
Chapter 1

Introduction
Marc Olano

Introduction
Marc Olano

SGI

Procedural shading is a proven rendering technique in which a short user-written
procedure, called a shader, determines the shading and color variations across each
surface. This gives great flexibility and control over the surface appearance.

The widest use of procedural shading is for production animation, where has been
effectively used for years in commercials and feature films. These animations are
rendered in software, taking from seconds to hours per frame. The resulting frames are
typically replayed at 24-30 frames per second.

One important factor in procedural shading is the use of a shading language. A shading
language is a high-level special-purpose language for writing shaders. The shading
language provides a simple interface for the user to write new shaders. Pixar's
RenderMan shading language [Upstill90] is the most popular, and several off-line
renderers use it. A shader written in the RenderMan shading language can be used with
any of these renderers.

Meanwhile, polygon-per-second performance has been the major focus for most
interactive graphics hardware development. Only in the last few years has attention been
given to surface shading quality for interactive graphics. Recently, great progress has
been made on two fronts toward achieving real-time procedural shading. This course will
cover progress on both. First, graphics hardware is capable of performing more of the
computations necessary for shading. Second, new languages and machine abstractions
have been developed that are better adapted for real-time use.

Interactive graphics machines are complex systems with relatively limited lifetimes. Just
as the RenderMan shading language insulates the shading writer from the implementation
details of the off-line renderer, a real-time shading system presents a simplified view of
the interactive graphics hardware. This is done in two ways. First, we create an abstract
model of the hardware. This abstract model gives the user a consistent high-level view of
the graphics process that can be mapped onto the machine. Second, a special-purpose
language allows a high-level description of each procedure. Given current hardware
limitations, languages for real-time shading differ quite a bit from the one presented by
RenderMan. Through these two, we can achieve device-independence, so procedures
written for one graphics machine have the potential to work on other machines or other
generations of the same machine.

1. Procedural techniques

Procedural techniques have been used in all facets of computer graphics, but most
commonly for surface shading. As mentioned above, the job of a surface shading
procedure is to choose a color for each pixel on a surface, incorporating any variations in

1 - 1

color of the surface itself and the effects of lights that shine on the surface. A simple
example may help clarify this.

We will show a shader that might be used for a brick wall (Figure 1.1). The wall is to be
described as a single polygon with texture coordinates. These texture coordinates are not
going to be used for image texturing: they are just a pair of numbers that parameterize
the position on the surface.

The shader requires several additional parameters to describe the size, shape and color
of the brick. These are the width and height of the brick, the width of the mortar between
bricks, and the colors for the mortar and brick (see Figure 1.1). These parameters are
used to fold the texture coordinates into brick coordinates for each brick. These are (0,0)
at one corner of each brick, and can be used to easily tell whether to use brick or mortar
color. A portion of the brick shader is shown in Figure 1.2 (this shader happens to be
written in the pfman language, detailed in Chapter 3). In this figure, ss and tt are local
variables used to construct the brick coordinates. The simple bricks that result are shown
in Figure 1.3a.

Figure 1.1. Size and shape parameters for brick shader

// find row of bricks for this pixel (row is 8-bit integer)
fixed<8,0> row = tt/height;

// offset even rows by half a row
if (row % 2 == 0) ss += width/2;

// wrap texture coordinates to get "brick coordinates"
ss = ss % width;
tt = tt % height;

// pick a color for this pixel, brick or mortar
float surface_color[3] = brick_color;
if (ss < mortar || tt < mortar)

1 - 2

surface_color = mortar_color;

Figure 1.2. Portion of code for a simple brick shader

One of the real advantages of procedural shading is the ease with which shaders can be
altered to produce the desired results. Figure 1.3 shows a series of changes from the
simple brick shader to a much more realistic brick. Several of these changes demonstrate
one of the most common features of procedural shaders: controlled randomness. With
controlled use of random elements in the procedure, this same shader can be used for
large or small walls without any two bricks looking the same. In contrast, an image texture
would have to be re-rendered, re-scanned, or re-painted to handle a larger wall than
originally intended.

Figure 1.3. Evolution of a brick shader. a) simple version. b) with indented mortar. c) with
added graininess. d) with variations in color from brick to brick. e) with color variations
within each brick.

Procedural shading can also be used to create shaders that change with time or distance.
Figure 1.4a and b are frames from a rippling mirror animated shader. Figure 1.4c shows a
yellow brick road where high-frequency elements fade out with distance. Figure 1.4d and
e show a wood shader that uses surface position instead of texture coordinates. Figure
1.4d is also lit by a procedural light, simulating light shining through a paned window.

Figure 1.4. Examples of shaders. a+b) two frames of rippling mirror. c) yellow brick road.
d+e) wood volume shader.

2. What's to come

These notes are divided into fifteen chapters, following a rough progression from the past
of procedural shading, through present-day systems and on to research that may
illuminate the future. We provide the following as a rough guide to the connection between
chapters in these notes, the course presenters, and what you might expect to find there:

Chapter
1

(Marc
Olano): This introduction.

1 - 3

Chapter
2

(Ken
Perlin):

Noise, one of the basic building blocks for
procedural shading, and how it might be
implemented efficiently.

Chapter
3

(Wolfgang
Heidrich):

Hardware shading effects, the building blocks for
later procedural shading systems.

Chapter
4

(Ken
Perlin):

Background on the beginnings of procedural
shading and how (even then) it was influenced by
hardware concerns.

Chapter
5

(Marc
Olano):

The shading capabilities of PixelFlow, the first
real-time shading system.

Chapter
6

(John
Hart):

Several methods for producing solid textures on
hardware.

Chapter
7

(Marc
Olano):

Multiple rendering passes using the building
blocks from Chapter 3 can be put together to
create a full-fledged real-time shading system

Chapter
8 (Bill Mark):

Some of the latest developments in making
graphics hardware more flexible and
programmable, and a shading language compiler
that gives the same high-level interface for both
multi-pass shading as introduced in Chapter 7
and shading hardware extensions as introduced
in this chapter.

Chapter
9

(Wolfgang
Heidrich):

Some issues that make evaluating shading
expressions into a texture, one of the most
common techniques for real-time shading,
harder than it looks.

Chapter
10

(Marc
Olano):

How multi-pass rendering techniques could be
expanded to support a full-featured shading
language like RenderMan.

Chapter
11

(John
Hart):

A formal notation for analysis of different real-
time shading techniques.

Chapter
12 (All): A collected bibliography of some of our favorite

papers.

1 - 4

