
Multi-Pass RenderManMulti-Pass RenderMan

Marc OlanoMarc Olano

SGISGI

What is RenderMan?What is RenderMan?

Interface for renderersInterface for renderers

� Scene description & Shading languageScene description & Shading language

� Created by PixarCreated by Pixar

� Used by several software renderersUsed by several software renderers

Why do we care?Why do we care?

� Powerful C-like shading languagePowerful C-like shading language

� Widely usedWidely used

Simple RenderMan ShaderSimple RenderMan Shader
surface simple() {

 Ci = (1 � texture("grid.tx")) * texture("leaf.tx");

}

Slightly Longer ShaderSlightly Longer Shader

surface
beachball(
 uniform float Ka = 1, Kd = 1;
 uniform float Ks = .5, roughness = .1;
 uniform color starcolor = color (1,.5,0);
 uniform color bandcolor = color (1,.2,.2);
 uniform float rmin = .15, rmax = .4;
 uniform float npoints = 5;
)
{
 color Ct;
 float angle, r, a, in_out;
 vector d1;

...
}

Slightly Longer ShaderSlightly Longer Shader
uniform float starangle = 2*PI/npoints;
uniform point p0 = rmax*point(cos(0),sin(0),0);
uniform point p1 = rmin*

point(cos(starangle/2),sin(starangle/2),0);
uniform vector d0 = p1 � p0;

angle = 2*PI * s;
r = .5-abs(t-.5);
a = mod(angle, starangle)/starangle;

if (a >= 0.5)
 a = 1 - a;
d1 = r*(cos(a), sin(a),0) - p0;
in_out = step(0, zcomp(d0^d1));
Ct = mix(mix(Cs, starcolor, in_out), bandcolor, step(rmax,r));

normal Nf = normalize(faceforward(N,I));
Oi = Os;
Ci = Os * (Ct * (Ka * ambient() + Kd * diffuse(Nf)) +
 Ks * specular(Nf,-normalize(I),roughness));

Beachball passesBeachball passes

angle = 2*PI * angle = 2*PI * ss

angle = angle = 2*PI * s2*PI * s

r = .5-abs(r = .5-abs(t-.5t-.5))

r = .5-abs(r = .5-abs(tt-.5)-.5)

r = r = .5-abs(t-.5).5-abs(t-.5)

r = .5-r = .5-abs(t-.5)abs(t-.5)

prman vs. Multi-passprman vs. Multi-pass

Doing BetterDoing Better

Optimizations we didOptimizations we did

� Fold constantsFold constants

� Reuse texturesReuse textures

� Avoid redundant copiesAvoid redundant copies

� Remove dead codeRemove dead code

� Use hardware featuresUse hardware features

An Optimization ToolAn Optimization Tool

iburg iburg based tree matching tool based tree matching tool [Fraser92][Fraser92]

� Set of rules and costsSet of rules and costs

� Cover tree with least costCover tree with least cost

Our version runs C++ codeOur version runs C++ code

� To find rule costTo find rule cost

� Before processing childrenBefore processing children

� After processing childrenAfter processing children

Simple Parse TreeSimple Parse Tree

angle = 2*PI * s;

r = .5-abs(t-.5);

StmtListStmtList

== ==

rr ** aa ��

** ss .5.5 absabs

22 PIPI

tt

 � �

.5.5

Simple Parse TreeSimple Parse Tree

stmtlist: StmtList(expr,expr)

expr: linearST

| const

| Sub(expr,expr)

| Abs(expr)

| Assign(Var,expr)

linearST : s | t

| const

| Mul(const,linearST)

| Sub(linearST,linearST)

| Assign(Var,linearST)

const: ConstFloat

| Mul(const,const)

StmtListStmtList

== ==

rr ** aa ��

** ss .5.5 absabs

22 PIPI

tt

 � �

.5.5

Mapping OptionsMapping Options

By passBy pass

� No restrictions on orderNo restrictions on order

� Hard to map to operationsHard to map to operations

By simple operationBy simple operation

� Complex order restrictionsComplex order restrictions

� Simple to map to operationsSimple to map to operations

More complex matching frameworkMore complex matching framework

� See Chan, et al., Graphics Hardware 2002See Chan, et al., Graphics Hardware 2002

OpenGL RequirementsOpenGL Requirements

What do we need?What do we need?

� Extended range and precisionExtended range and precision

� Pixel texture / Dependent texturePixel texture / Dependent texture

� Color swizzle (e.g. color matrix)Color swizzle (e.g. color matrix)

� Feedback for ending loops (e.g. min/max)Feedback for ending loops (e.g. min/max)

Extended Range and Extended Range and
PrecisionPrecision

surface mandelbrot(float maxIter=64) {surface mandelbrot(float maxIter=64) {

 varying float zs = 0, zt = 0, ss = 0, tt = 0; varying float zs = 0, zt = 0, ss = 0, tt = 0;

 varying float iter; varying float iter;

 for(iter=0; iter < maxIter && ss + tt < 4); iter += 1){ for(iter=0; iter < maxIter && ss + tt < 4); iter += 1){

 ss = zs*zs; ss = zs*zs;

 tt = zt*zt; tt = zt*zt;

 zt = 2.0*zs*zt + t; zt = 2.0*zs*zt + t;

 zs = ss - tt + s; zs = ss - tt + s;

 } }

 Ci = color spline(iter/maxIter, /*...*/); Ci = color spline(iter/maxIter, /*...*/);

}}

Real-Time RenderMan?Real-Time RenderMan?

Can we get there?Can we get there?

� YESYES (for some shaders) (for some shaders)

Real-Time �Toy Story�?Real-Time �Toy Story�?

� NoNo (at least not yet) (at least not yet)

� BIGBIG shaders, shaders, BIGBIG scenes scenes

Do we want it? Maybe, maybe notDo we want it? Maybe, maybe not

� Real-time targeted shadersReal-time targeted shaders

� Real-time targeted languagesReal-time targeted languages

� Learn and adapt!Learn and adapt!

