroed out (i.e., it has at leastm� 2 leading zeroes in a non-redundant representation, ifm

iterations are executed) by adding�arctan2�i ; i = 0; � � � ;(m� 1). At step i if the residual angle

Zi > 0 then the algorithm selectssi = +1 and if Zi < 0 thensi = �1 so that themagnitudeof the

residual angle is constantly being reduced toward zero. For this method to work, the initial angle

must satisfy

jZ0j �
∞

∑
k=0

arctan2�k = 1:74328662 (18)

This range covers all angles of practical interest sinceπ
2 � 1:5708< ∑∞

k=0 arctan2�k.

With the introduction of (Redundant) Signed-Digit representations [11, 13, 14] the addition be-

comes carry-free, (i.e., the addition takes a small fixed amount of time, irrespective of the wordlength)

thus offering a potential for significant speedup. To fully exploit the speed advantage gained by using

signed digits, the sign detection of the residual angle also must be done in a constant (and small) time

delay (note that the next action depends on whether the current residual angle is positive or negative).

This in turn implies that only a fixed number of leading digits can be looked at to determine the sign

of the residual angle. In most methods (for example, those in [1, 15]) a window of 3 (leading) digits

turns out to be sufficient to determine the sign. At each iteration, the window shifts right by one digit

position. If at least one of the digits in the window of interest is non-zero, the sign of the residual

2

angle can be determined to be�1. If the sign is +1, the next elementary angle (arctan2�i at step

i) should be subtracted, if the sign is�1, the next elementary angle should be added. The problem

occurs when all the digits in the window of interest are zero or in other words the residual angle has

many leading zeroes, so that just by looking at the window of 3 (leading) digits, it is not possible to

tell whether its sign is +1 or�1. Ideally, in this case, one should selectsi = 0 and neither add nor

subtract the elemental angle for that step. However, if the coefficientssi are restricted tof�1;+1g (to

render the scaling factorK to be a constant) then sign detection of the angle being zeroed becomes

the bottleneck: it could require the examination of a large number of digits (possibly the entire word

length). In essence, if the residual angleZi has a lot of leading zeroes, the decision whether to add or

subtract arctan2�i can be made only after examining the first non-zero digit. In general this might im-

ply scanning the entire word length, in which case the advantage due to constant time addition using

signed digits is lost. Takagi, Asada and Yajima proposed two different methods [15] viz., the method

of “double rotation” and the method of “correcting rotations” to overcome this problem. However,

these methods need to perform extra rotations which makes them slow.

Duprat and Muller proposed the Branching CORDIC algorithm [1] that lets the coefficientssi

to be restricted to�1, without the need for extra rotations. This is achieved by performing two

CORDIC rotations in parallel at each step and retaining the correct result at the end of each step.

Thus, extra hardware is needed, but the speed improvement is significant. When the residual angleZi

has a lot of leading zeroes (so that its sign cannot be determined by looking only at a fixed number of

most significant digits), Duprat and Muller’s algorithm initiates two sequences of computations, one

assumingsi = +1 and the other assumingsi = �1. It might appear that this branching could in turn

lead to further branchings down the line. The ingenuity of their method essentially lies in realizing

that further branchings are not possible and that a branching either terminates eventually (with both

computation sequences converging) or if it does not terminate till the end, thenboththe modules have

the correct result (within the tolerance specified).

We demonstrate that the basic idea of executing two sequences of computation in parallel can

be exploited even further, making it possible to determine two coefficients (si andsi+1) at each step

of the CORDIC iteration (hence the name Double Step Branching CORDIC). In fact, in the original

method the two modules do different computations only when in a branching. Otherwise they per-

form identical computations, which means one of the modules is not being utilized at all, except in

branching. We enhance the algorithm by making the modules perform distinct computations at each

step and retaining the correct result (just as in the original method). The additional hardware overhead

is minimal, while the hardware utilization is better and the potential speedup could be significant.

The rest of the paper is organized as follows. The following section presents the algorithm via

flowcharts and explains motivations behind various procedures therein. It is intended to provide a

good overall picture without getting into rigorous mathematics which is deferred to the following sec-

tions. Section III derives some identities that are repeatedly used later on in proving the convergence

properties of the algorithm. Building on this background, the next section presents the proof of cor-

rectness and convergence properties of the algorithm. Section V discusses architectures to implement

our algorithm in hardware. Section VI presents conclusions.

3

The author would like to point out that all the algorithms (the original algorithm of Duprat and

Muller, as well as the double step algorithm) have been implemented in software. Correctness of the

analytical proofs in this manuscript was double checked independently viaexhaustivesimulation of

all possible initial angles with a word length of 16 bits that lie in the range specified by (18) (� 57125

cases). In addition, thousands of randomly generated initial angles in the range specified by equation

(18) with word lengths up to 49 bits have been simulated and verified for correctness.

II The Double Step Branching CORDIC method

We perform two computations in parallel in two separate modules at every step. The modules are

referred to as “Moduleα ” and “Moduleβ ”. The inputs and outputs of Moduleα (as well as any other

variables/attributes associated with it) are designated with superscriptα while those of Moduleβ are

designated with superscriptβ. The subscript indicates the step or iteration number. A variable without

the module designator superscript (α or β) indicates the correct value of that variable at that step. (for

instanceZi without any superscripts refers to the correct residual angle at stepi).

For lucidity and ease of understanding, we adopt the convention to label the steps from zero on-

wards, (i.e., step 0, step 1, ... etc.) where stepi utilizes arctan2�2i and arctan2�(2i+1) to generateZi+1

from Zi . With this convention, step 0 generatesZα
1 andZβ

1 from initial angleZ0 by using arctan2�0

and arctan2�1; step 1 generatesZα
2 andZβ

2 from Z1 by using arctan2�2 and arctan2�3 and so on.

At step i, each module performs one of the four possible computations (by selecting the + or�
signs)

Moduleα : Zα
i+1 = Zα

i �arctan2�2i �arctan2�(2i+1) (19)

Moduleβ : Zβ
i+1 = Zβ

i �arctan2�2i �arctan2�(2i+1) (20)

Note that arctan2�0 through arctan2�(2i�1) havealready been used in prior steps 0;1� � � ;(i�1) and

stepi uses arctan2�2i and arctan2�(2i+1). If the algorithm is not in a branching, then the input residual

angle at stepi is the same for both modules, i.e.,Zα
i = Zβ

i = Zi . When the algorithm is in a branching

Zα
i 6= Zβ

i .

To understand the main idea behind the algorithm, assume that at the end of stepi � 1 we are

not in a branching, i.e.,Zα
i = Zβ

i = Zi . For the purpose of illustration, also assume that sign ofZi

can be unambiguously determined to be positive. In that case, arctan2�2i must be subtracted. In the

original method of Duprat and Muller this subtraction is performed by both modules (i.e., one of the

two modules is not utilized) and the sign is determined again to figure out whether to add or subtract

the next angle, i.e., arctan2�(2i+1). In our method, the two modules available are put to full use as

follows:

Moduleα : Zα
i+1 = Zi�arctan2�2i �arctan2�(2i+1) operation abbreviatedh� �i (21)

Moduleβ : Zβ
i+1 = Zi�arctan2�2i +arctan2�(2i+1) operation abbreviatedh� +i (22)

Now both modules determine the signs ofZα
i+1 andZβ

i+1 in parallel. The sign is determined by looking

at a fixed number of leading digits of the residue. As a result, the sign can be�1 if at least one or

4

more of the digits (in the window of digits used to evaluate the sign) is non zero; otherwise the sign

evaluates to 0 if all the digits in the window are 0. It should be noted that the sign of the most

significant digit in the “window” is not necessarily the sign of the residue (rules for inferring the sign

of the residue by looking at the digits in the current window are summarized in Table 1 and explained

later in this section). The sign of residueZk is henceforth denoted as “Sign(Zk)”. Note that if Sign(Zk)

= 1, thenZk > 0. Similarly if Sign(Zk) = �1, thenZk < 0. When Sign(Zk) = 0, however, there is

insufficient information to decide whetherZk is positive or negative.

If Sign(Zα
i+1) is positive, i.e., ah� �i operation still leaves a positive residue, then Moduleα is

correct. In this case ah� +i operation that Moduleβ performed must also yield a positive residue,

which is higher in magnitude than the residue of Moduleα which is deemed to be correct and copied

by Moduleβ prior to the next iteration. Similarly if ah� �i operation leads to a “zero sign” (i.e., the

residueZα
i+1 has leading zeroes which implies it has a small magnitude), then that operation was the

correct one. Finally when ah� �i operation leads to a negative residue, then the next action depends

on the sign of the residueZβ
i+1 in the other module obtained by ah� +i operation: if Sign(Zβ

i+1) is

�1 or 0 then it is correct, otherwise, both modules are correct and the algorithm enters a branching.

This is summarized by the flowchart in Figure 2 (which is further explained a bit later). Similarly,

the flowchart in Figure 3 summarizes the procedure when Sign(Zi) = 0, and the flowchart in Figure 4

summarizes the procedure when the algorithm is in branching.

Note that the initial angleZ0 must satisfy condition (18). Similarly, at the end of step(i � 1),

having usedfarctan20;arctan2�1
; � � � ;arctan2�(2i�2)

;arctan2�(2i�1)g, the residueZi must satisfy

jZi j �
∞

∑
k=2i

arctan2�k (23)

If this condition is not satisfied, no combination of remaining angles

farctan2�2i ;arctan2�(2i+1); � � �g can force the residue magnitude arbitrarily close toward zero (as

more iterations are executed). Thus, the magnitude bound specified by condition (23) must be satisfied

at every step (of CORDIC algorithm) and is henceforth referred to as the “tighter ” bound. If the

algorithm is in a branching, then two possibilities are being tried and least one of the computation

sequences must generate residual angles that satisfy the“tighter” bound .

Directly verifying condition (23) would require a magnitude comparison or a full subtraction with

a delay which depends on the word length and would defeat the purpose behind using signed digits.

The evaluation of the residue sign must be done by looking at afixednumber of leading digits to make

the sign evaluation delay independent of the word length. In most methods (for example, those in [1]

and [15]) 3 leading digits of the residue are examined to determine the sign. In our case, since we

need to do a double step, it turns out that 6 digits need to be examined to determine the sign. This does

not mean that the delay required to determine the sign is double (as compared with the methods that

examine only 3 digits), because the 6 digits are divided into 2 sub groups of 3 digits each and each

subgroup is handled separately,in parallel to generate the required signals. The control logic that

integrates signals from these subgroups is slightly more complex than the case where only 3 digits are

examined (this is explained in detail later on).

5

What makes it possible to look at only a fixed number of leading digits is the fact that at stepi (i.e.,

having usedfarctan20;arctan2�1; � � � ;arctan2�(2i�2);arctan2�(2i�1)g; when the sign is determined

prior to usingfarctan2�2i and arctan2�(2i+1)g, both the residual anglesZα
i andZβ

i satisfy

fjZα
i j; jZβ

i jg � 3 �2�(2i�1) (24)

Note that∑∞
k=2i arctan2�k < 2�(2i�1) < 3 � 2�(2i�1), so that the bound specified by equation (24) is

“coarser” than that of equation (23) above, and is referred to by that name throughout the rest of

the manuscript. If this“coarser” bound is violated, then the sign that is evaluated can be incorrect,

possibly leading to a wrong result at the end. Note the distinction between the“tighter” bound and

“coarser” bound : only one offZα
n , Zβ

ng needs to satisfy the“tighter” bound at all steps while both of

them must satisfy the“coarser” bound , irrespective of whether or not the algorithm is in a branching.

With this background, we now present the algorithm and give the details of how the sign evaluation

is done. Convergence properties of the algorithm (i.e., the fact that conditions (23) and (24) are

satisfied at all steps) are proved in Section IV. The algorithm is summarized by the flowcharts in

Figures 1, 2, 3 and 4.

Figure 1 shows the overall flowchart of the algorithm. In CORDIC,n + 1 angles

(arctan20; � � � ;arctan2�n) need to be utilized forn bits of precision. This can be explained using

the following identities (please refer to [1] for their derivation)

arctan2�n
<

∞

∑
k=n+1

arctan2�k
< 2�n (25)

arctan2�n�
n+p

∑
k=n+1

arctan2�k �
∞

∑
k=n+p+1

arctan2�k
<

∞

∑
k=n+p+1

2�k = 2�(n+p) (26)

Equation (25) together with the fact that the residual angle in at least one of the two modules satisfies

“tighter” bound at each step implies thatn+1 angles mentioned above suffice to render the required

precision. However, the algorithm might terminate in a branching in which case both modules satisfy

the “coarser” bound . Using the“coarser” bound (instead of the“tighter” bound) indicates that

n+ 3 angles (arctan20; � � � ;arctan2�(n+2)) should be used to ensure that outputs of both modules

satisfy the condition [(absolute value of residual angle)< 2�n]. Since we use two angles at each

step,

number iterations required =dn+3
2

e wheredxe = smallest integer� x (27)

This is the loop-iteration-index appearing in Figure 1.

6

BRANCHING == TRUE ?

Flowchart in Figure 2 Flowchart in Figure 3

Flowchart in Figure 4

YesNo

Sign(Zi) == 0Sign(Zi) == �1

for (i = 0; i � dn+3
2 e; i ++; Step++) loop

Begin

evaluate Sign(Z0)
Step=0; BRANCHING=FALSE;

Figure 1 : Flowchart for the algorithm. Detailed flowcharts for specific cases when residue Sign

evaluation returns�1, 0 and when the algorithm is in a branching are illustrated in Figures 2, 3 and

4, respectively.

7

Perform in parallel

Sign(Zi) == �1

Decision Block

if (Sign(Zα
i+1) == Sign(Zi)) then f Module α is correct; g

else f

else if (Sign(Zα
i+1) == 0) then f Module α is correct; g

else f

else f
if (Sign(Zβ

i+1) == �Sign(Zi) || Sign(Zβ
i+1)== 0) then fModule β is correct; g

if (any module satisfies condition (28)) then f it is correct; g

BRANCHING = TRUE;
g

g
g
if (BRANCHING != TRUE) then f

Correct Module’s Zi+1 output, sign
and other attributes are copied by the other moduleg

Both modules examine 6 digits of weight

2�(2i�1)
;2�2i

;2�(2i+1)| {z }
more significant part

; 2�(2i+2)
;2�(2i+3)

;2�(2i+4)| {z }
less significant part

To determine
(1) overall sign
(2) A flag indicating whether condition (28) is satisfied

Evaluate Sign(Zα
i+1)

Module α

Evaluate Sign(Zβ
i+1)

Module β
Zα

i+1 = Zi �arctan2�2i �arctan2�(2i+1) Zβ
i+1 = Zi �arctan2�2i �arctan2�(2i+1)

Figure 2 : Flowchart for stepi for the case when residue Sign evaluation returns�1.

8

that module is correct; goto End decision;
if (any module satisfies condition (28)) then f

g
/* if both modules satisfy the condition, arbitrarily pick any one */

Decision Block /* in this case Zα
i+1 > 0 and Zβ

i+1 < 0 */

that module is correct; goto End decision;
if (Sign(Zi+1) == 0 is true for any module) then f
g

if (BRANCHING != TRUE) then f
Correct Module’s Zi+1 output, sign

and other attributes are copied by the other module
g

BRANCHING = TRUE;

End decision:

Perform in parallel

Both modules examine 6 digits of weight

2�(2i�1)
;2�2i

;2�(2i+1)| {z }
more significant part

; 2�(2i+2)
;2�(2i+3)

;2�(2i+4)| {z }
less significant part

To determine
(1) overall sign
(2) A flag indicating whether condition (28) is satisfied

Sign(Zi) == 0

Evaluate Sign(Zα
i+1)

Module α

Evaluate Sign(Zβ
i+1)

Module β

Zα
i+1 = Zi +arctan2�2i �arctan2�(2i+1) Zβ

i+1 = Zi �arctan2�2i +arctan2�(2i+1)

Figure 3 : Flowchart for stepi for the case when residue Sign evaluation returns 0.

9

if (BRANCHING != TRUE) then f
Correct Module’s Zi+1 output, sign

and other attributes are copied by the other module
g

that module is correct; goto End decision;
if (Sign(Zi+1) == 0 is true for any module) then f
g

that module is correct; goto End decision;
if (any module satisfies condition (28)) then f

g
/* if both modules satisfy the condition, arbitrarily pick any one */

if (Sign(Zα
i+1) == �Sign(Zα

i)) then fModule α is correct; goto End decision; g
if (Sign(Zβ

i+1) == �Sign(Zβ
i)) then fModule β is correct; goto End decision; g

Perform in parallel

Both modules examine 6 digits of weight

2�(2i�1)
;2�2i

;2�(2i+1)| {z }
more significant part

; 2�(2i+2)
;2�(2i+3)

;2�(2i+4)| {z }
less significant part

To determine
(1) overall sign
(2) A flag indicating whether condition (28) is satisfied

in BRANCHING

Evaluate Sign(Zα
i+1)

Module α

Evaluate Sign(Zβ
i+1)

Module β

End decision:

Zα
i = Zα

i+1�arctan2�2i �arctan2�(2i+1) Zβ
i+1 = Zβ

i �arctan2�2i �arctan2�(2i+1)

Decision Block

BRANCHING = FALSE;

BRANCHING = TRUE; /* double step in branching in the next iteration */

Figure 4 : Flowchart for stepi when the algorithm is in a branching.

10

Figure 2 illustrates the procedure followed when the sign can be determined to be�1. In the

blocks titled “Moduleα ” and “Moduleβ ”, the upper and lower signs (in the stacks� or�) corre-

spond to Sign(Zi) = +1 and Sign(Zi) = �1, respectively.

Next, we explain the sign detection procedure. Because the residues always satisfy the“coarser”

bound , digits of weight higher than 2�(2i�3) need not be examined when determining the sign of

Zα
i (or Zβ

i , the sign detection operation is identical in both modules). This is a consequence of using

signed digits to represent the residue. If only one angle is used at every step (as in Duprat and Muller’s

original method) then 3 digits of weights 2�(k�3);2�(k�2);2�(k�1) suffice to evaluate the sign,prior

to using arctan2�k. Note that arctan2�k can have its leading “1” (i.e., its first non-zero digit) at bit

position 2�k. Hence, merely examining two digits of weight 2�(k�3);2�(k�2) does not suffice even

in the original method. For example, consider the case when the three digits in question are 001. If

a branching is initiated just by looking at the first two zeroes, one module would do an add and the

other would do a subtract. In this case the module that did an add could exceed the“coarser” bound

for the next step. That’s why at least 3 digits are required.

In the double stepping method, evaluation of residue sign is done by examining a window of 6

digits as illustrated in Figures 5 and 6.

Weight of position in
powers of radix 2

3 more significant digits
handled as per Table 1

significant digits

Window at stepi, shifted by 2 digit positions
from the previous window

Evaluate magnitude and sign

�(2i�3)

�(2i�2)

�(2i�1)

of the number made of 3 lesser

�2i

�(2i+1)

�(2i+2)

�(2i+3)
�(2i+4)

Window of 6 digits used for evaluating the sign of residual angleZi
at step (i�1), prior to using arctan2�2i and arctan2�(2i+1) in the next step

(1) Sign (�1, 0 or +1) of residue

Information from both subgroups

condition in equation (28) is satisfied

is combined to generate

(2) A (Boolean) flag indicating whether

Figure 5: Window of 6 digits used to determine the sign of residue.

First of all, note that the 3 leading digits can be interpreted in a manner identical to the original

method as indicated in Table 1. This table is derived from the fact that the residue satisfies“coarser”

bound at all times.

In the flowcharts in Figures 2 and 3 if the sign of the residue can be determined to be +1 or

�1 by examining only 3 (more significant) digits, then the lower 3 digits are inconsequential. If

however, the leading 3 digits are zero, then there are 4 distinct possibilities for the double stepping:

h� �i; h� +i; h+ �i; h+ +i. Note that double stepping implies arctan2�(2i+1) also gets

used along with arctan2�2i (in fact they are not stored individually, only their sum and difference,i.e.,

[arctan2�2i +arctan2�(2i+1)] and [arctan2�2i�arctan2�(2i+1)] are stored in the look-up table). There

is no “corrective” rotation (any back-tracking would defeat the purpose of trying to double step in the

11

first place), which implies that the four possibilities must be narrowed down to two, because only two

modules are to be used. More digits need to be examined for this purpose; the natural question being

“how many more digits ?”

Sign and flag F are the outputs of sign-evaluation module

in parallel

determine sign1 and magnitude1 determine sign and magnitude of subgroup
(Z4;Z5;Z6) algebraically:

Magnitude2 = |value|;

Using sign1, magnitude1, sign2, magnitude2 check if
condition (28) is satisfied

and set a flag F to 1 if it is satisfied

of subgroup (Z1;Z2;Z3)
as per Table 1

else fSign = sign1; g
if (sign1 == 0) then fSign = sign2; g

if (value > 0) then fsign2 = 1; g
else if (value == 0) then fsign2 = 0; g
else sign2 = -1;

Let (Z1;Z2;Z3;Z4;Z5;Z6) be the digits in the window

value = 4�Z4+2�Z5+Z6;

Figure 6: Sign detection procedure.

The answer turns out to be 3 extra digits, as indicated next. For the purpose of illustration, assume

that the leading 3 digits in the window are all 0. Suppose that we start examining more digits one by

one. Any time a non-zero digit (+1 or�1) is encountered, the sign of the residue is known and we can

utilize the procedure in the flow chart in Figure 2 again. The problem happens when the following

(few) digits are also 0 (which means that themagnitudeof the residue is small). The question is:

how many additional zero digits (following the 3 leading digits in the window that are all 0) must be

encountered to ensure thath� +i; h+ �i are the only possibilities and rule out the other two, viz.,

h� �i; h+ +i ? The answer is 3 extra zeroes.

There is one more case that needs further scrutiny: when the algorithm is in a branching. In the

original method, when in a branching, one module keeps adding (and the other keeps subtracting)

the angles one at a time as long as the signs of next residues continue to be same as those of the

previous ones (please refer to [1] for details). In the double stepping method, the analogous operation

is adding (subtracting in the other module) two angles at a time. If the sign of the next residue

remains the same as the previous one despite adding (subtracting) two angles, then that module is still

indicating a continuation of branching.

12

Z2i�3 Z2i�2 Z2i�1 Implied leading Sign Magnitude comment
digit

1 1 1 1 + 1
1 1 0 1 + 2 1 denotes�1
1 1 1 1 + 3
1 0 1 1 + 3

1 0 0 � � 4 (impossible, violates“coarser” bound)

1 0 1 1 � 3
1 1 1 1 � 3
1 1 0 1 � 2
1 1 1 1 � 1
0 1 1 1 � 3
0 1 0 1 � 2
0 1 1 1 � 1
0 0 1 1 � 1
0 0 0 0 0 0 (need to look at next 3 digits)
0 0 1 1 + 1
0 1 1 1 + 1
0 1 0 1 + 2
0 1 1 1 + 3
1 1 1 1 + 1
1 1 0 1 + 2
1 1 1 1 + 3
1 0 1 1 + 3
1 0 0 � � 4 (impossible, violates“coarser” bound)
1 0 1 1 � 3
1 1 1 1 � 3
1 1 0 1 � 2
1 1 1 1 � 1

Table 1: Determination of Sign and Magnitude of the subgroup of 3 more significant digits at step
(i�1). A “�” indicates a don’t care, when the corresponding digit combination cannot occur in the
residue.

However, if the sign does change, indicating a termination of branching, there is no quick way of

telling whether

(i) the sign switched as a result of adding (subtracting) the first angle or

(ii) it remained the same after using the first angle and switched only after using the second angle.

If (i) happens to be true then the second angle has been used incorrectly. There is no way except to

back track if this was allowed to happen. Hence, before taking a double step when in branching,

we detect whether the first step itself would terminate the branching. The 6 digits in the window

have all the information needed to make this prediction. As seen in the flow chart of the algorithm, a

branching is terminated (i.e., not continued) if the following condition

[f(sign of more significant part == 0) && (magnitude of less sig. part �C) g
f(magnitude of more sig. part == 1) && (magnitude of less sig. part � (8�C))

&&(sign of less sig. part == �(sign of more sig. part)) g] == TRUE (28)

13

is satisfied by any of the two modules, where

the constant C in equation (28) above can take only one of the two values 5 or 6
i.e., C 2 f5;6g (29)

Mathematically, the algorithm works correctly with both values ofC. Whichever value leads to sim-

pler circuits should be selected in the final VLSI implementation.

The above condition essentially terminates branching if

jZα
i j �C �2�(2n+2) or jZβ

i j �C �2�(2n+2) (30)

If only one of Zα
i or Zβ

i satisfies the above condition, then it is the correct residue (and the current

branching terminates). If bothZα
i or Zβ

i satisfy the above condition, then any of the two modules can

be arbitrarily deemed to be correct and the current branching terminates (The proof of its correctness

is in case II.1.a in Section IV).

Having presented the algorithm, we now prove its convergence. The next section derives some

identities repeatedly used later on. Section IV presents the detailed proof of convergence.

III Background

In the following it is assumed that all indices are non-negative integers (i.e.,k;n; i; � � � � 0) unless

stated otherwise. The most fundamental identities are (25) and (26) and are derived in [1]. The

following relationship is also well-known [11]

arctan2�(n+1)
>

1
2

arctan2�n This relation immediately leads to the following (31)

useful identity: arctan2�n�arctan2�(n+1)
< arctan2�(n+1) (32)

From the above, we drive the following identities
∞

∑
k=n

arctan2�k
> 2�n+2�(n+1) (33)

arctan2�n
> 2�(n+1)+2�(n+2) (34)

2arctan2�n
>

∞

∑
k=n+1

arctan2�k (35)

Proof of 33 : By induction;

base case :
∞

∑
k=0

arctan2�k = 1:74329> 20+2�1 = 1:5 (36)

Assume (33) holds forn= i. Then, arctan2�i +
∞

∑
k=i+1

arctan2�k
> 2�i +2�(i+1) (37)

Invoking the first inequality in (25)

(
∞

∑
k=i+1

arctan2�k)+(
∞

∑
k=i+1

arctan2�k)> arctan2�i +
∞

∑
k=i+1

arctan2�k
> 2�i +2�(i+1) (38)

Dividing both sides of the above inequality by 2, we get
∞

∑
k=i+1

arctan2�k
>

1
2
[2�i +2�(i+1)] = 2�(i+1)+2�(i+2) (39)

14

which shows that (33) holds for(n+1) and completes the proof.

Proof of 34 : By induction;

base case : arctan2�0 = 0:78� � �> 2�1+2�2 = 0:75 (40)

Assume (34) holds forn. Then dividing both sides by 2 and invoking (31)

arctan2�(n+1)
>

1
2

arctan2�n
> 2�(n+2)+2�(n+3) which completes the proof. (41)

Finally to prove (35), invoke (34) and (25):

2arctan2�n
> 2[2�(n+1)+2�(n+2)] = 2�n+2�(n+1)

> 2�n
>

∞

∑
k=n+1

arctan2�k (42)

IV Proof of Convergence

Theorem : The algorithm generates the sequencesZα
n andZβ

n which satisfy the following property: at

stepi (Note that arctan2�0 through arctan2�(2i�1) havealready been used in prior steps 0;1� � � ;(i�
1) and stepi uses arctan2�2i and arctan2�(2i+1))

jZα
i j �

∞

∑
k=2i

arctan2�k or jZβ
i j �

∞

∑
k=2i

arctan2�k (43)

jZj � 3 �2�(2i�1) where Z 2 fZα
i ;Z

β
i g (44)

The above relations state that at least one ofjZα
i j and jZβ

i j satisfies the “tighter” bound while both

satisfy the “coarser” bound.

Proof : We prove the correctness of the algorithm by induction, i.e., assume that it holds at stepi and

show that it holds at stepi +1. This, together with the base case (i.e.,i = 0) where the theorem holds

(as seen from relation (18)) completes the proof.

There are two main cases to be considered:

(I) At step i, there is no on-going branching, i.e., one ofZα
i or Zβ

i is determined to be the correct

output and both modules start off with this value (Zi) as the starting residue for stepi.

(II) At step i, the algorithm is in a branching with distinct starting residues (Zα
i for moduleα andZβ

i

for moduleβ).

Case I : No on-going branchingThis is further subdivided into 2 cases

(I.1) Sign(Zi) =�1 and

(I.2) Sign(Zi) = 0

We consider case (I.1) first and illustrate the proof assuming Sign(Zi) = +1. The proof for the

case when Sign(Zi) =�1 is identical and is omitted for the sake of brevity.

(I.1) Sign(Zi) = +1

As seen in the flow chart, the modules perform

Moduleα : Zα
i+1 = Zi�arctan2�2i �arctan2�(2i+1) (45)

Moduleβ : Zβ
i+1 = Zi�arctan2�2i +arctan2�(2i+1) (46)

15

Induction hypothesis and the fact that Sign(Zi) = +1 yields: 0< Zi <

∞

∑
k=2i

arctan2�k (47)

Hence, �arctan2�2i �arctan2�(2i+1) < Zα
i+1 �

∞

∑
k=2i+2

arctan2�k (48)

Using the fact that +arctan2�2i +arctan2�(2i+1) < 2�2i +2�(2i+1) = 3 �2�(2i+1) (49)

and invoking relation (25), we get

�3 �2�(2i+1)
< �arctan2�2i �arctan2�(2i+1) < Zα

i+1 �
∞

∑
k=2i+2

arctan2�k
< 2�(2i+1) (50)

or �3 �2�(2i+1)
< Zα

i+1 < 3 �2�(2i+1) =) jZα
i+1j< 3 �2�(2i+1) (51)

Similarly, �arctan2�2i +arctan2�(2i+1) < Zβ
i+1 � 2arctan2�(2i+1)+

∞

∑
k=2i+2

arctan2�k (52)

Using basic identities (25) and (26), we get

�
∞

∑
k=2i+2

arctan2�k
< Zβ

i+1 < 2 �2�(2i+1)+2�(2i+1) or jZβ
i+1j< 3 �2�(2i+1) (53)

Identities (51) and (53) demonstrate that outputs ofboth modules satisfy the coarser bound as re-

quired.

Next we prove that at least one ofZβ
i+1 andZα

i+1 satisfies the tighter bound. When the algorithm

does not enter branching, the residual angle which is determined to be “correct” by the algorithm is

shown to satisfy the tighter bound. When the algorithm enters branching, at least one of the two is

shown to satisfy the“tighter” bound . There are 3 cases to be considered:

(I.1.a) Sign(Zα
i+1) =+1

(I.1.b) Sign(Zα
i+1) = 0

(I.1.c) Sign(Zα
i+1) =�1

(I.1.a) Sign(Zα
i+1) =+1 : Here moduleα is correct. From relation (48) and the fact that Sign(Zα

i+1) =

+1, it follows that

0< Zα
i+1 <

∞

∑
k=2i+2

arctan2�k =) Zα
i+1 satisfies the“tighter” bound (54)

(I.1.b) Sign(Zα
i+1) = 0 : Moduleα is correct. Note that 6 digits of weight

2�(2i�1); 2�2i ; 2�(2i+1); 2�(2i+2); 2�(2i+3) and 2�(2i+4) are examined to determine the signs, and

Sign(Zα
i+1) = 0 implies all 6 digits are zero. Hence

jZα
i+1j< 2�(2i+4)

< 2�(2i+2)
<

∞

∑
k=2i+2

arctan2�k =) Zα
i+1 satisfies“tighter” bound (55)

(I.1.c) Sign(Zα
i+1) =�1 : 3 subcases need to be considered here:

(I.1.c.i) Sign(Zβ
i+1) =�1: in this case moduleβ is correct.

(I.1.c.i) Sign(Zβ
i+1) = 0: again moduleβ is correct.

16

(I.1.c.i) Sign(Zβ
i+1) =+1: both modules are correct and the algorithm has entered branching.

(I.1.c.i) Sign(Zβ
i+1) =�1 : This along with relations (46) and (47) implies that

�arctan2�2i +arctan2�(2i+1) < Zβ
i+1 < 0 or (56)

jZβ
i+1j<+arctan2�2i �arctan2�(2i+1)

< arctan2�(2i+1)
<

∞

∑
k=2i+2

arctan2�k (57)

Identities (32) and (25) were used to obtain the last relation which demonstrates thatZβ
i+1 satisfies

“tighter” bound .

(I.1.c.ii) Sign(Zβ
i+1) = 0 : In this case moduleβ is correct and the proof thatZβ

i+1 satisfies“tighter”

bound is exactly same as case (I.1.b) above.

(I.1.c.iii) Sign(Zβ
i+1) = 1 : In this case the algorithm has entered branching. From the fact thatZα

i+1< 0

andZβ
i+1 > 0 and relations (45), (46) and (47) it follows that

+arctan2�2i �arctan2�(2i+1) < Zi <+arctan2�2i +arctan2�(2i+1) (58)

From equations (58), (45) and (46) we get

�2arctan2�(2i+1)
< Zα

i+1 < 0 and 0< Zβ
i+1 < 2arctan2�(2i+1) (59)

From equations (45) and (46), it follows thatZβ
i+1�Zα

i+1 = 2arctan2�(2i+1) (60)

This, along withZα
i+1 < 0 andZβ

i+1 > 0 (as seen from (59)) implies

jZβ
i+1j+ jZα

i+1j= 2arctan2�(2i+1) (61)

Hence, at least one ofjZα
i+1j andjZβ

i+1j is � arctan2�(2i+1)
<

∞

∑
k=2i+2

arctan2�k (62)

which proves that at least one ofZα
i+1 andZβ

i+1 satisfies the tighter bound.

Case I.2: No on going branching and Sign(Zi) = 0

This implies that digits of weight 2�(2i�3); 2�(2i�2); 2�(2i�1); 2�2i ; 2�(2i+1) and 2�(2i+2) are all

zero. Note that nothing is known about the remaining digits or in other words it is not known whether

Zi
?
> 0 or Zi

?
= 0 or Zi

?
< 0. It might appear that all 4 possibilities [�arctan2�2i � arctan2�(2i+1)]

need to be examined. However, only two of the possibilities viz: [+arctan2�2i �arctan2�(2i+1)] and

[�arctan2�2i +arctan2�(2i+1)] suffice as demonstrated next.

As per the flowchart, the the modules perform

Moduleα : Zα
i+1 = Zi+arctan2�2i �arctan2�(2i+1) (63)

Moduleβ : Zβ
i+1 = Zi�arctan2�2i +arctan2�(2i+1) (64)

Note that Sign(Zi) = 0=) jZi j< 2�(2i+2)
<

∞

∑
k=2i+2

arctan2�k (65)

17

Both Zα
i+1 andZβ

i+1 satisfy the“coarser” bound as shown by the following identities:

jZα
i+1j � jZi j+ jarctan2�2i �arctan2�(2i+1)j< 2�(2i+2)+2�(2i+1)

< 3 �2�(2i+1) (66)

jZβ
i+1j � jZi j+ j�arctan2�2i +arctan2�(2i+1)j< 2�(2i+2)+2�(2i+1)

< 3 �2�(2i+1) (67)

Next we show that: Zα
i+1 > 0 and Zβ

i+1 < 0 (68)

Using relations (63) and (65) we get

Zα
i+1 = [Zi] + (arctan2�2i �arctan2�(2i+1))> [�2�(2i+2)]+ (arctan2�2i �arctan2�(2i+1))

> arctan2�2i �2�(2i+1)�2�(2i+2)
> 0 (69)

where identity (34) was used to arrive at the last inequality. The fact thatZβ
i+1 < 0 can be shown in an

identical manner.

From equations (63) and (64), we haveZα
i+1�Zβ

i+1 = 2(arctan2�2i �arctan2�(2i+1)) (70)

This, along with (68) yields jZα
i+1j+ jZβ

i+1j= 2(arctan2�2i �arctan2�(2i+1)) (71)

Hence, at least one ofjZα
i+1j andjZβ

i+1j � arctan2�2i �arctan2�(2i+1)

< arctan2�(2i+1)
<

∞

∑
k=2i+2

arctan2�k (72)

Thus, at least one ofZα
i+1 andZβ

i+1satisfies the“tighter” bound .

Case II. Branching on–going

(II.1) Proof that at least one satisfies the“tighter” bound

Note that the algorithm can enter a branching only via one of two ways

(1) Case (I.1.c.iii): Sign(Zi) = �1, Sign(Zα
i+1) = �1 and Sign(Zβ

i+1) = �1 or

(2) Case (I.2): Sign(Zi) = 0, which can lead to branching.

Identity (72) and the proof of case (I.1.c.iii) above demonstrate that whenever the algorithm enters

branching, at least one ofZα andZβ satisfies the“tighter” bound . Without loss of generality assume

that

the branching started at stepi�1 (73)

and that Sign(Zα
i) = +1 (which implies that Sign(Zβ

i) = �1). (74)

We consider two subcases

(II.1.a) Branching immediately terminates

(II.1.b) Branching does not immediately terminate

(II.1.a) Branching immediately terminates:

Note that 6 digits of weight 2�(2i�3);2�(2i�2);2�(2i�1);2�2i ;2�(2i+1) and 2�(2i+2) are utilized to

determine the sign ofZα
i (prior to using arctan2�2i and arctan2�(2i+1)). As seen in the flow charts, a

branching is terminated (i.e., not continued) if condition (28) is satisfied by any of the two modules.

18

As mentioned before, condition (28) translates into checking whether

(any offjZα
i j; jZβ

i jg)� 6 �2�(2n+2) (75)

(note that the constantC in identities (28) and (30) can take any of the two values 5 or 6. We demon-

strate the proof forC = 6 only, as the proof forC = 5 is identical).

If only one ofZα
i or Zβ

i satisfies the above condition, then it is the correct residue (and the current

branching terminates). If bothZα
i or Zβ

i satisfy the above condition, then any of the two modules can

be arbitrarily deemed to be correct and the current branching terminates.

Once again, without loss of generality assume thatZα
i satisfies this condition on magnitude which

implies that Moduleα is deemed to be correct and the current branching is terminated. Hence we

need to show thatZα
i satisfies the“tighter” bound which is done using identity (33):

∞

∑
k=2i

arctan2�k
> 2�2i +2�(2i+1)= 6�2�(2i+2) hence Zα

i � 6�2�(2i+2)=)Zα
i <

∞

∑
k=2i

arctan2�k(76)

(II.1.b) Branching does not immediately terminate:

This happens when

Sign(Zα
i) = �1 and Sign(Zβ

i) = �1 andjZα
i j>C �2�(2i+2) andjZβ

i j>C �2�(2i+2) (77)

However, since the branching started at stepi�1, then as per proofs of cases (I.1.c.iii) and (I.2)

above at least one ofZα
i andZβ

i does satisfy the“tighter” bound .

Here, in stepi, in the “continue-branching” mode, the modules execute

Moduleα : Zα
i+1 = Zα

i �arctan2�2i �arctan2�(2i+1) (78)

Moduleβ : Zβ
i+1 = Zβ

i +arctan2�2i +arctan2�(2i+1) (79)

The decisions for next step (i+1) are based on Sign(Zα
i+1) and Sign(Zβ

i+1). We illustrate the proofs

assumingZα
i+1 satisfies the conditions for the case being considered without loss of generality (proofs

are identical when the output of Moduleβ satisfies the conditions instead). the following cases need

to be considered.

(II.1.b.i) branching continues into stepi +2:

This happens when

Sign(Zα
i+1) = �1 and Sign(Zβ

i+1) = �1 andjZα
i+1j>C �2�(2i+4) andjZβ

i j>C �2�(2i+4) (80)

To show that at least one ofZα
i+1 and Zβ

i+1 satisfy the“tighter” bound , consider the case when

Sign(Zα
i) = +1, (which implies Sign(Zβ

i) =�1, Sign(Zα
i+1) = +1 and Sign(Zβ

i+1) =�1. Other cases can

be proved identically and are omitted for the sake of brevity).

Without loss of generality, assume thatZα
i satisfied the“tighter” bound when branching started at

the end of step (i�1). Then 0< Zα
i < ∑∞

k=2i arctan2�k, which, together with the fact that Sign(Zα
i+1)

19

= +1 implies that

0< Zα
i+1 �

∞

∑
k=2i

arctan2�k�arctan2�2i �arctan2�(2i+1) =
∞

∑
k=2i+2

arctan2�k (81)

which proves the desired result.

(II.1.b.ii) One of the modules terminates branching as per condition (28):

In this case, the proof is identical to that of case (II.1.a) above

(II.1.b.iii) One of the modules terminates branching via a change of sign:

Two sub cases need to be considered here

(A) One of the modules generates a zero sign: In this case the output of that module satisfies a bound

similar to that stated in (65). Proof for the current case is based on this fact and is identical to that of

case (I.2) above

(B) One of the modules changes sign from +1 to�1 or vice versa: For the purpose of illustration,

assuming (73) and (74), consider the case when Sign(Zα
i+1) = �1.

In this caseZα
i satisfies: C �2�(2i+2)

< Zα
i �

∞

∑
k=2i

arctan2�k where C = f5;6g (82)

This, together with the fact that Sign(Zα
i+1)< 0 yields

C �2�(2i+2)�arctan2�2i �arctan2�(2i+1) < Zα
i+1 < 0 or (83)

jZα
i+1j=�Zα

i+1 <+arctan2�2i +arctan2�(2i+1)�C �2�(2i+2)
<

∞

∑
k=2i+2

arctan2�k (84)

Where identity (25) and the fact thatC= f5;6g was used to arrive at the last inequality.

This completes proof (II.1) by showing that in branching, at least one ofZα andZβ satisfy the

“tighter” bound .

(II.2) Proof that bothZα andZβ satisfy“coarser” bound in branching

Assume that the current step isi and that the branching started at stepp. 3 sub cases need to be

considered:

(II.2.a) Sign(Zp) = 0

(II.2.b) Sign(Zp) = +1 and

(II.2.c) Sign(Zp) = �1

(II.2.a) Sign(Zp) = 0 Then, there exists aZp (equal toZα
p or Zβ

p) such that

Zα
i = Zp�arctan2�2p+

2i�1

∑
k=2p+1

arctan2�k and (85)

Zβ
i = Zp+arctan2�2p�

2i�1

∑
k=2p+1

arctan2�k (86)

which implies Zβ
i � Zα

i = 2(arctan2�2p�
2i�1

∑
k=2p+1

arctan2�k) (87)

20

Equation (87) together with the fact that at least one ofZα
i andZβ

i satisfies the“tighter” bound implies

that (using the triangle inequalityjx�yj � jxj+ jyj)

(bothjZα
i j andjZβ

i j)� j2(arctan2�2p�
2i�1

∑
k=2p+1

arctan2�k)j+ j
∞

∑
k=2i

arctan2�kj

< 2j
∞

∑
k=2i

arctan2�kj+ j
∞

∑
k=2i

arctan2�kj< 3 �2�(2i�1) (88)

where identities (25) and (26) were used to arrive at the last two inequalities.

(II.2.b) Sign(Zp) = 1 In this case, by an argument similar to the one in case (II.2.a) above, it can be

shown that

Zβ
i �Zα

i = 2(arctan2�(2p+1)�
2i�1

∑
k=2p+2

arctan2�k) (89)

From here on, the proof for this sub case is identical to that of case (II.2.a) above

(II.2.c) Sign(Zp) = �1 The proof is similar to case II.2.b above

At this point, all possible cases have been exhausted and the proof is complete.

V Overview of Hardware Implementations

(a) Organization : CORDIC hardware for circular rotations consists of two main parts

(i) “Zeroing” module(s) to implement theZ recursion (equation (3)). These modules incorporate a

look-up-table storing the elementary angles arctan2�i ; 0� i � n+1; and determine the “signs”si

that decide whether to add or subtract each of the elementary angles arctan2�i

(ii) X�Y rotator modules which implement the cross coupled recursions in equations (1) and (2),

utilizing the signssi determined by the zeroing modules.

Each of these parts is discussed below.

(i) Zeroing Module(s): The “double stepping” discussed so far concentrated only on the zeroing part,

i.e., on equation (3). Organization of the hardware required to implement the zeroing part follows

from the flow charts, diagrams and tables presented in the previous sections. It consists of the two

modules (Moduleα and Moduleβ), each of which includes a full-wordlength-long signed-digit adder

and the sign evaluation block as the main constituents. A decision block and some storage registers

(for instance, to store thesi values determined) are also required in the zeroing part.

(ii) Rotator Modules: In the original method, at stepi, after the signsi is determined, ani positions-

shiftedYi is added (includes the operation of subtraction as well) toXi and vice versa (please refer

to equations (1) and (2)). To fully exploit the speed advantage gained by using two modules in the

zeroing part, the branching method of Duprat and Muller should computeXi+1 andYi+1 in parallel in

two separate rotator modules. Each rotator module needs one shifter and one adder as the main build-

ing blocks. Possible hardware organization of the rotator modules required by the original scheme is

illustrated in Figure 7-a.

We now outline hardware organization of theX�Y rotator modules in the double step branching

21

CORDIC scheme. To this end, unroll the recursion in equations (1) and (2) one more time (i.e.,

expressXi andYi in terms ofXi�1 andYi�1) to obtain

Xi+1 = (Xi�1�si�12�(i�1)Yi�1)�si2
�i(Yi�1+si�12�(i�1)Xi�1)

= Xi�1(1�sisi�12�(2i�1))� [Yi�1(si +2si�1)]2
�i (90)

Yi+1 = (Yi�1+si�12�(i�1)Xi�1)+si2
�i(Xi�1�si�12�(i�1)Yi�1)

= Yi�1(1�sisi�12�(2i�1))+ [Xi�1(si +2si�1)]2
�i (91)

The above equations expressXi+1 andYi+1 in terms ofXi�1 andYi�1 and can be implemented as

shown in Figure 7-b. In the double stepping method,si andsi�1 (which determine whether to add or

subtract arctan2�(i�1) and arctan2�i , respectively) get determined at stepb i�1
2 c. Note thatZα

i andZβ
i

denoted the outputs of the “zeroing” modules at the end of step(i�1) whereasXi andYi in the above

equations denote the outputs of rotator modules after

22

after si is determined by zeroing part
perform in parallel

shift Yi by i positions

add/subtract shifted Yi to Xi

shift Xi by i positions

add/subtract shifted Xi to Yi

in parallel

shift Xi�1
2i�1 positions

shift result
i positions

add results

�2Yi�1�Yi�1

Adder does

shifted

add/sub

Xi�1 to
Xi�1

shift Yi�1

2i�1 positions

shift result
i positions

Adder does
�2Xi�1�Xi�1

in parallel

add results

Figure 7-b : X–Y rotator schematic for Double Step Branching CORDIC
Xi+1 andYi+1 are generated fromXi�1 andYi�1
as per equations (90) and (91).

Figure 7-a : X–Y rotator schematic for Duprat and Muller’s method
Xi+1 andYi+1 are generated fromXi andYi

as per equations (1) and (2).

Xi+1 Yi+1

X rotator module Y rotator module

shifted

add/sub

Yi�1 to
Yi�1

after si�1 and si are determined by zeroing part
perform in parallel

Xi+1 Yi+1

X rotator module Y rotator module

23

having used angles upto and including arctan2�(i�2), i.e., at the end of stepb i�3
2 c (TheZ notation was

selected to make the proofs and flowcharts more readable. That notation leads to a non-uniformity

between the index subscripts of outputs of the zeroing modules and the rotator modules).

Next we compare the execution delay and hardware requirements of the double stepping method

vis-a-vis the original method.

(b) Execution Delay

To begin with, note that the shift required in CORDIC rotations isvariable; i.e., the number of

positions to be shifted at each step is different, because the shift is a function of the iteration index.

Hence, a general purpose shifter that can shift from 1 position all the way throughn positions (n

being the word length) is required. Barrel shifters [16] or crossbar switches have such capabilities.

However, these shifters are complex and are likely to require a delay dependent on the word length

(typically O(logn)). The main point is that the shifter delay is likely to be comparable to (if not

longer than) the adder delay, since a signed digit addition takes a (small) fixed amount of time delay

independent of the wordlength.

(i) Zeroing modules: The delay required for executing two steps in the zeroing modules in the original

method [1] is equivalent to a sequence offsign-detect, add, sign-detect, add g operations.

Thefsign-detect g operation in [1] utilizes a window of 3 leading digits. The delay required by the

decision block; copy operations (that are performed whenever the output of one of the modules can be

detected to be wrong in which case that module copies the output of the correct module) and latching

is also lumped along with the delay of thefsign-detect g operation for the sake of simplicity.

In comparison, the delay required for executing one “double stepping” iteration in the zeroing part

of our method is equivalent to that offsign-evaluate, add g operations. Note that instead of storing

individual angles arctan2�2i and arctan2�(2i+1) only their sum and difference, viz.,(arctan2�2i +

arctan2�(2i+1)) and(arctan2�2i �arctan2�(2i+1)) need to be stored for our algorithm. Hence, two

additions in the original method get replaced by a single addition in our double stepping method.

Thefsign-evaluate g operation in our method is more complex than that in the original method

since our window size is 6 while the original method uses a window of 3 digits. However, the ad-

ditional delay required for the sign evaluation in our method is likely to be small, since the two

subgroups of 3 digits are handled in parallel. The only extra delay is that of deciding the overall

sign and determining whether condition (28) is satisfied after the two subgroups in the window have

generated their signals (independently).

(ii) Rotator modules: The delay required for executing twoX�Y rotations the original method is tan-

tamount to a sequence offshift, add, latch, shift, add, latch g operations (each rotation

needs a shift, an addition and latching as per equations (1) and (2)).

The delay required for twoX�Y rotations (that are performed in a single step in our method) can

beapproximatedto that of a sequence of

fadd, latch, add, latch, add, latch g operations

(or fshift, latch, shift, latch, add, latch g operations if the shifter takes a longer time

24

than the adder). Assuming that

(i) the shifter delay is about the same as the adder delay∆shift � ∆add, and

(ii) the delay required for addition∆add is longer than delay required for latching∆latch,

it can be seen that theX�Y rotator part in the double stepping method saves [∆add�∆latch] for every

iteration (of the double stepping method, or equivalently, for every 2 rotations in the original method).

It should be noted that this is an approximate estimate. If the shifter or adder can be pipelined, the

results might look different.

Finally, note that in the original method, both the zeroing and rotator blocks work in tandem, with

the rotator modules utilizing the signsi determined by the zeroing module(s). If thefsign-detect g
operation in the original method (which includes the decision block delay, along with module-to-

module copying and latching delays) takes a longer delay than the shift operation, then it is possible

that theX�Y rotator modules could get stuck, waiting for the zeroing module to finish its part.

In contrast, in the double stepping method, the delay of the zeroing part is likely to be smaller

than the delay of theX�Y rotator part, so that the rotator modules would never idle. Thus, the

double stepping method could lead to significantly faster execution time depending on the actual

implementation.

(c) Area and Hardware Utilization
Next we look at the hardware (Area) requirements of and hardware utilization in both methods.

(i) Look–Up Table Size: First, note that the look–up table size remains identical to that of the original

method. Instead of storing individual angles arctan2�2i and arctan2�(2i+1) only their sum and differ-

ence, viz.,(arctan2�2i +arctan2�(2i+1)) and(arctan2�2i �arctan2�(i2+1)) need to be stored for our

algorithm.

(ii) Rotator Block: In the X�Y rotator part, the double stepping scheme needs only a little more

hardware compared with the original method. As in the original method of Duprat and Muller, the

main constituents of each of theX andY rotator modules in our method are one adder and one

shifter. In the original method the shifters are idle when the adders are active and vice versa, while in

the double stepping method, the adders and shifters work in parallel, virtually eliminating idle time

(thereby enhancing hardware utilization). The small additional hardware overhead in our method

arises because the adders and shifters need selectors at their inputs and latches to hold intermediate

results.

(iii) Zeroing Block: Implementation of the zeroing part of the double stepping method also needs two

modules as in the original case. Note that both modules (in particular, the adders which are full word-

length long) are doing distinct (and useful) operations in every iteration in the double stepping method.

In comparison, in the original method, the modules in the zeroing part perform distinct operations

only when the algorithm is in a branching. One of the modules in the zeroing part essentially remains

unutilized whenever the algorithm (in [1]) is not in a branching.

In our method, 6 digits need to be examined instead of 3, to evaluate the sign of the residual

angle. Hence, the sign detection hardware will become more complex than that in the original method.

25

Similarly, the decision block is slightly more complex than that in the original method. The additional

circuits (in the sign-evaluation and decision blocks in our method), however, act on a fixed and small

number of extra digit positions (3 digits) and are therefore likely to be small (in comparison with the

full wordlength long adders, shifters, etc.)

It should be noted the decision blocks in the flowcharts in Figures 1–4 probably appear more com-

plicated in software: the hardware complexity of implementing these blocks is likely to be somewhat

higher but comparable to the hardware complexity of decision blocks in the original method [1]. For

example, the evaluation of the overall sign of the entire group of 6 digits in the window can be simply

done with a simple multiplexor once the signs of the individual subgroups are evaluated (in paral-

lel). Thus, the decision block and the sign evaluation circuits together should constitute only a small

fraction of the total hardware required which is likely to be dominated by (full word length) adders,

shifters, latches and the look-up table. Hence, the additional hardware overhead of the double step-

ping method is likely to be small, but worthwhile, since in return, the utilization of large blocks (such

as adders, shifters ...) can be substantially increased.

In summary, the double stepping method has the potential to reduce the execution time at the cost

of a small hardware overhead. It leads to a significant improvement in hardware utilization.

VI Conclusion

We have proposed the Double Step Branching CORDIC algorithm and shown that it is possible

to perform two rotations in a single step, with little additional hardware (compared to Duprat and

Muller’s Branching CORDIC method). In our method, both modules perform distinct computations

at each step which leads to a better utilization of the hardware and the possibility of further speedup

over the original method. Architectures for hardware implementation of our algorithm are discussed.

A natural question is why not try to triple-step ? A preliminary investigation quickly reveals that

the hardware complexity increases exponentially, and the decision blocks would become so complex

that the delay of such a method is likely to behigher than the original method. Double stepping

appears to be the optimum when speed, hardware cost and utilization are considered.

Acknowledgment

The author would like to thank Prof. Israel Koren from the University of Massachusetts at Amherst

for

(i) getting him interested in CORDIC, and showing him Duprat and Muller’s ingenious work.

(ii) several important discussions related to this manuscript.

(iii) suggesting the idea of a software simulator to independently verify the algorithm.

The anonymous reviewers are also thanked for their constructive comments which helped to im-
prove the quality of the final manuscript.

References
[1] J. Duprat and J. Muller, “The CORDIC algorithm: new results for fast VLSI implementation,”IEEE

Trans. on Computers, vol. TC–42, pp. 168–178, Feb. 1993.

26

[2] J. E. Volder, “The CORDIC Trigonometric Computing Technique,”IRE Trans. on Electronic Computers,
vol. EC–8, pp. 330–334, Sep. 1959.

[3] J. S. Walther, “A unified Algorithm for Elementary Functions,” inProceedings of the 38th Spring Joint
Computer Conference, pp. 379–385, 1971.

[4] A. M. Despain, “Fourier Transform Computers Using CORDIC Iterations,”IEEE Transactions on Com-
puters, vol. C-30, pp. 993–1001, Oct. 1974.

[5] S.-F. Hsiao and J.-M. Delosme, “The CORDIC Householder Algorithm,” inProc. of the 10th Symp. on
Computer Arithmetic, pp. 256–263, 1991.

[6] J. R. Cavallaro and F. T. Luk, “CORDIC Arithmetic for a SVD processor,”Journal of Parallel and Dis-
tributed Computing, vol. 5, pp. 271–290, 1988.

[7] M. D. Ercegovac and T. Lang, “Redundant and on-line CORDIC: application to matrix triangularization
and SVD,”IEEE Transactions on Computers, vol. C-39, pp. 725–740, Jun. 1990.

[8] E. Deprettere, P. Dewilde, and R. Udo, “Pipelined CORDIC Architecture for Fast VLSI Filtering and
Array Processing,” inProceedings of ICASSP’84, pp. 41.A.6.1–41.A.6.4, 1984.

[9] P. Strobach, “The Square-Root Schur RLS Adaptive Filter,” inProceedings of ICASSP’91, Toronto, May
1991, pp. 1845–1848, 1991.

[10] M. Terre and M. Bellanger, “Systolic QRD-Based Algorithm For Adaptive Filtering and Its Implementa-
tion,” in Proceedings of the 1993 IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing, Minneapolis, MN, vol. III, pp. III.296–III.298, 1993.

[11] I. Koren,Computer Arithmetic Algorithms. Prentice-Hall Inc., Englewood Cliffs, NJ, 1993.

[12] CORDIC Bibliography site including tutorials and simulation code, accessible through the URL
http://devil.ece.utexas.edu.

[13] B. Parhami, “Generalized signed-digit number systems: a unifying framework for redundant number
representations,”IEEE Transactions on Computers, vol. C-39, pp. 89–98, Jan. 1990.

[14] D. S. Phatak and I. Koren, “Hybrid Signed–Digit Number Systems: A Unified Framework for Redundant
Number Representations with Bounded Carry Propagation Chains,”IEEE Trans. on Computers, Special
issue on Computer Arithmetic, vol. TC–43, pp. 880–891, Aug. 1994. (An unabridged version is available
on the web via the URL
http://www.ee.binghamton.edu/faculty/phatak).

[15] N. Takagi, T. Asada, and S. Yajima, “Redundant CORDIC methods with a constant scale factor for Sine
and Cosine computation,”IEEE Trans. on Computers, vol. 40, pp. 989–999, Sep. 1991.

[16] N. Weste and K. Eshraghian,Principles of CMOS VLSI Design, A Systems Perspective. Addison Wesley,
1988.

27

