
Leading-zero
anticipator (LZA)
in the IBM RISC
System/6000
floating-point
execution unit

by E. Hokenek
R. K. Montoye

This paper presents a novel technique used in
the multiply-add-fused (MAF) unit of the IBM
RlSC System/6000* (RS/6000) processor for
normalizing the floating-point results. Unlike the
conventional procedures applied thus far, the
so-called leading-zero anticipator (LZA) of the
RS/SOOO carries out processing of the leading
zeros and ones in parallel with floating-point
addition. Therefore, the new circuitry reduces
the total latency of the MAF unit by enabling the
normalization and addition to take place in a
single cycle.

Introduction
Normalization is used as a means of referencing a
number to a fixed radix point. Normalization strips out
all leading sign bits so that the two bits immediately

71

IBM J. RES, DEVELOP. VOL. 34 NO. I JANUARY 1990 E. HOKENEK AND R. K. MONTOYE

* RISC System/6000 is a trademark of international Business Machines Corporation.

"Copyright 1990 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

adjacent to the radix point are of opposite polarity. Table
1 represents a 32-bit register containing various floating-
point numbers.

Using the conventional techniques shown in Figure 1,
the following three steps must be performed in order to
normalize a floating-point addition:

1. The two terms must be added [a process requiring a

2. The result must be searched for the leading zero or

3. The result of the addition must be shifted by the

minimum of log (N) time] [11.

one (depending upon the sign of the result).

appropriate amount and the exponent of the floating-
point result must be adjusted accordingly.

Optimizing the RISC System/6000* (RS/6000)
architecture and machine organization [2,3] with a
tightly coupled floating-point unit (FPU) which performs
the dot-product operations (A X B) + C required
significant innovation in the multiply-add-fused (MAF)
design. A major contribution was made by the LZA to
accomplish the essential RISC fundamentals of
implementing simple, self-contained, low-latency
hardware. As mentioned in a companion paper in this
issue [4], a minimum of two-cycle latency and a
second pipeline delay comparable in time to the
multiplication/shifling path of the MAF unit can be

w Adder

LZD

t
Normalized (A + B)

1
LZA

I I

Normalized (A + B)

Table 1 Floating-point numbers in a 32-bit register.

Unnormalized positive 0 000000101 11 10001 101 1001 11000100

After normalization 0 101 1 1 10001 101 1001 11000100000000
number MSB LSB

MSB LSB
72

E. HOKENEK AND R. K. MONTOYE

achieved by overlapping normalization and addition.
However, the question at hand is this: “Can the leading-
zerolone detection (LZD) be begun without waiting for
the result of the floating-point addition?” or “Can the
LZD be performed using only the two operands
of the addition?”

This paper describes the novel concept which enables
the leading-zero/one detection to be performed in parallel
with the addition (subject to a single bit correction). The
leading-zerolone detection is subject to normalization
after the addition is finished, and the leading-zerolone
anticipation occurs concurrently with the addition. The
leading-zero anticipator (LZA) of the MAF unit in the
RS/6000 processor is described for all values of the
operands denoted by A and B (see Figure 2).

Algorithm
Suppose that the result (A + B) is an unnormalized
floating-point number. There are four possible cases:

l . A > O , B>O, A+B>O
(unnormalized positive number).

(unnormalized negative number).

(unnormalized positive number).

(unnormalized negative number).

To determine the shift amount, the LZA uses the P, G,

2 . A < 0 , B < 0 , A + B < O

3 . A > 0 , B < 0 , A + B > O

4 . A > 0 , B<O, A+B<O

Z signals that define the bit-to-bit relations of the two
operands A and B

P, = XOR(u,, bl) , (1 4

G, = AND (u,, b,), (1b)

2, = NOR (u,, b,). (1 4

The circuitry required to generate the P and G signals is
not an added cost for the LZA: P and G signals are
already required for the carry-lookahead adder (CLA)
and Z, = NOR (P,, G,).

We now discuss the four cases given above and
construct the finite-state representation of the LZA.

CuseI :A>O,B>O,A+B>O
Two possible combinations of A and B which yield the
same result are given in Table 2.

First, leading-zerolone anticipation should be carried
out, starting from the most significant bit (MSB, or sign
bit) side of the addition. Considering the examples in
Table 2, the state description for the LZA can be
summarized as follows:

0 The Z-signal at the MSB implies the addition of two
positive numbers. The LZA enters a Z-state and

IBM J . RES. DEVELOP. VOL. 34 NO. I JANUARY 1990

remains unchanged as long as the Z-signal is true, i.e.,
(1). For each successive Z-input, it should generate a
shift signal (SHL).
The leading-zerolone anticipation is finished when the
kth Z-input is false, namely (0). Subsequently, the
LZA should take into account the carry into the
(k - 1)th Z-position and create an adjustment signal
(AD) accordingly:

AD = carry. (2)

The adjustment is a single right-shift signal resulting in
a total shift:

SH = SHL - AD. (3)

C a s e 2 : A < O , B < O , A + B < O
Starting from the examples presented in Table 3,

The G-signal guarantees a negative result. The LZA
enters into the G-state and remains unchanged as long
as the G-signal is true, i.e., (1). For each G-input, the
LZA generates a shift signal (SHL).
The leading-zerolone anticipation is finished when the
kth G-input is false, namely (0). Subsequently, the
LZA takes into account the carry into the (k - 1)th
G-position and creates an adjustment signal (AD)
accordingly:

AD = INV (carry), (4)

where INV = INVERT.

Notice that simply NORing the two positive operands or
ANDing the two negative numbers produces a result
which differs from the final normalization by only one
bit, i.e., carry. This duality originates from
complementing the operands. Naturally, performing the
LZA for

(-A) + (-B) + (-) (A + B) (5)

should yield the same shift amounts as (A + B) .

C a s e 3 : A > O , B < O , A + B > O
This case corresponds to a subtraction resulting in a
positive number (Table 4).

We extend the statements given in the previous case
using the above examples:
0 If the MSB is a P-signal indicating a subtraction, the

LZA enters a P-state and remains unchanged as long as
the P-signal is true, Le., (1). Note that the P-state is
unstable and should always tip over to the Z- or G-
state, since addition can yield a positive or negative
number. For each P-input, the LZA should generate a
shift signal (SHL).

IBM J. RES. DEVELOP. VOL. 34 NO. I JANUARY 1990

Table 2 Two possible A / B combinations yielding the same

(a) A 0 0000001000100001001000101000000
B 0 0000000011010000100100010000100

z zzzzzzPzPPPPzzzPPzPPzzPPPzzzPzz

Curry = 0

(b)A 0 0000000100100001001000101000000
B 0 0000000111010000100100010000100

Z ZZZZZZZGPPPPZZZPPZPPZZPPPZZZPZZ

Carry = I

Table 3 Illustrative examples for Case 2.

(a) A 1 1111111000000100010000000101001
B 1 1111111100001010000011000010010

G GGGGGGGPZZZZPPPZZPZZPPZZZPPPZPP

Curry = 0

(b) A 1 1111110110000100010000000101001
B 1 1111111110001010000011000010010

G GGGGGGPGGZZZPPPZZPZZPPZZZPPPZPP

Curry = I

Table 4 Subtraction resulting in a positive number (Case 3).

A 0 0010000010100001001000101000000
B 1 1110001001010000100100010000100

P PPGZZZPZPPPPZZZPPZPPZZPPPZZZPZZ

Carry = 0

Table 5 Illustrative examples for Case 4.

A 0 0001111110000100010000000101001
B 1 1101110110001010000011000010010

P PPZGGGPGGZZZPPPZZPZZPPZZZPPPZPP

Carry = 1

0 If the j th input signal is a G-signal, it is already known
that the result is positive. The new state is the Z-state
presented in Case 1. LZA creates a shift output and
continues as if it had started with the Z-state.

C a s e 4 : A > O , B < O , A + B < O
On the basis of the above discussion, this case can easily
be included in our finite-state machine (Table 5).

As described in Case 3, the subtraction starts with the
P-state; therefore, the conditions described above are also
valid here. The next input entered in the P-state,

E. HOKENEK AND R. K. MONTOYE

State diagram of the bit-serial leading-zeroione anticipator for 1 addition and subtraction.

74

however, is not a G-input but rather a 2-input, indicating
that the result is going to be negative. Consequently, the
new state of the LZA must be the G-state.

If thejth input is a 2-signal, generate a shift output
and continue as if the LZA had started with a G-state.

The general state diagram can be obtained as shown in
Figure 3. Apart from the carry-dependent adjustment,
the logical descriptions of the finite-state machine
representation can be obtained as follows:

2 = 2, + P,G2k-(i+l) (positive result),

G = Gk + Pi2Gk-(i+l) (negative result).

As shown, the 2-state can occur for the string of either
(k) 2-inputs or (i) P-inputs followed by a single G and
the string of (k-i-1) 2-inputs. Similar statements can be
made for the G-state. Besides the total shift amount, the
sequential model of the LZA also points out whether the

E. HOKENEK AND R. K. MONTOYE

final result of the addition is to be positive or negative,
depending on the previous state before finishing leading-
zero/one anticipation. If this is a 2-state, the final result
is positive; otherwise, it is negative, since, as depicted in
Figure 3, the P-state always leads to the Z- or G-state.

Logarithmic leading-zero/one anticipator (LZA)
The finite-state model of the LZA allows us to enter a
string of serial inputs which, depending on the bit length
(N) , is not always as fast as a carry-lookahead adder [5].
It is therefore necessary to process the string of P-, G- and
2-inputs using a parallel algorithm similar to the
Iookahead structure. The final construction will process
the input data in discrete blocks of length D. This
approach can be interpreted as a parallel implementation
of our finite-state machine, considering its combinatorial
equivalents for different state and input combinations.

In the following, the leading-zero/one anticipation is
carried out digitwise; i.e., the block length is 4 bits. The
results of this study can easily be extended to arbitrary
block lengths. We assume that the beginning of a block is
the kth bit position. The possible input combinations at
this point are given by

digit
I I
k

. z..

. p

. G

According to the string between the kth and (k - 3)th bit
positions, the state outputs of the LZA are defined as
follows:

"Ik = 2k2(k-l)2(k-~)2(k-3) (84

= PkP(k-I)P(k-2)P(k-3) 9 (8b)

''1, = PkP(k-l)[P(k-2)G(k-3) + '(k-Z)'(k-3J

+ ['kG(k-,) + Gk2(k-l,]2(k-2)2(k-3) 9

= PkP(k-I)[P(k-2)2(k-3) + Z(k-2)G(k-3)l

+ ['k2(k-I) + 2kG(k-I)lG(k-2)G(k-3) 9

GGlk = GkG(k-I)G(k-Z)G(k-3) .

Notice that the names of the intermediate-state outputs
correspond to their beginning and ending states. For a
block-length D (3O possible input combinations), the
number of input combinations resulting in an
intermediate LZA block output is (2 0 + 3).

Looking back to the finite-state machine, the new set
of state equations designated in terms of the beginning
and ending inputs is slightly different. Two new terms,

IBM J. RES. DEVELOP. VOL. 34 NO. I JANUARY 1990

(m - 1)thblock mtb block

1
I I

ZZ PP PZ PG GG

[Gkz(k-l)z(k-2)z(k-3)] (9)

and

[ZkG(k-l)G(k-2)G(k-3)l , (10)
are included in the PZ- and PG-states that would not
occur in the LZA model given in Figure 3. These
expansions are due to the fact that each block handles the
data without being informed about the results of the
adjacent block. Hence, if the output state of the previous
block is PP, the consecutive state should be a PZ- or PG-
output. The resulting basic building block of the LZA is
shown in Figure 4. This circuit is combinatorial and can
be implemented using the logic equations given in
Equations (8a-e). Thus, the implementation of the
sequential machine is converted into the problem of
propagating the different state outputs for the iterative
combinatorial network. A possible anticipation scheme
for the state iteration is depicted in Figure 5. The logical
equations necessary for the state iteration can be
obtained as follows:

IBM J. RES. DEVELOP. VOL. 34 NO. I JANUARY 1990

ith stage I j (m l i 1
I L

0' + 1)thstage I O' + l)m

1 m - 1 m
(c) PPPP * * f . PPPP PPGZ

1 m - 1 m
(d) PPPP . . * - PPPP PPGZ

[or PZGG, ZGGG, PPPZ]

75

E. HOKENEK AND R. K. MONTOYE

Evaluation cell Buffer cell
\ I

MSB LSB

(a)

Buffer cell, Evaluation cell

The shift signals generated by the LZA consist of a
1-string followed by the Os. The adjustment position is
determined by the transition digit and can be defined as

ADP, = SH, INV [SH,(,+,,I, (17)

which is true if and only if the two successive shift signals
are different. Interestingly enough, if the finishing state is
PP, carry = 1 and carry = 0 will determine whether the
result is positive or negative, but it will not change the
shift amount.

Implementation
As pointed out earlier, taking full advantage of leading-
zero/one anticipation can be achieved by processing the
string of P-, G-, and Z-inputs as fast as the adder, e.g., by
using a parallel algorithm similar to the carry-lookahead
structure. Building blocks of this computation were
presented in the previous section. The LZA operates over
a doubling/buffering process similar to the CLA of the
MAF unit, but with the following differences:

As abstracted in Figures 6(a) and 6(b), the LZA
operates in the opposite direction from the CLA, i.e.,
from MSB to LSB.

0 Its hexadecimal implementation makes it possible to
build more complex logical functions at each step.
After the initial states of the first stage are computed,
each cell at the following iterations has the

~ ~ ~ ~ ~ ~ l . ~ intermediate ZZ-, PP-, PZ-, PC-, and GG-signals as
~~~~~~ inputs (to receive the information from its neighbors 

i (a) Carry-lookahead; (b) LZA state anticipation. on the left and the top) and outputs (to supply the 
I‘ 
:* @Zd! 4&r* anticipated states to its  neighbors on the right and the 

r ,,. u ” 

bottom, as well  as to the network outputs). 
0 The LZA’s conclusion  is to OR all intermediate states, 

which generally  yields a 1 -string  followed by a 0-string. 
To accommodate the partial-decode  scheme  used in 
the shifters  [4], the shift  signals are further coded into 
shift  positions (0. . ’ 7) X 4 digits + (0, 1,2, 3) X 1 digit 

signals at appropriate distances.  Note that a generalized 

1 m - 1  m 
(‘) GGGG  GGGG  GGGG 

‘GI, . . . ‘GI(,-,) ‘‘1, 

GG[j+l)rn = GGj(m-I,GG1m.  (1 5) (total of  12 control signals), by connecting the SHL- 

Inthepreceding,j=  1,2, ...,(J- l ) a n d m =  form of Equation ( 17)  for an n-digit shift  signal can be 
( P I )  + 1 ), . . . , M, M = N/D, J = log,M (J ,  M integer,  defined by 
i = lookahead  distance); N = total bit-length of the LZA, NsHm = sHm INV (sHm+n), 

D = block-length, and J = number of  LZA  stages (18) 

necessary. 

expressed in terms of the state outputs of the two 
adjacent  blocks,  they can be extended to arbitrary 
lookahead  distances. At any stage, an anticipated state 
can  be  generated by implementing the above equations 

Although the equations for the state iteration are 
The LZA implementation in the RS/6000 floating-point 
execution unit has  been tuned to the carry-lookahead 
adder so that  the control signals  for the 4-digit and 1-digit 
shifts  as  well  as the data output amve  at the shifter  nearly 
simultaneously. 

and using auxiliary functions ZZ,,, PP,,,  PZ,,,  PC,,, and 

signal  is  defined by 

SHL,, = OR(ZZjm, PPjm,  PZjm, PGj,,  GG,,). ( 16) LZA has made it possible to reduce the latency of the 

GG]k’ Since Only One Of these states can be true, the shift A new concept for normalizing the result of a floating- 
point addition has  been  presented. Implementation of the 

E.  HOKENEK AND R. K. MONTOYE IBM J.  RES. DEVELOP. VOL. 34 NO. I JANUARY 1990 



multiply-add-fused 
performance. 

(MAF) unit without  sacrificing 

References 
1. S. Winograd, “On the Time Required for  Binary Addition,” J. 

2. R. R.  Oehler and R.  D. Groves,  “IBM  RISC System/6000 
ACM 12,277-285 (1965). 

Processor Architecture,” IBM J. Res. Develop. 34, 23-36 (1990, 
this issue). 

System/6000 Processor,” IBM J. Res. Develop. 34,  37-58 (1990, 
this issue). 

4. R. K. Montoye, E. Hokenek, and S. L. Runyon, “Design  of the 
IBM  RISC System/6000 Floating-point Execution Unit,” IBM J. 
Res. Develop. 34,  59-70 (1990, this issue). 

Computers,” Proc. IRE 49,67-91 (1961). 

3. G. F. Grohoski, “Machine Organization of the IBM  RISC 

5. 0. L. MacSorley, “High Speed Arithmetic for  Binary 

Received  October  10,  1989; accepted for publication 
December 14, 1989 

Erdern Hokenek IBM Research  Division, Thomas J. Watson 
Research  Center,  P.O. Box 218, Yorktown Heights, New  York  10598. 
Dr. Hokenek received the B.S., M.S., and Ph.D. degrees in electrical 
engineering from the Technical University of Istanbul, Turkey, and 
the Swiss Federal Institute of Technology, Zurich, Switzerland, in 
1974,  1976, and 1985,  respectively. As a postdoctoral World Trade 
Visiting  Scientist, he  was  assigned in 1985 to the Thomas J. Watson 
Research Center, Yorktown Heights, New York,  where  he joined the 
VLSI Department as a Research  Staff Member in 1986. 

Robert K. Montoye IBM Research  Division, Thomas J. Watson 
Research  Center, P.O. Box 218,  Yorktown Heights, New  York  10598. 
Dr. Montoye  received  his B.S. in  1977 in physics and his  M.S. in 
1981 and Ph.D. in 1983  in computer science from the University  of 
Illinois.  He joined IBM in 1983 and began  research into high- 
performance CMOS  design, including the MAF floating-point unit. 
Dr. Montoye is the author of numerous articles and holds patents in 
parallel  processing, VLSI architectures, and design automation. 

77 

IBM J .  RES. DEVELOP. VOL. 34 NO. 1 JANUARY 1990 E. HOKENEK AND R. K. MONTOYE 


