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This  paper  presents  a  novel  technique  used  in 
the  multiply-add-fused  (MAF)  unit of the  IBM 
RlSC System/6000*  (RS/6000) processor  for 
normalizing  the  floating-point  results.  Unlike  the 
conventional  procedures  applied  thus  far,  the 
so-called  leading-zero anticipator  (LZA) of  the 
RS/SOOO carries  out  processing  of  the  leading 
zeros  and  ones  in  parallel  with  floating-point 
addition.  Therefore,  the  new  circuitry  reduces 
the  total  latency of the  MAF  unit  by  enabling  the 
normalization  and  addition  to take place in a 
single  cycle. 

Introduction 
Normalization is  used  as a means of referencing a 
number to a fixed radix point. Normalization strips out 
all  leading sign bits so that the two bits immediately 
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adjacent to the radix point are of opposite  polarity. Table 
1 represents a 32-bit  register containing various floating- 
point numbers. 

Using the conventional techniques shown in Figure 1, 
the following three steps  must  be  performed in order to 
normalize a floating-point addition: 

1. The two terms must be added [a process  requiring a 

2. The result must be  searched  for the leading  zero or 

3. The result of the addition must be  shifted by the 

minimum of  log ( N )  time] [ 11. 

one (depending upon the sign  of the result). 

appropriate amount  and the exponent of the floating- 
point result must be  adjusted  accordingly. 

Optimizing the RISC  System/6000* (RS/6000) 
architecture and machine organization [2,3] with a 
tightly coupled floating-point unit (FPU) which  performs 
the dot-product operations (A  X B )  + C required 
significant innovation in the multiply-add-fused (MAF) 
design. A major contribution was made by the LZA to 
accomplish the essential  RISC fundamentals of 
implementing simple,  self-contained,  low-latency 
hardware. As mentioned in a companion paper in this 
issue [4], a minimum of  two-cycle  latency and a 
second  pipeline  delay comparable in time to the 
multiplication/shifling path of the MAF unit can be 



w Adder 

LZD 

t 
Normalized ( A  + B)  

1 
LZA 

I I 

Normalized ( A  + B )  

Table 1 Floating-point numbers  in  a  32-bit  register. 

Unnormalized  positive 0 000000101 11 10001  101  1001 11000100 

After  normalization 0 101 1 1  10001  101  1001  11000100000000 
number MSB  LSB 

MSB  LSB 
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achieved by overlapping normalization and addition. 
However, the question at  hand is this: “Can the leading- 
zerolone detection (LZD) be  begun without waiting  for 
the result of the floating-point  addition?” or “Can the 
LZD be performed using only the two operands 
of the addition?” 

This paper describes the novel concept which enables 
the leading-zero/one detection to be performed in parallel 
with the addition (subject to a single bit correction). The 
leading-zerolone detection is  subject to normalization 
after the addition is  finished, and the leading-zerolone 
anticipation occurs concurrently with the addition. The 
leading-zero anticipator (LZA) of the MAF unit in the 
RS/6000 processor  is  described  for  all  values of the 
operands denoted by A and B (see Figure 2). 

Algorithm 
Suppose that  the result ( A  + B )  is an unnormalized 
floating-point number. There are four possible  cases: 

l . A > O ,  B>O,   A+B>O 
(unnormalized positive number). 

(unnormalized negative number). 

(unnormalized positive number). 

(unnormalized negative number). 

To determine the shift amount,  the LZA uses the P, G, 

2 . A < 0 ,   B < 0 ,   A + B < O  

3 . A > 0 ,   B < 0 ,   A + B > O  

4 . A > 0 ,  B<O,   A+B<O 

Z signals that define the bit-to-bit relations of the two 
operands A and B 

P, = XOR(u,, bl) ,  ( 1 4  

G, = AND (u,, b,), (1b) 

2, = NOR (u,, b,). ( 1 4  

The circuitry required to generate the P and G signals  is 
not an added cost  for the LZA: P and G signals are 
already required for the carry-lookahead adder (CLA) 
and Z, = NOR (P,, G,). 

We now  discuss the four cases  given above and 
construct the finite-state representation of the LZA. 

CuseI :A>O,B>O,A+B>O 
Two  possible combinations of A and B which  yield the 
same result are given in Table 2. 

First, leading-zerolone anticipation should be carried 
out, starting from the most  significant bit (MSB, or sign 
bit) side  of the addition. Considering the examples in 
Table 2, the state description for the LZA can be 
summarized as  follows: 

0 The Z-signal at the MSB implies the addition of  two 
positive numbers. The LZA enters a Z-state and 
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remains unchanged as long as the Z-signal  is true, i.e., 
(1). For each successive Z-input, it should generate a 
shift signal (SHL). 
The leading-zerolone anticipation is  finished  when the 
kth Z-input is false, namely (0). Subsequently, the 
LZA should take into account the carry into the 
(k - 1)th Z-position and create an adjustment signal 
(AD)  accordingly: 

AD = carry. (2) 

The adjustment is a single  right-shift  signal resulting in 
a total shift: 

SH = SHL - AD. (3) 

C a s e 2 : A < O , B < O , A + B < O  
Starting from the examples presented in Table 3, 

The G-signal guarantees a negative result. The LZA 
enters into the G-state and remains unchanged as long 
as the G-signal  is true, i.e., (1). For each G-input, the 
LZA generates a shift signal (SHL). 
The leading-zerolone anticipation is  finished  when the 
kth G-input is  false, namely (0). Subsequently, the 
LZA takes into account the carry into the (k - 1)th 
G-position and creates an adjustment signal (AD)  
accordingly: 

AD = INV (carry), (4) 

where  INV = INVERT. 

Notice that simply NORing the two positive operands or 
ANDing the two negative numbers produces a result 
which  differs from the final normalization by only one 
bit, i.e., carry. This duality originates from 
complementing the operands. Naturally, performing the 
LZA for 

( -A)  + ( -B)  + ( - ) (A + B)  ( 5 )  

should yield the same shift amounts as ( A  + B ) .  

C a s e 3 : A > O , B < O , A + B > O  
This case corresponds to a subtraction resulting in a 
positive number (Table 4). 

We extend the statements given  in the previous case 
using the above examples: 
0 If the MSB is a P-signal indicating a subtraction, the 

LZA enters a P-state and remains unchanged as long as 
the P-signal  is true, Le., (1). Note that  the P-state is 
unstable and should always tip over to the Z- or G- 
state, since addition can yield a positive or negative 
number. For each P-input, the LZA should generate a 
shift signal (SHL). 
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Table 2 Two possible A / B  combinations yielding the  same 

(a) A 0 0000001000100001001000101000000 
B 0 0000000011010000100100010000100 

z zzzzzzPzPPPPzzzPPzPPzzPPPzzzPzz 

Curry = 0 

(b)A 0 0000000100100001001000101000000 
B 0 0000000111010000100100010000100 

Z ZZZZZZZGPPPPZZZPPZPPZZPPPZZZPZZ 

Carry = I 

Table 3 Illustrative examples for Case 2. 

(a) A 1 1111111000000100010000000101001 
B 1 1111111100001010000011000010010 

G GGGGGGGPZZZZPPPZZPZZPPZZZPPPZPP 

Curry = 0 

(b) A 1 1111110110000100010000000101001 
B 1 1111111110001010000011000010010 

G GGGGGGPGGZZZPPPZZPZZPPZZZPPPZPP 

Curry = I 

Table 4 Subtraction  resulting  in a positive number (Case 3). 

A 0 0010000010100001001000101000000 
B 1 1110001001010000100100010000100 

P PPGZZZPZPPPPZZZPPZPPZZPPPZZZPZZ 

Carry = 0 

Table 5 Illustrative examples for Case 4. 

A 0 0001111110000100010000000101001 
B 1 1101110110001010000011000010010 

P PPZGGGPGGZZZPPPZZPZZPPZZZPPPZPP 

Carry = 1 

0 If the j th  input signal  is a G-signal, it is already known 
that  the result is  positive. The new state is the Z-state 
presented in Case 1. LZA creates a shift output and 
continues as if it had started with the Z-state. 

C a s e 4 : A > O ,   B < O , A + B < O  
On the basis  of the above discussion, this case can easily 
be included in our finite-state machine (Table 5). 

As described in Case 3, the subtraction starts with the 
P-state; therefore, the conditions described above are also 
valid here. The next input entered in the P-state, 
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State  diagram of the  bit-serial  leading-zeroione  anticipator for 1 addition and subtraction. 
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however,  is not a G-input but rather a 2-input, indicating 
that the result  is  going to be  negative.  Consequently, the 
new state of the LZA must  be the G-state. 

If thejth input is a 2-signal,  generate a shift output 
and continue as if the LZA had started with a G-state. 

The general state diagram can be obtained as shown in 
Figure 3. Apart  from the carry-dependent adjustment, 
the logical descriptions of the finite-state machine 
representation  can  be obtained as  follows: 

2 = 2, + P,G2k-(i+l) (positive  result), 

G = Gk + Pi2Gk-(i+l) (negative  result). 

As shown, the 2-state can occur  for the string of either 
(k) 2-inputs or (i) P-inputs followed by a single G and 
the string of  (k-i-1) 2-inputs. Similar statements can be 
made for the G-state.  Besides the total shift amount,  the 
sequential  model of the LZA  also points out whether the 
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final  result of the addition is to be positive or negative, 
depending on the previous state before  finishing  leading- 
zero/one anticipation. If this is a 2-state, the final  result 
is  positive;  otherwise, it is  negative,  since,  as  depicted in 
Figure 3, the P-state always leads to the Z- or G-state. 

Logarithmic leading-zero/one anticipator (LZA) 
The finite-state  model of the LZA  allows  us to enter a 
string of  serial inputs which, depending on the bit length 
(N) ,  is not always as fast  as a carry-lookahead adder [5]. 
It  is  therefore  necessary to process the string of P-, G- and 
2-inputs using a parallel  algorithm similar to the 
Iookahead structure. The final construction will  process 
the input data in discrete  blocks of length D. This 
approach can be interpreted as a parallel implementation 
of our finite-state  machine,  considering its combinatorial 
equivalents  for  different state and  input combinations. 

In the following, the leading-zero/one anticipation is 
carried out digitwise;  i.e., the block  length  is 4 bits. The 
results of this study can easily  be  extended to arbitrary 
block lengths. We assume that the beginning of a block  is 
the kth bit  position. The possible input combinations at 
this point are given  by 

digit 
I I  
k 

. . . . . . . . . . . .  z.. .  . . . . . . . .  

. . . . . . . . . . . .  p . . .  . . . . . . . .  

. . . . . . . . . . . .  G . . . . . . . . . . .  

According to the string  between the kth and (k - 3)th bit 
positions, the state outputs of the LZA are defined as 
follows: 

"Ik = 2k2(k-l)2(k-~)2(k-3) (84  

= PkP(k-I)P(k-2)P(k-3) 9 (8b) 

''1, = PkP(k-l)[P(k-2)G(k-3) + '(k-Z)'(k-3J 

+ ['kG(k-,) + Gk2(k-l,]2(k-2)2(k-3) 9 

= PkP(k-I)[P(k-2)2(k-3) + Z(k-2)G(k-3)l 

+ ['k2(k-I) + 2kG(k-I)lG(k-2)G(k-3) 9 

GGlk = GkG(k-I)G(k-Z)G(k-3) . 

Notice that the names of the intermediate-state outputs 
correspond to their beginning and ending states. For a 
block-length D (3O possible input combinations), the 
number of input combinations resulting in  an 
intermediate LZA  block output is ( 2 0  + 3). 

Looking  back to the finite-state machine, the new  set 
of state equations designated in terms of the beginning 
and ending inputs is slightly  different.  Two new terms, 
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(m - 1)thblock mtb block 

1 
I I 

ZZ PP PZ PG GG 

[Gkz(k-l)z(k-2)z(k-3)] (9) 

and 

[ZkG(k-l)G(k-2)G(k-3)l ,  (10) 
are included in the PZ- and PG-states that would not 
occur in the LZA model  given in Figure 3. These 
expansions are due  to the fact that each  block  handles the 
data without  being informed about the results of the 
adjacent block.  Hence, if the output state of the previous 
block  is PP, the consecutive state should be a PZ- or PG- 
output. The resulting  basic  building  block of the LZA is 
shown in Figure 4. This circuit is combinatorial and can 
be implemented using the logic equations given in 
Equations (8a-e). Thus, the implementation of the 
sequential machine is  converted into the problem of 
propagating the different state outputs for the iterative 
combinatorial network. A possible anticipation scheme 
for the state iteration is  depicted in Figure 5. The logical 
equations necessary  for the state iteration can be 
obtained as follows: 
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ith stage I j ( m l i 1  
I L 

0' + 1)thstage I O' + l)m 

1 m -  1 m 
(c) PPPP * * f . PPPP  PPGZ 

1 m - 1  m 
(d) PPPP . . * - PPPP  PPGZ 

[or PZGG,  ZGGG,  PPPZ] 
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Evaluation cell Buffer  cell 
\ I 

MSB  LSB 

(a) 

Buffer  cell, Evaluation cell 

The shift  signals  generated by the LZA consist of a 
1-string  followed by the Os. The adjustment position  is 
determined by the transition digit and can be  defined as 

ADP, = SH, INV [SH,(,+,,I, (17) 

which  is true if and only if the two  successive  shift  signals 
are  different.  Interestingly enough, if the finishing state is 
PP, carry = 1 and carry = 0 will determine whether the 
result is positive  or  negative, but it will not change the 
shift amount. 

Implementation 
As pointed out earlier,  taking  full advantage of leading- 
zero/one anticipation can be achieved by processing the 
string of P-, G-, and Z-inputs as fast  as the adder, e.g.,  by 
using a parallel algorithm similar to the carry-lookahead 
structure. Building  blocks  of this computation were 
presented in the previous  section. The LZA operates  over 
a doubling/buffering  process similar to the CLA  of the 
MAF unit, but with the following  differences: 

As abstracted in Figures 6(a) and 6(b), the LZA 
operates in the opposite direction from the CLA,  i.e., 
from MSB to LSB. 

0 Its  hexadecimal implementation makes it possible to 
build more complex  logical functions at each  step. 
After the initial states of the first  stage are computed, 
each  cell at the following iterations has the 

~ ~ ~ ~ ~ ~ l . ~  intermediate ZZ-, PP-,  PZ-,  PC-, and GG-signals as 
~~~~~~ inputs (to receive the information from its neighbors 

i (a) Carry-lookahead; (b) LZA state anticipation. on the left and the top) and outputs (to supply the 
I‘ 
:* @Zd! 4&r* anticipated states to its  neighbors on the right and the 

r ,,. u ” 

bottom, as well  as to the network outputs). 
0 The LZA’s conclusion  is to OR all intermediate states, 

which generally  yields a 1 -string  followed by a 0-string. 
To accommodate the partial-decode  scheme  used in 
the shifters  [4], the shift  signals are further coded into 
shift  positions (0. . ’ 7) X 4 digits + (0, 1,2, 3) X 1 digit 

signals at appropriate distances.  Note that a generalized 

1 m - 1  m 
(‘) GGGG  GGGG  GGGG 

‘GI, . . . ‘GI(,-,) ‘‘1, 

GG[j+l)rn = GGj(m-I,GG1m.  (1 5) (total of  12 control signals), by connecting the SHL- 

Inthepreceding,j=  1,2, ...,(J- l ) a n d m =  form of Equation ( 17)  for an n-digit shift  signal can be 
( P I )  + 1 ), . . . , M, M = N/D, J = log,M (J ,  M integer,  defined by 
i = lookahead  distance); N = total bit-length of the LZA, NsHm = sHm INV (sHm+n), 

D = block-length, and J = number of  LZA  stages (18) 

necessary. 

expressed in terms of the state outputs of the two 
adjacent  blocks,  they can be extended to arbitrary 
lookahead  distances. At any stage, an anticipated state 
can  be  generated by implementing the above equations 

Although the equations for the state iteration are 
The LZA implementation in the RS/6000 floating-point 
execution unit has  been tuned to the carry-lookahead 
adder so that  the control signals  for the 4-digit and 1-digit 
shifts  as  well  as the data output amve  at the shifter  nearly 
simultaneously. 

and using auxiliary functions ZZ,,, PP,,,  PZ,,,  PC,,, and 

signal  is  defined by 

SHL,, = OR(ZZjm, PPjm,  PZjm, PGj,,  GG,,). ( 16) LZA has made it possible to reduce the latency of the 

GG]k’ Since Only One Of these states can be true, the shift A new concept for normalizing the result of a floating- 
point addition has  been  presented. Implementation of the 
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multiply-add-fused 
performance. 

(MAF) unit without  sacrificing 
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