Double Step Branching CORDIC : A New Algorithm for Fast
Sine and Cosine Generation

Dhananjay S. Phatak
Electrical Engineering Department
State University of New York, Binghamton, NY 13902-6000

(IEEE Transactions on Computers, vol 47, No. 5, May 1998, pp 587-602.

Algorithm and Architecture being patented,;
Application number 09/287,281, filing date 04/07)99.

ABSTRACT

Duprat and Muller [1] introduced the ingenious “Branching CORDIC” algorithm. It enables a fast
implementation of CORDIC algorithm using signed digits and requires a constant normalization factor.
The speedup is achieved by performing two basic CORDIC rotations in parallel in two separate mod-
ules. In their method, both modules perform identical computation except when the algorithm is in a
“branching” [1].

We have improved the algorithm and show that it is possible to perform two circular mode rotations
in a single step, with little additional hardware. In our method, both modules perform distinct computa-

tions at each step which leads to a better utilization of the hardware and the possibility of further speedup
over the original method. Architectures for VLSI implementation of our algorithm are discussed.

Index Terms : Double Step, Branching CORDIC, Constant Scale Factor, Redundant Signed-Digit
CORDIC

| Introduction

The CORDIC algorithm was introduced by Volder [2] for fast computations of trigonometric
functions and their inverses. In the classic reference [2], he also showed that the CORDIC method
can be used for multiplication/division, as well as for conversion between binary and mixed radix
number systems. Walther then demonstrated a “unified” CORDIC algorithm [3] that could be used
to calculate trigonometric, exponential and square root functions along with their inverses; as well
as to carry out multiply/divide operations. In essence, the CORDIC method evaluates elementary
functions merely by table-look-up, shift and add operations. A small number (of the ondlexvbére
n bits of precision is required in the evaluation of the functions) of pre-calculated fixed constants
is all that is required to be stored in the look-up table. The CORDIC algorithm has nice geometri-
cal interpretations [2, 3]: trigonometric, exponential, multiply functions are evaluated via rotations
in the circular, hyperbolic and linear coordinate systems, respectively. Their inverses (i.e., inverse
trigonometric functions, logarithm and division) can be implemented in a “vectoring” mode in the
appropriate coordinate system.

Since its inception, CORDIC methods have been investigated by many researchers and have been
employed in software and/or hardware for a variety of applications such as performing

(i) Fourier and related Transforms (FFT/DFT, Discrete Sine/Cosine Transforms, etc.) [4];

(i) Householder Transformations [5], Singular Value Decomposition (SVD) and other Matrix Oper-
ations [6, 7];

(iii) Filtering and Array Processing [8, 9, 10].

Indeed CORDIC has evolved into a very rich and useful area. A good introduction to the subject
can be found in [11]. For a fairly detailed list of CORDIC related references, tutorials, and simulation
programs, the reader is referred to the CORDIC bibliography site [12] (http://devil.ece.utexas.edu).

In this paper we demonstrate a fast double-stepping method applicable in the
CIRCULAR ROTATION mode (used to evaluate Sine/Cosine/Tangent) functions. We begin
with an explanation of the circular rotations which are based on the iteration [1]

X1 = X—sY2" (1)
Y = Yi+sx2! o (2)
Z,1 = Z—s arctanZ' where s¢e{-1,0+1} (3)
Using complex numbers, equations (1) and (2) can be rewritten as [11]

Wiss = W;-(1+jsi27') where (4)
complex variableW; = (X+j-Y) andj=+v-1 (5)

Using the polar form of complex numbers,

Wii1 = Wiy/1+ (31'24)2 el = Wi - K; .el% where (6)

6 = arctas2™) and Ki=/1+ (52712 (7)

Starting withWp, if miterations are carried out, then

Wn = Wp-K-e® where (8)
m-1 m-1
K = Ki=T1+/1+(s27)? and 9)
= | il:L
m-1 m—1]
0 = Bi=§ arctar{s 27') (10)
2972,
If 5,i=0,---,m—1, are selected so that
m—1)
Z)arctar(s.- 27y — 6o then (11)
i=
Wn — Wp-K(co$p+ jsinBg) = (Xo+ jYo) - K(co$p+ jsinBp) or (12)
Xm — K(Xpc0s8p—YpsinBp) and (23)
Ym —> K(XoSinBp+ YpCc0sHp) (14)

If the initial valuesXg andYy are setto 1 and 0, respectively, then
Xm — KcosBg and Yy — KsinBg (15)
In general, the coefficients at each step of the CORDIC iteration can take any of the three values
{-1,0,+1. If 5 =0is allowed, then the scaling factiiris not a constant, but depends on the actual
sequence o values. On the other hand,gfcan be restricted te-1, thenK is a constant (since the
number of iterationgnthat are to be executed for a given precision are known ahead of time).

In this case, selectingly = % and Yp=0 Vvyields (16)
Xm — €0SBg and Yy — SinBg a7

This method falls under the category of “additive normalization” since the initial afgte 6¢
gets zeroed out (i.e., it has at least- 2 leading zeroes in a non-redundant representatiom if
iterations are executed) by addiagarctan2', i = 0,---,(m—1). At stepi if the residual angle
Z; > 0 then the algorithm selecgs = +1 and ifZ; < 0 thens = —1 so that themagnitudeof the
residual angle is constantly being reduced toward zero. For this method to work, the initial angle
must satisfy

Zo| < § arctan2* = 1.74328662 (18)
k=0

This range covers all angles of practical interest sigc-e 1.5708< > parctan 2k,

With the introduction of (Redundant) Signed-Digit representations [11, 13, 14] the addition be-
comes carry-free, (i.e., the addition takes a small fixed amount of time, irrespective of the wordlength)
thus offering a potential for significant speedup. To fully exploit the speed advantage gained by using
signed digits, the sign detection of the residual angle also must be done in a constant (and small) time
delay (note that the next action depends on whether the current residual angle is positive or negative).
This in turn implies that only a fixed number of leading digits can be looked at to determine the sign
of the residual angle. In most methods (for example, those in [1, 15]) a window of 3 (leading) digits
turns out to be sufficient to determine the sign. At each iteration, the window shifts right by one digit
position. If at least one of the digits in the window of interest is non-zero, the sign of the residual

2

angle can be determined to Bel. If the sign is +1, the next elementary angle (arctdne step

i) should be subtracted, if the sign4sl, the next elementary angle should be added. The problem
occurs when all the digits in the window of interest are zero or in other words the residual angle has
many leading zeroes, so that just by looking at the window of 3 (leading) digits, it is not possible to
tell whether its sign is +1 or-1. Ideally, in this case, one should selgct 0 and neither add nor
subtract the elemental angle for that step. However, if the coefficieats restricted t¢—1,+1} (to

render the scaling factd€ to be a constant) then sign detection of the angle being zeroed becomes
the bottleneck: it could require the examination of a large number of digits (possibly the entire word
length). In essence, if the residual angjdas a lot of leading zeroes, the decision whether to add or
subtract arctan? can be made only after examining the first non-zero digit. In general this might im-
ply scanning the entire word length, in which case the advantage due to constant time addition using
signed digits is lost. Takagi, Asada and Yajima proposed two different methods [15] viz., the method
of “double rotation” and the method of “correcting rotations” to overcome this problem. However,
these methods need to perform extra rotations which makes them slow.

Duprat and Muller proposed the Branching CORDIC algorithm [1] that lets the coeffigents
to be restricted tot1, without the need for extra rotations. This is achieved by performing two
CORDIC rotations in parallel at each step and retaining the correct result at the end of each step.
Thus, extra hardware is needed, but the speed improvement is significant. When the residual angle
has a lot of leading zeroes (so that its sign cannot be determined by looking only at a fixed number of
most significant digits), Duprat and Muller’s algorithm initiates two sequences of computations, one
assumings = +1 and the other assumirgg= —1. It might appear that this branching could in turn
lead to further branchings down the line. The ingenuity of their method essentially lies in realizing
that further branchings are not possible and that a branching either terminates eventually (with both
computation sequences converging) or if it does not terminate till the endhtitlethe modules have
the correct result (within the tolerance specified).

We demonstrate that the basic idea of executing two sequences of computation in parallel can
be exploited even further, making it possible to determine two coefficignés@s 1) at each step
of the CORDIC iteration (hence the name Double Step Branching CORDIC). In fact, in the original
method the two modules do different computations only when in a branching. Otherwise they per-
form identical computations, which means one of the modules is not being utilized at all, except in
branching. We enhance the algorithm by making the modules perform distinct computations at each
step and retaining the correct result (just as in the original method). The additional hardware overhead
is minimal, while the hardware utilization is better and the potential speedup could be significant.

The rest of the paper is organized as follows. The following section presents the algorithm via
flowcharts and explains motivations behind various procedures therein. It is intended to provide a
good overall picture without getting into rigorous mathematics which is deferred to the following sec-
tions. Section Il derives some identities that are repeatedly used later on in proving the convergence
properties of the algorithm. Building on this background, the next section presents the proof of cor-
rectness and convergence properties of the algorithm. Section V discusses architectures to implement
our algorithm in hardware. Section VI presents conclusions.

3

The author would like to point out that all the algorithms (the original algorithm of Duprat and
Muller, as well as the double step algorithm) have been implemented in software. Correctness of the
analytical proofs in this manuscript was double checked independentéxiieustivesimulation of
all possible initial angles with a word length of 16 bits that lie in the range specified by~18j125
cases). In addition, thousands of randomly generated initial angles in the range specified by equation
(18) with word lengths up to 49 bits have been simulated and verified for correctness.

Il The Double Step Branching CORDIC method

We perform two computations in parallel in two separate modules at every step. The modules are
referred to as “Module ” and “Module3 . The inputs and outputs of Modute(as well as any other
variables/attributes associated with it) are designated with supersasipile those of Moduld are
designated with superscript The subscript indicates the step or iteration number. A variable without
the module designator superscriptdr) indicates the correct value of that variable at that step. (for
instanceZ; without any superscripts refers to the correct residual angle at)step

For lucidity and ease of understanding, we adopt the convention to label the steps from zero on-
wards, (i.e., step 0, step 1, ... etc.) where $igflizes arctan 22 and arctan 2(2+% to generat&; 1
from Z;. With this convention, step 0 generat#&$ andzi5 from initial angleZg by using arctan2?

and arctan2®; step 1 generates; andZé3 from Z1 by using arctan2? and arctan 22 and so on.

At stepi, each module performs one of the four possible computations (by selecting the + or
signs)

Modulea : Z%, = Z%z+arctan2? +arctan2@*% (19)
Modulep : z%, = ZP+arctan2? +arctan2(@+Y (20)

Note that arctan’® through arctan2?-1) havealready been used in prior stepsD - -, (i—1)and
stepi uses arctan? and arctan2(2+1)_ |f the algorithm is not in a branching, then the input residual

angle at stepis the same for both modules, i.25% = ZiB = Z;j. When the algorithm is in a branching
70 £ 7P,
To understand the main idea behind the algorithm, assume that at the end bf-stepe are

not in a branching, i.eZ® = ZiB = Z;. For the purpose of illustration, also assume that sig#; of

can be unambiguously determined to be positive. In that case, ardan@st be subtracted. In the
original method of Duprat and Muller this subtraction is performed by both modules (i.e., one of the
two modules is not utilized) and the sign is determined again to figure out whether to add or subtract
the next angle, i.e., arctan® Y. In our method, the two modules available are put to full use as
follows:

Modulea : Z%, = Z-—arctan2? —arctan2(®+1) operation abbreviate- —) (21)
Modulep : ZEH = Z—arctan2? +arctan2(@+1) operation abbreviateg- +) (22)

Now both modules determine the signszgf, andZiB+l in parallel. The sign is determined by looking

at a fixed number of leading digits of the residue. As a result, the sign catlbkat least one or

4

more of the digits (in the window of digits used to evaluate the sign) is non zero; otherwise the sign
evaluates to O if all the digits in the window are 0. It should be noted that the sign of the most
significant digit in the “window” is not necessarily the sign of the residue (rules for inferring the sign
of the residue by looking at the digits in the current window are summarized in Table 1 and explained
later in this section). The sign of residdgis henceforth denoted as “Sigh]”. Note that if Signi)

=1, thenz > 0. Similarly if Sign¢yx) = —1, thenZ < 0. When SignZy) = 0, however, there is
insufficient information to decide whethgg is positive or negative.

If Sign(z?,,) is positive, i.e., d— —) operation still leaves a positive residue, then Moduis
correct. In this case & +) operation that Modul@ performed must also yield a positive residue,
which is higher in magnitude than the residue of ModuMhich is deemed to be correct and copied
by Modulef prior to the next iteration. Similarly if & —) operation leads to a “zero sign” (i.e., the
residueZ’, ; has leading zeroes which implies it has a small magnitude), then that operation was the
correct one. Finally when & —) operation leads to a negative residue, then the next action depends
on the sign of the residuEBJrl in the other module obtained by(a- +) operation: if Signzﬁl) 5

—1 or O then it is correct, otherwise, both modules are correct and the algorithm enters a branching.
This is summarized by the flowchart in Figure 2 (which is further explained a bit later). Similarly,
the flowchart in Figure 3 summarizes the procedure when %ign(0, and the flowchart in Figure 4

summarizes the procedure when the algorithm is in branching.

Note that the initial angl&y must satisfy condition (18). Similarly, at the end of stgp- 1),

2)

having usedarctan®,arctan 2, ... arctan2(?-2 arctan2(@-11 the residug; must satisfy

1Z)| < 22 arctan 2% (23)
=

If this condition is not satisfied, no combination of remaining angles
{arctan2? arctan 2(2”1),---} can force the residue magnitude arbitrarily close toward zero (as
more iterations are executed). Thus, the magnitude bound specified by condition (23) must be satisfied
at every step (of CORDIC algorithm) and is henceforth referred to astitietér” bound. If the
algorithm is in a branching, then two possibilities are being tried and least one of the computation
sequences must generate residual angles that satisfyghter” bound .

Directly verifying condition (23) would require a magnitude comparison or a full subtraction with
a delay which depends on the word length and would defeat the purpose behind using signed digits.
The evaluation of the residue sign must be done by lookindiatdnumber of leading digits to make
the sign evaluation delay independent of the word length. In most methods (for example, those in [1]
and [15]) 3 leading digits of the residue are examined to determine the sign. In our case, since we
need to do a double step, it turns out that 6 digits need to be examined to determine the sign. This does
not mean that the delay required to determine the sign is double (as compared with the methods that
examine only 3 digits), because the 6 digits are divided into 2 sub groups of 3 digits each and each
subgroup is handled separatdly,parallel to generate the required signals. The control logic that
integrates signals from these subgroups is slightly more complex than the case where only 3 digits are
examined (this is explained in detail later on).

What makes it possible to look at only a fixed number of leading digits is the fact that a(iséep
having used{arctan?,arctan2?,... arctan2(@-2 arctan2(2-D}: when the sign is determined

prior to using{arctan2? and arctan2(?+1}, both the residual angl& andZiB satisfy

{Iz01,127 <3-2- @Y (24)

Note thatyy_ arctan2X < 2-(@-1) < 3.2-(2-1) ' 5o that the bound specified by equation (24) is
“coarsefr’ than that of equation (23) above, and is referred to by that name throughout the rest of

the manuscript. If thiScoarser” bound is violated, then the sign that is evaluated can be incorrect,
possibly leading to a wrong result at the end. Note the distinction betweétighter” bound and

“coarser” bound : only one ofZ], ZE} needs to satisfy thitighter” bound at all steps while both of
them must satisfy th&coarser” bound , irrespective of whether or not the algorithm is in a branching.

With this background, we now present the algorithm and give the details of how the sign evaluation
is done. Convergence properties of the algorithm (i.e., the fact that conditions (23) and (24) are
satisfied at all steps) are proved in Section IV. The algorithm is summarized by the flowcharts in
Figures 1, 2, 3 and 4.

Figure 1 shows the overall flowchart of the algorithm. In CORDIR#+ 1 angles
(arctan?®,---,arctan2™) need to be utilized fon bits of precision. This can be explained using
the following identities (please refer to [1] for their derivation)

arctan2" < % arctanZ K < 2 (25)
k=n+1
n+p 0 0
arctan2"— 'y arctan2 kK < Y arctan2 K< S 2 k—p-(ntp) (26)
k=n+1 k=n+p+1 k=n+p+1

Equation (25) together with the fact that the residual angle in at least one of the two modules satisfies
“tighter” bound at each step implies that 1 angles mentioned above suffice to render the required
precision. However, the algorithm might terminate in a branching in which case both modules satisfy
the “coarser” bound . Using thécoarser” bound (instead of th&ighter” bound) indicates that
n+ 3 angles (arctarf2.--,arctan2 ("2)) should be used to ensure that outputs of both modules
satisfy the condition [(absolute value of residual angl€d "]. Since we use two angles at each
step,

n

number iterations required = _;31 where[x| = smallest integel x (27)

This is the loop-iteration-index appearing in Figure 1.

|

[Step=0; BRANCHING=FALSE: }

evaluate Sign(Zp)

Y

[for (i:O;ig(n—EQ’};i++,Step++)loop }<—

\
NO)= BRANCHING == TRUE ? = (YEs)

[Flowchart in Figure 4]

.

(Sign(z) == +1) (‘Sign(z) =0)

Y
[Flowchart in Figure 2] Flgwchart in Figure 3]

Figure 1 : Flowchart for the algorithm. Detailed flowcharts for specific cases when residue Sign
evaluation returng=1, 0 and when the algorithm is in a branching are illustrated in Figures 2, 3 and
4, respectively.

'

(__sign(z)

+1

)

|

J

[Perform in parallel

)

/

I

D e R
Module o Module B
z% . = ZFarctan2? Farctan2 @+ ZP | = Z Farctan2? +arctan2 (241
Evaluate Sign(Z%,) Evaluate Sign(ZEH)
J _ J
Both modules examine 6 digits of weight
27(2i71) 272i 27(2i+l) 27(2i+2) 27(2i+3) 27(2i+4)
more significarnt part less significa?lrt part
To determine
(1) overall sign
(2) A flag indicating whether condition (28) is satisfied
Y Y
~
Decision Block
if (Sign(Z%,) == Sign(Z)) then { Module o is correct; }
else if (Sign(Z%,) == 0) then { Module a is correct; }
else {
it (Sign(P,y == —Sign(Z) || Sign(Z’.,)== 0) then {Module B is correct; }
else {
if (any module satisfies condition (28)) then { it is correct; }
else {
BRANCHING = TRUE;
}
}
}
if (BRANCHING !'= TRUE) then {
Correct Module’s Zi,1 output, sign
}and other attributes are copied by the other module
J

& ¢

Figure 2 : Flowchart for stepfor the case when residue Sign evaluation retdrfs

%

[sign(2)

)

Y

[Perform in parallel

)

/

I

R s
Module o
%, = Z +arctan2? —arctan2 (@ +1)
Evaluate Sign(Z% ,)
- x

B
Zi+1

Module f3
= Z —arctan2? +arctan2 (@+1)

Evaluate Sign(ZEH)

Both modules examine 6 digits of weight

27(2i71) 7 272i 7 27(2i+l)

N J/ [\

2 (2i4+2) 2 (2i4+3) 2 (2i4+4)

S/

more significarnt part

To determine
(1) overall sign

(2) A flag indicating whether condition (28) is satisfied

less significa?lrt part

Decision Block I* in this case Z%, >0 and Zﬂl <0
if (Sign(Zy1) == 0 is true for any module) then {
that module is correct; goto End _decision;
if (any module satisfies condition (28)) then {
that module is correct; goto End _decision;
[* if both modules satisfy the condition, arbitrarily pick any one */
BRANCHING = TRUE;
End_decision:
if (BRANCHING != TRUE) then {
Correct Module’s Zi,1 output, sign
and other attributes are copied by the other module
¥

'

Figure 3 : Flowchart for stepfor the case when residue Sign evaluation returns O.

'

[in BRANCHING

|

J

[Perform in parallel

)

/

I

D e
Module o Module B
Z% = 78 +arctan2? +arctan 2 (2+1) zP | = Z Farctan2? Farctan 22+
Evaluate Sign(Z%,) Evaluate Sign(ZEH)
J _
Both modules examine 6 digits of weight
27(2i71) 272i 27(2i+l) 27(2i+2) 27(2i+3) 27(2i+4)
more significarnt part less significa?lrt part
To determine
(1) overall sign
(2) A flag indicating whether condition (28) is satisfied
Y
(..
Decision Block
BRANCHING = FALSE;
if (Sign(Z.1) == 0 is true for any module) then {
that module is correct; goto End _decision;
if (Sign(Z%,) == —Sign(Z")) then {Module o is correct; goto End _decision; '}
if (Sign(ZEH) == —Sign(ZiB)) then {Module [is correct; goto End _decision; '}

if (any module satisfies condition (28)) then {
that module is correct; goto End _decision;
[* if both modules satisfy the condition, arbitrarily pick any one */

}
BRANCHING = TRUE; /* double step in branching in the next iteration */
End_decision:

if (BRANCHING != TRUE) then {

Correct Module’s Zi,1 output, sign
and other attributes are copied by the other module

}
Figure 4 : Flowchart for stepwhen the algorithm is in a branching.

10

Figure 2 illustrates the procedure followed when the sign can be determined4té.bé the
blocks titled “Modulea ” and “Module3 ”, the upper and lower signs (in the stacksor F) corre-
spond to Sigry;) = +1 and Sign&;) = —1, respectively.

Next, we explain the sign detection procedure. Because the residues always satishatber”
bound , digits of weight higher than 3 need not be examined when determining the sign of

Z& (or ZiB, the sign detection operation is identical in both modules). This is a consequence of using
signed digits to represent the residue. If only one angle is used at every step (as in Duprat and Muller’s
original method) then 3 digits of weights &3, 2-(k-2) 2-(k-1) gyffice to evaluate the sigprior

to using arctan2®. Note that arctan’ can have its leading “1” (i.e., its first non-zero digit) at bit
position 2. Hence, merely examining two digits of weight®-3), 2-(k-2) does not suffice even

in the original method. For example, consider the case when the three digits in question are 001. If
a branching is initiated just by looking at the first two zeroes, one module would do an add and the
other would do a subtract. In this case the module that did an add could excéeddtser’ bound

for the next step. That’s why at least 3 digits are required.

In the double stepping method, evaluation of residue sign is done by examining a window of 6
digits as illustrated in Figures 5 and 6.

o L T T
. —@-3 y —(2-1 ¢ —(2i+1) y —(2+3)

o O O O O O
%ﬁ_g

3 more significant digits Evaluate magnitude and sign
handled as per Table 1 of the number made of 3 lesser
significant digits 1

Window of 6 digits used for evaluating the sign of residual argyle

at step (— 1), prior to using arctan® and arctan2(@+1) in the next step
Information from both subgroups
is combined to generate

(1) Sign (-1, 0 or +1) of residue \\Q O O O O O /

2 A _(I_300!ean) fla_g indicat_ing vv_he_ther
condition in equation (28) is satisfied Window at step, shifted by 2 digit positions
from the previous window

Figure 5: Window of 6 digits used to determine the sign of residue.

First of all, note that the 3 leading digits can be interpreted in a manner identical to the original
method as indicated in Table 1. This table is derived from the fact that the residue satcdiser”
bound at all times.

In the flowcharts in Figures 2 and 3 if the sign of the residue can be determined to be +1 or
—1 by examining only 3 (more significant) digits, then the lower 3 digits are inconsequential. If
however, the leading 3 digits are zero, then there are 4 distinct possibilities for the double stepping:

(— =); (= 4); (+ =); (+ +). Note that double stepping implies arctan2V also gets
used along with arctanZ (in fact they are not stored individually, only their sum and difference,i.e.,

[arctan2 2 +arctan 2 (2+1] and [arctan 22 —arctan 2 (2 1] are stored in the look-up table). There
IS no “corrective” rotation (any back-tracking would defeat the purpose of trying to double step in the

11

first place), which implies that the four possibilities must be narrowed down to two, because only two
modules are to be used. More digits need to be examined for this purpose; the natural question being
“how many more digits ?”

4 M

Let (Z1,22,73,24,7Z5,Z6) be the digits in the window

in parallel

determine signl and magmtﬁ(m sign and magnitude of subgroup
of subgroup (Z1,Z2,Z5) (Z4,Zs5,Zs) algebraically:
as per Table 1 valle = 4xZ4+ 2+ Zs+ Ze:

Magnitude2 = |value|;

if (value > 0) then {sign2 = 1, }

else if (value == 0) then {S|gn2 =0 }
else sign2 = -1;

if (signl == 0) then Sign = sign2;
elseg{S|gn -) signl; } {59 ¢ J

Using signl, magnitudel, sign2, magnitude2 check if
condition (28) is satisfied
and set a flag F to 1 if it is satisfied

Sign and flag F are the outputs of sign-evaluation module
G J

Figure 6: Sign detection procedure.

The answer turns out to be 3 extra digits, as indicated next. For the purpose of illustration, assume
that the leading 3 digits in the window are all 0. Suppose that we start examining more digits one by
one. Any time a non-zero digit (+1 efl) is encountered, the sign of the residue is known and we can
utilize the procedure in the flow chart in Figure 2 again. The problem happens when the following
(few) digits are also 0 (which means that tmagnitudeof the residue is small). The question is:
how many additional zero digits (following the 3 leading digits in the window that are all 0) must be
encountered to ensure that +); (+ —) are the only possibilities and rule out the other two, viz.,

(— =); (+ +) ? The answer is 3 extra zeroes.

There is one more case that needs further scrutiny: when the algorithm is in a branching. In the
original method, when in a branching, one module keeps adding (and the other keeps subtracting)
the angles one at a time as long as the signs of next residues continue to be same as those of the
previous ones (please refer to [1] for details). In the double stepping method, the analogous operation
is adding (subtracting in the other module) two angles at a time. If the sign of the next residue
remains the same as the previous one despite adding (subtracting) two angles, then that module is still
indicating a continuation of branching.

12

N
\S]
N
)
N
N

i_1 | Implied leading| Sign| Magnitude comment
digit

i—3 i—2

1 denotes —1

x|+ + + +

(impossible, violatescoarser” bound)

(need to look at next 3 digits)

X+ + + +++ + +|O]|

(impossible, violatescoarser” bound)

NWWWPRWWNREFEP WNRPROFPEFEPNWOPRPNWWORAWLWLWWDN PR

PR RPRRPRRPRRPRRPRP,OOOOOO OO O R R RIRI|RIR R RIR
PR R OOORRRRERRERLROOORRRERELRRLPO|IO|O RIRIR
P ORRORRORRERORRORREORERER O RIR|O|R kL ORI
RIRRRXPRRPRRPRRPRRRORRRRRRRR| X R R PR

=

Table 1: Determination of Sign and Magnitude of the subgroup of 3 more significant digits at step
(i—1). A“x”indicates a don’t care, when the corresponding digit combination cannot occur in the
residue.

However, if the sign does change, indicating a termination of branching, there is no quick way of
telling whether
(i) the sign switched as a result of adding (subtracting) the first angle or
(i) it remained the same after using the first angle and switched only after using the second angle.
If (i) happens to be true then the second angle has been used incorrectly. There is no way except to
back track if this was allowed to happen. Hence, before taking a double step when in branching,
we detect whether the first step itself would terminate the branching. The 6 digits in the window
have all the information needed to make this prediction. As seen in the flow chart of the algorithm, a
branching is terminated (i.e., not continued) if the following condition

[{(sign of more significant part == 0) && (magnitude of less sig. part <C)}
||{(magnitude of more sig. part == 1) && (magnitude of less sig. part > (8-0C))
&&(sign of less sig. part == —(sign of more sig. part)) } 1 == TRUE (28)

13

is satisfied by any of the two modules, where

the constantC in equation (28) above can take only one of the two values 5 or 6
i.e., C {56} (29)

Mathematically, the algorithm works correctly with both value€ofWhichever value leads to sim-
pler circuits should be selected in the final VLSI implementation.

The above condition essentially terminates branching if
|ZIO(| <C- 27(2n+2) or |le3| <C- 27(2n+2) (30)
If only one of Z or ZiB satisfies the above condition, then it is the correct residue (and the current

branching terminates). If bot#{" or ZiB satisfy the above condition, then any of the two modules can
be arbitrarily deemed to be correct and the current branching terminates (The proof of its correctness
isin case Il.1.a in Section IV).

Having presented the algorithm, we now prove its convergence. The next section derives some
identities repeatedly used later on. Section IV presents the detailed proof of convergence.

Il Background

In the following it is assumed that all indices are non-negative integersqirgi, --- > 0) unless
stated otherwise. The most fundamental identities are (25) and (26) and are derived in [1]. The
following relationship is also well-known [11]

1 . L . :
arctan2 (™ > > arctan2" This relation immediately leads to the following (31)

useful identity: arctan?' — arctan2 (" < arctan2 ("% (32)

From the above, we drive the following identities

0

Y arctan2 > 27"+ 2~ (n+1) (33)
k=n
arctan2" > 2-(M1 4 p=(n+2) (34)
arctan2" > arctan
2 2" K (35)

k=n+1

Proof of 33 : By induction;

base case S arctan2 K—174329>204+271=15 (36)
k=0
Assume (33) holds fan=1i. Then, arctan? + Z arctan2K > 271 4 2= (14D (37)
k=1+1

Invoking the first inequality in (25)

(Y arctan2¥)+(Y arctan2¥) >arctan2'+ § arctan2*> 27427 (Y (38)
k=141 k=1+1 k=1+1

Dividing both sides of the above inequality by 2, we get

arctan2 > 5[2" 427 (4] = 2= (i+1) 4 o= (i+2) (39)

k=1+1

14

which shows that (33) holds f¢gn+ 1) and completes the proof.
Proof of 34 : By induction;

base case : arctan2=0.78--->2"14+22=0.75 (40)
Assume (34) holds fon. Then dividing both sides by 2 and invoking (31)

1 .
arctan2 (™Y > > arctan2" > 2 ("2 4 2-("3) \which completes the proof. (41)
Finally to prove (35), invoke (34) and (25):
2arctan2" > 227 (M 4 27 (M2 = 27N o= 5 270§ arctan 27X (42)
k=n+1

IV Proof of Convergence

Theorem : The algorithm generates the sequerﬂ%andzﬁ which satisfy the following property: at
stepi (Note that arctan2® through arctan2(?~1) havealready been used in prior stepsD - -, (i —
1) and step uses arctan? and arctan2(2+1)

28] < 22 arctan 2% or 1zP| < 22 arctan 2% (43)
= =

Z|<3-27 @Y where ze{z*,Z"} (44)

1 27

The above relations state that at least onéZff and |ZiB| satisfies thetighter’ bound while both
satisfy the toarset bound.

Proof : We prove the correctness of the algorithm by induction, i.e., assume that it holds eastep
show that it holds at steipt+ 1. This, together with the base case (iie=,0) where the theorem holds
(as seen from relation (18)) completes the proof.

There are two main cases to be considered:
() At stepi, there is no on-going branching, i.e., oneZf or ZiB is determined to be the correct
output and both modules start off with this valdg) (as the starting residue for step

(Il) At stepi, the algorithm is in a branching with distinct starting residugsfor modulea andZiB
for modulef3).

‘ Case | : No on-going branchi¢PThis is further subdivided into 2 cases

(1.1) Signg;)) =+1 and
(1.2) Signg) =0

We consider case (l.1) first and illustrate the proof assuming iga{(+1. The proof for the
case when SigiZ{) = —1 is identical and is omitted for the sake of brevity.

(1.1) Signg) = +1
As seen in the flow chart, the modules perform

Modulea : Z%, = Z-—arctan2? —arctan2(?+1) (45)
Modulep : Z', = Zz-arctan2? +arctan2(@+D) (46)

15

Induction hypothesis and the fact that SignE +1 yields: 0< Z < 22 arctan 2 47

00

Hence, —arctan2? —arctan2 @+l < 7% < arctan 2 (48)
k=21+2

Using the fact that +arctan2? +arctan2(@+1) < 272 4 p—(2+1) — 3. p=(2+1) (49)

and invoking relation (25), we get

[oe]

~3.27@+ < _arctan2? —arctan2 (P11 < 78 | < arctan 2k < 2=(2+1) (50)
k=21+2
or —3.27@+) < 78 <3.27@H) — 78 | <3.27(3HD (51)
Similarly, —arctan2? +arctanz@+1) < 7P| < 2arctan2(@+Y 4 arctan2X (52)
k=214-2

Using basic identities (25) and (26), we get

- 3 arctanZt<Z, <2272 @ or (70, <327 (53)
+

Identities (51) and (53) demonstrate that output®ath modules satisfy the coarser bound as re-
quired.

Next we prove that at least one q‘? andZ , satisfies the tighter bound. When the algorithm
does not enter branching, the residual angle which is determined to be “correct” by the algorithm is
shown to satisfy the tighter bound. When the algorithm enters branching, at least one of the two is
shown to satisfy thé&tighter” bound . There are 3 cases to be considered:

(I.1.a) Signg) = +1

(1.1.b) Signg?. ;) =0

(I.1.c) Signg’,) = -1

(I.1.a) Signg’ ;) = +1: Here modulex is correct. From relation (48) and the fact that Sigfh() =

+1, it follows that

(o]

0<Zl,< arctan2k — 78 ", satisfies thétighter” bound (54)
k=214-2

(1.1.b) Signg?, ;) = 0: Modulea is correct. Note that 6 digits of weight

2-(@-1) 22 o-(2+1) 2—(2+2) 2-(2+3) gnd 27(2+4) gre examined to determine the signs, and
Sign, ;) = 0 implies all 6 digits are zero. Hence

[oe]

| < 27(@+4) £ p=(242) o arctan ok — 70
k=21+

|Z” satisfies'tighter” bound (55)

i+1 i+1

(I.1.c) Signg’ ;) = —1: 3 subcases need to be considered here:

(I.1.c.i) Signzﬁrl) = —1: in this case modul is correct.

(1.1.c.i) Signzﬂl) = 0: again modul@ is correct.

16

(1.1.c.i) Signzﬂl) = +1: both modules are correct and the algorithm has entered branching.

(I.1.c.i) Signzﬂl) = —1: This along with relations (46) and (47) implies that

—arctan2? tarctan2 @+ <z <0 or (56)

2P| < +arctan2? —arctan2 (@+1) < arctan2 (@+Y < arctan2 ¥ (57)
k=21+2

Identities (32) and (25) were used to obtain the last relation which demonstrat@iqmatisfies
“tighter” bound .

(I.1.c.ii) Signzﬂl) =0 In this case modulB is correct and the proof thiﬂl satisfies‘tighter”

bound is exactly same as case (I.1.b) above.

(1.2.c.iii) Sign(ZiBH) = 1: Inthis case the algorithm has entered branching. From the factthat 0

andzﬂ1 > 0 and relations (45), (46) and (47) it follows that

+arctan2? —arctan2 (@Y < 7, < +arctan2? + arctan2 (4+1) (58)

From equations (58), (45) and (46) we get

—2arctan2@*V <78 <0 and 0<Z’, <?2arctan2(@+ (59)

From equations (45) and (46), it follows thzﬁrl — 278, =2arctan2 @+ (60)

This, along withz ; <0 andZEH > 0 (as seen from (59)) implies

28,1 +12% 4| = 2arctan 2 (2 +D) (61)

Hence, at least one &% ,| and|Z>, ;| is < arctan2 @+V) < S arctan2® (62)
k=242

which proves that at least one 4, , andzﬂ1 satisfies the tighter bound.

Case I.2: No on going branching and SignE O‘

This implies that digits of weight 22-3) 2-(2-2) 2-(2-1) 2-2 2-(2+1) gnd 2-(2+2) gre all
zero. Note that nothing is known about the remaining digits or in other words it is not known whether

? ? . .
Z >00rz 20o0rz < 0. It might appear that all 4 possibilities-prctan 22 + arctan 2 (3+1]
need to be examined. However, only two of the possibilities vizarfctan 22 — arctan 2 (2+1)] and
[—arctan 22 + arctan 2 (2+1)] suffice as demonstrated next.

As per the flowchart, the the modules perform

Modulea : Z& , Z+arctan2? —arctan2 (2+1) (63)

Modulep : z*, = Zz—arctanz? +arctan2(@+D) (64)

Note that Signf;) =0— |7| < 2?2 < S arctan2* (65)
k=214-2

17

Bothz® , andZ? satisfy the‘coarser” bound as shown by the following identities:

i+1 i+1
28] < |Zi|+|arctan2? —arctan 2 (41| < 27(242) 4 2=(2+1) £ 3. = (HD (66)
2%, < |zi|+|-arctan2? tarctan2 (21| < 27 (242) 4 o= (2+1) 3. 5@+ (67)
Next we show that: Z% , >0 and ZEH <0 (68)

Using relations (63) and (65) we get
Z8,=12] + (arctan2? —arctanZ@+Y) > -2~ (@] 4 (arctan2? — arctan 2 (3 +1))
> arctan2? —2-(@+1) _>-(@+2) 5 g (69)

where identity (34) was used to arrive at the last inequality. The facZﬂggK 0 can be shown in an
identical manner.

From equations (63) and (64), we havg? , — Zﬂl = 2(arctan2? —arctan 2 (2+1)) (70)

This, along with (68) yields |Z® , |+ |Z-B

i+1 i1/ = 2(arctan 22 _arctan 2(2i-|—1)) (71)

Hence, at least one &% ,| and|Z” < arctan2? —arctan2 3+

11l
< arctanZ @Y < arctan 2% (72)
k=242

Thus, at least one &, andzﬂlsatisfies thétighter” bound .

Case Il. Branching on—going

‘ (I1.1) Proof that at least one satisfies ttighter” bound \

Note that the algorithm can enter a branching only via one of two ways
(1) Case (l.1.c.iii): Sigrg) = +1, Sign¢? ;) = ¥1 and SignZiBH) =41 or
(2) Case (1.2): Sigrf;) =0, which can lead to branching.

Identity (72) and the proof of case (l.1.c.iii) above demonstrate that whenever the algorithm enters
branching, at least one @f andZP satisfies thétighter” bound . Without loss of generality assume
that

the branching started at step 1 (73)
and that Sigrg") = +1 (which implies that Sigdﬁg) =-1). (74)

We consider two subcases
(I1.1.a) Branching immediately terminates
(11.1.b) Branching does not immediately terminate

(I1.1.a) Branching immediately terminates

Note that 6 digits of weight 22-3) 2-(2-2) 2-(2-1) -2 >-(2+1) gnd 2-(2+2) gre utilized to
determine the sign &* (prior to using arctan? and arctan2(?+1)). As seen in the flow charts, a
branching is terminated (i.e., not continued) if condition (28) is satisfied by any of the two modules.

18

As mentioned before, condition (28) translates into checking whether
(any of{|Z7,|Z°|}) < 6-2- ("2 (75)

(note that the constafitin identities (28) and (30) can take any of the two values 5 or 6. We demon-
strate the proof fo€ = 6 only, as the proof fo€ = 5 is identical).

If only one ofZ or ZiB satisfies the above condition, then it is the correct residue (and the current

branching terminates). If bo#y" or ZiB satisfy the above condition, then any of the two modules can
be arbitrarily deemed to be correct and the current branching terminates.

Once again, without loss of generality assume Hfasatisfies this condition on magnitude which
implies that Modulex is deemed to be correct and the current branching is terminated. Hence we
need to show that? satisfies thétighter” bound which is done using identity (33):

[oe]

% arctan2¥ > 272 4 2=(2+1) —6.27(2+2) hence 70 <6.27(+2) — 70 < % arctan2%(76)
K K

(I1.1.b) Branching does not immediately terminate

This happens when
Sign@®) = 1 and SignzP) = 1 and|z¢| > C-2-(2+2) and|zP| > C.2-(2+2) (77)
However, since the branching started at stefl, then as per proofs of cases (l.1.c.iii) and (1.2)

above at least one @ andZiB does satisfy thétighter” bound .

Here, in step, in the “continue-branching” mode, the modules execute

Modulea : %, = Z¥—arctan 22 _ arctan2 (@+1) (78)
ModuleB : z, = ZP+arctan2? +arctan2(@+1) (79)
i+1 i

The decisions for next step 1) are based on Siga ;) and Signzﬂl). We illustrate the proofs
assuming’, , satisfies the conditions for the case being considered without loss of generality (proofs
are identical when the output of ModUesatisfies the conditions instead). the following cases need
to be considered.

(I1.1.b.i) branching continues into step- 2:
This happens when

Sign@® ;) = +1 and Signzﬂl) =¥landz%,|>C.2- (@4 and|ZP| > .2 (@+4 (80)

To show that at least one @, ;
Sign®) = +1, (which implies SingiB) =-1, Signg’ ;) = +1 and Signzﬂl) = —1. Other cases can
be proved identically and are omitted for the sake of brevity).

and ZEH satisfy the“tighter” bound , consider the case when

Without loss of generality, assume ttZft satisfied thétighter” bound when branching started at
the end of stepi- 1). Then 0< Z* < S, arctan 2%, which, together with the fact that Sigff{)

19

=+1 implies that

0<z%, < 22 arctan2¥ —arctan2? — arctan2 (@9 = Z arctan 2 (81)
ki k=52

which proves the desired result.

(I1.1.b.ii) One of the modules terminates branching as per condition (28)
In this case, the proof is identical to that of case (ll.1.a) above

(11.1.b.iii) One of the modules terminates branching via a change of sign
Two sub cases need to be considered here

(A) One of the modules generates a zero sign: In this case the output of that module satisfies a bound
similar to that stated in (65). Proof for the current case is based on this fact and is identical to that of
case (1.2) above

(B) One of the modules changes sign from +1-tb or vice versa: For the purpose of illustration,
assuming (73) and (74), consider the case when 3fg(= —1.

In this casez® satisfies: C-27(2+2) < 70 < 22 arctan2® where C={5,6} (82)
K=
This, together with the fact that Siggf{ ;)< O yields
C-27@*2_arctan2? —arctan2@+Y < 7% <0 or (83)
2% 1| = ~Z% , < +arctan2? + arctan 2 (2+1) —C.27(3+2) < arctan2 (84)
k=21+2

Where identity (25) and the fact th@t= {5,6} was used to arrive at the last inequality.

This completes proof (11.1) by showing that in branching, at least or&aind ZP satisfy the
“tighter” bound .

(11.2) Proof that bottZz® andZP satisfy“coarser” bound in branching

Assume that the current stepiiand that the branching started at spep3 sub cases need to be
considered:
(.2.a) Sign¥p) =0
(1.2.b) Sign¢p) = +1 and
(I.2.c) Sign¢p) = -1

(11.2.a) Sign¥p) = 0 Then, there exists &, (equal toZ or ZE) such that

21
Z* = Zp—arctan2? 4 arctan2¥ and (85)
k=2p+1
21
7’ = Zz,+arctan2? - Z arctan 27X (86)
k=2p+1
21
which implies ZiB — Z%=2(arctan2?P — Z arctan2’%) (87)
k=2p+1

20

Equation (87) together with the fact that at least on?é,obeﬁndziB satisfies thétighter” bound implies
that (using the triangle inequality+y| < x| + |y|)

21 0
(both|Z%| and|ZP|) < |2(arctan2?P — ; arctan2%)| + | 22 arctan 2’¥|
k=5p+1 K=

< 2| % arctan 2% + | % arctan2¥| < 3.2 (@1 (88)
K=2i =

where identities (25) and (26) were used to arrive at the last two inequalities.

(1.2.b) Sign¢p) =1 In this case, by an argument similar to the one in case (I.2.a) above, it can be

shown that
2i-1
ZP — 7o = 2(arctan2 (2P+1) _ S arctan2¥) (89)
k=2p+2

From here on, the proof for this sub case is identical to that of case (11.2.a) above

(I.2.c) Sign¢p) = —1 The proof is similar to case 11.2.b above

At this point, all possible cases have been exhausted and the proof is complete.

V Overview of Hardware Implementations

(a) Organization : CORDIC hardware for circular rotations consists of two main parts

(i) “Zeroing” module(s) to implement th& recursion (equation (3)). These modules incorporate a
look-up-table storing the elementary angles arctan® <i < n+1; and determine the “signs

that decide whether to add or subtract each of the elementary angles arctan 2

(i) X =Y rotator modules which implement the cross coupled recursions in equations (1) and (2),
utilizing the signss; determined by the zeroing modules.

Each of these parts is discussed below.

(i) Zeroing Module(s) The “double stepping” discussed so far concentrated only on the zeroing part,
i.e., on equation (3). Organization of the hardware required to implement the zeroing part follows
from the flow charts, diagrams and tables presented in the previous sections. It consists of the two
modules (Modulex and Modulef), each of which includes a full-wordlength-long signed-digit adder

and the sign evaluation block as the main constituents. A decision block and some storage registers
(for instance, to store the values determined) are also required in the zeroing part.

(i) Rotator Modules In the original method, at stapafter the sigrs is determined, anpositions-

shiftedY; is added (includes the operation of subtraction as well;tand vice versa (please refer

to equations (1) and (2)). To fully exploit the speed advantage gained by using two modules in the
zeroing part, the branching method of Duprat and Muller should comfyuteandY;. 1 in parallelin

two separate rotator modules. Each rotator module needs one shifter and one adder as the main build-
ing blocks. Possible hardware organization of the rotator modules required by the original scheme is
illustrated in Figure 7-a.

We now outline hardware organization of tke- Y rotator modules in the double step branching

21

CORDIC scheme. To this end, unroll the recursion in equations (1) and (2) one more time (i.e.,
expressX; andy; in terms ofX;_; andY;_1) to obtain

X1 = (X 1-s 12 0¥ 1) —s27(F 145 12 17X)

= X 1(1-ss 12 @ Y)Y a(s+25 12" (90)
Y = (Y1452 U9% 1) +s2' (% 1-5 12 DY)
= Yi1(l-ss 12 @) +[X a(s+25 1)]2" (91)

The above equations expre§s 1 andY;. 1 in terms ofX; 1 andY;_; and can be implemented as
shown in Figure 7-b. In the double stepping meth®@nds_1 (which determine whether to add or
subtract arctan2i~1 and arctan2', respectively) get determined at st{églj. Note thatz” andZiB
denoted the outputs of the “zeroing” modules at the end of $tefd) whereasX; andY; in the above
equations denote the outputs of rotator modules after

22

after § iS determined by zeroing part
] perform in parallel

[X rot:;'tor module] [Y rotatz)r module]
[shlft Y; by i ‘éosmons] [Shlft Xi by i positions]
(add/subtract shifted Yito X) (“add/subtract shifted ! Xt Y)
Xijl Yiih

Figure 7-a : X-Y rotator schematic for Duprat and Muller's method
Xi+1 andY; 1 are generated fronq; andy;
as per equations (1) and (2).

after s_; and s are determined by zeroing part
perform in parallel
[X rotator module] [Y rotator module]
Y _ Y
[in parallel) (in parallel)

/

shit Y3
2i — 1 positions

er does
F2Yi_1F Vi1

shift
2i—1 posmons F2X_1FXi-1

[shlft result add/sub [Shlﬁ result add/sub
& . I
positions shified i positions shified
Xi_1 to Yi_1 to
Xi_1 Yi_1

Y
add results)

X1 Yijl
Figure 7-b : X-Y rotator schematic for Double Step Branching CORDIC

Xi+1 andYi, 1 are generated fron,_; andY;_;
as per equations (90) and (91).

Y
[add results]

23

having used angles upto and including arctatr?, i.e., at the end of ste|[5_73j (TheZ notation was
selected to make the proofs and flowcharts more readable. That notation leads to a nhon-uniformity
between the index subscripts of outputs of the zeroing modules and the rotator modules).

Next we compare the execution delay and hardware requirements of the double stepping method
vis-a-vis the original method.

(b) Execution Delay

To begin with, note that the shift required in CORDIC rotationsasiable i.e., the number of
positions to be shifted at each step is different, because the shift is a function of the iteration index.
Hence, a general purpose shifter that can shift from 1 position all the way thropghitions 6
being the word length) is required. Barrel shifters [16] or crossbar switches have such capabilities.
However, these shifters are complex and are likely to require a delay dependent on the word length
(typically O(logn)). The main point is that the shifter delay is likely to be comparable to (if not
longer than) the adder delay, since a signed digit addition takes a (small) fixed amount of time delay
independent of the wordlength.

(i) Zeroing modules The delay required for executing two steps in the zeroing modules in the original

method [1] is equivalent to a sequence{esign-detect, add, sign-detect, add } operations.
The{sign-detect } operation in [1] utilizes a window of 3 leading digits. The delay required by the
decision block; copy operations (that are performed whenever the output of one of the modules can be
detected to be wrong in which case that module copies the output of the correct module) and latching
is also lumped along with the delay of thsign-detect } operation for the sake of simplicity.

In comparison, the delay required for executing one “double stepping” iteration in the zeroing part
of our method is equivalent to that {dign-evaluate, add } operations. Note that instead of storing

individual angles arctan? and arctan2(@+1) only their sum and difference, viz(arctan22 +

arctan2(?+1)) and (arctan2? — arctan 2 (3+1)) need to be stored for our algorithm. Hence, two
additions in the original method get replaced by a single addition in our double stepping method.

The{sign-evaluate } operation in our method is more complex than that in the original method
since our window size is 6 while the original method uses a window of 3 digits. However, the ad-
ditional delay required for the sign evaluation in our method is likely to be small, since the two
subgroups of 3 digits are handled in parallel. The only extra delay is that of deciding the overall
sign and determining whether condition (28) is satisfied after the two subgroups in the window have
generated their signals (independently).

(i) Rotator modules The delay required for executing two—Y rotations the original method is tan-
tamount to a sequence §$hift, add, latch, shift, add, latch } operations (each rotation
needs a shift, an addition and latching as per equations (1) and (2)).

The delay required for twX — Y rotations (that are performed in a single step in our method) can
beapproximatedo that of a sequence of
{add, latch, add, latch, add, latch } operations
(or {shift, latch, shift, latch, add, latch } operations if the shifter takes a longer time

24

than the adder). Assuming that

(i) the shifter delay is about the same as the adder dejgy~ Aaqey and

(ii) the delay required for additiof,qq is longer than delay required for latchidgch,

it can be seen that thé—Y rotator part in the double stepping method sa¥geg Aawch] for every
iteration (of the double stepping method, or equivalently, for every 2 rotations in the original method).
It should be noted that this is an approximate estimate. If the shifter or adder can be pipelined, the
results might look different.

Finally, note that in the original method, both the zeroing and rotator blocks work in tandem, with
the rotator modules utilizing the signdetermined by the zeroing module(s). If thegn-detect }
operation in the original method (which includes the decision block delay, along with module-to-
module copying and latching delays) takes a longer delay than the shift operation, then it is possible
that theX — Y rotator modules could get stuck, waiting for the zeroing module to finish its part.

In contrast, in the double stepping method, the delay of the zeroing part is likely to be smaller
than the delay of th&X — Y rotator part, so that the rotator modules would never idle. Thus, the
double stepping method could lead to significantly faster execution time depending on the actual
implementation.

(c) Area and Hardware Utilization
Next we look at the hardware (Area) requirements of and hardware utilization in both methods.

(i) Look—Up Table SizeFirst, note that the look—up table size remains identical to that of the original

method. Instead of storing individual angles arctafi 2nd arctan2(@+1 only their sum and differ-

ence, viz.(arctan2? +arctan2 (?+1)) and(arctan2? — arctan 2 (2+1)) need to be stored for our
algorithm.

(i) Rotator Block: In the X —Y rotator part, the double stepping scheme needs only a little more
hardware compared with the original method. As in the original method of Duprat and Muller, the
main constituents of each of th¢ andY rotator modules in our method are one adder and one
shifter. In the original method the shifters are idle when the adders are active and vice versa, while in
the double stepping method, the adders and shifters work in parallel, virtually eliminating idle time
(thereby enhancing hardware utilization). The small additional hardware overhead in our method
arises because the adders and shifters need selectors at their inputs and latches to hold intermediate
results.

(iif) Zeroing Block Implementation of the zeroing part of the double stepping method also needs two
modules as in the original case. Note that both modules (in particular, the adders which are full word-
length long) are doing distinct (and useful) operations in every iteration in the double stepping method.
In comparison, in the original method, the modules in the zeroing part perform distinct operations
only when the algorithm is in a branching. One of the modules in the zeroing part essentially remains
unutilized whenever the algorithm (in [1]) is not in a branching.

In our method, 6 digits need to be examined instead of 3, to evaluate the sign of the residual
angle. Hence, the sign detection hardware will become more complex than that in the original method.

25

Similarly, the decision block is slightly more complex than that in the original method. The additional
circuits (in the sign-evaluation and decision blocks in our method), however, act on a fixed and small
number of extra digit positions (3 digits) and are therefore likely to be small (in comparison with the
full wordlength long adders, shifters, etc.)

It should be noted the decision blocks in the flowcharts in Figures 1-4 probably appear more com-
plicated in software: the hardware complexity of implementing these blocks is likely to be somewhat
higher but comparable to the hardware complexity of decision blocks in the original method [1]. For
example, the evaluation of the overall sign of the entire group of 6 digits in the window can be simply
done with a simple multiplexor once the signs of the individual subgroups are evaluated (in paral-
lel). Thus, the decision block and the sign evaluation circuits together should constitute only a small
fraction of the total hardware required which is likely to be dominated by (full word length) adders,
shifters, latches and the look-up table. Hence, the additional hardware overhead of the double step-
ping method is likely to be small, but worthwhile, since in return, the utilization of large blocks (such
as adders, shifters ...) can be substantially increased.

In summary, the double stepping method has the potential to reduce the execution time at the cost
of a small hardware overhead. It leads to a significant improvement in hardware utilization.

VI Conclusion

We have proposed the Double Step Branching CORDIC algorithm and shown that it is possible
to perform two rotations in a single step, with little additional hardware (compared to Duprat and
Muller’'s Branching CORDIC method). In our method, both modules perform distinct computations
at each step which leads to a better utilization of the hardware and the possibility of further speedup
over the original method. Architectures for hardware implementation of our algorithm are discussed.

A natural question is why not try to triple-step ? A preliminary investigation quickly reveals that
the hardware complexity increases exponentially, and the decision blocks would become so complex
that the delay of such a method is likely to bgher than the original method. Double stepping
appears to be the optimum when speed, hardware cost and utilization are considered.

Acknowledgment

The author would like to thank Prof. Israel Koren from the University of Massachusetts at Amherst
for
(i) getting him interested in CORDIC, and showing him Duprat and Muller’s ingenious work.
(i) several important discussions related to this manuscript.
(iif) suggesting the idea of a software simulator to independently verify the algorithm.

The anonymous reviewers are also thanked for their constructive comments which helped to im-
prove the quality of the final manuscript.

References

[1] J. Duprat and J. Muller, “The CORDIC algorithm: new results for fast VLSI implementati®EE
Trans. on Computersol. TC-42, pp. 168-178, Feb. 1993.

26

[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]

[14]

[15]

[16]

J. E. Volder, “The CORDIC Trigonometric Computing Techniqu®E Trans. on Electronic Computers
vol. EC-8, pp. 330-334, Sep. 1959.

J. S. Walther, “A unified Algorithm for Elementary Functions,” froceedings of the 38th Spring Joint
Computer Conferenc@p. 379-385, 1971.

A. M. Despain, “Fourier Transform Computers Using CORDIC IteratiolSEE Transactions on Com-
puters vol. C-30, pp. 993-1001, Oct. 1974.

S.-F. Hsiao and J.-M. Delosme, “The CORDIC Householder AlgorithmpPioc. of the 10th Symp. on
Computer Arithmeticpp. 256—-263, 1991.

J. R. Cavallaro and F. T. Luk, “CORDIC Arithmetic for a SVD processdaurnal of Parallel and Dis-
tributed Computingvol. 5, pp. 271-290, 1988.

M. D. Ercegovac and T. Lang, “Redundant and on-line CORDIC: application to matrix triangularization
and SVD,"IEEE Transactions on Computerl. C-39, pp. 725-740, Jun. 1990.

E. Deprettere, P. Dewilde, and R. Udo, “Pipelined CORDIC Architecture for Fast VLSI Filtering and
Array Processing,” irProceedings of ICASSP’8gp. 41.A.6.1-41.A.6.4, 1984.

P. Strobach, “The Square-Root Schur RLS Adaptive FilterPiaceedings of ICASSP’91, Toronto, May
1991, pp. 1845-1848, 1991.

M. Terre and M. Bellanger, “Systolic QRD-Based Algorithm For Adaptive Filtering and Its Implementa-
tion,” in Proceedings of the 1993 IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing, Minneapolis, MNol. IIl, pp. 111.296-111.298, 1993.

I. Koren,Computer Arithmetic AlgorithmdPrentice-Hall Inc., Englewood Cliffs, NJ, 1993.

CORDIC Bibliography site including tutorials and simulation code, accessible through the URL
http://devil.ece.utexas.edu.

B. Parhami, “Generalized signed-digit number systems: a unifying framework for redundant number
representationsJEEE Transactions on Computeml. C-39, pp. 89-98, Jan. 1990.

D. S. Phatak and I. Koren, “Hybrid Signed-Digit Number Systems: A Unified Framework for Redundant
Number Representations with Bounded Carry Propagation Ch#iftsE2 Trans. on Computers, Special
issue on Computer Arithmetieol. TC—43, pp. 880-891, Aug. 1994. (Anunabridged version is available
on the web via the URL

http://lwww.ee.binghamton.edu/faculty/phatak).

N. Takagi, T. Asada, and S. Yajima, “Redundant CORDIC methods with a constant scale factor for Sine
and Cosine computationlEEE Trans. on Computersol. 40, pp. 989-999, Sep. 1991.

N. Weste and K. EshraghiaRyinciples of CMOS VLSI Design, A Systems Perspecfidelison Wesley,
1988.

27

