
-1- 

 

Deep Shadow Maps from Volumetric Data on the GPU 

Adam J. Shook 

University of Maryland Baltimore County 

 

Abstract 

A method of generating Deep Shadow Maps from a 

3D data set is presented.  This method uses ray 

tracing on the GPU to accumulate opacity and store 

them in a deep shadow map.  The deep shadow map is 

then sampled based on view direction to determine 

how much light got to a particular fragment.  The 

shadow maps can also be used to cast shadows onto 

other objects. 

 

Introduction 
Much research has gone into improving shadow 

mapping techniques, from completely eliminating 

shadow aliasing to allowing transparent objects to 

cast shadows.  Deep Shadow Maps (DSMs) improve 

over the standard shadow mapping technique by 

storing a representation of the visibility of all possible 

depths.  DSMs allow shadows from partially 

transparent surfaces and volumetric objects, such as 

hair and fog.  DSMs are traditionally created by 

rendering the scene from the light’s perspective to 

build the shadow map based on an object’s material 

properties.  This paper presents a method of 

generating DSMs from volumetric data stored in a 3D 

texture.  These shadow maps are then used to self-

shadow the volumetric data as well as cast shadows 

onto other objects. 

 

Related Works 
Traditional shadow maps [6] are rendered by placing 

a camera at the light source facing all of the objects 

that are going to be casting shadows.  The scene is 

then rendered, storing the depth of each fragment into 

the buffer, which is sometimes referred to as a depth 

map.  From here, the scene is rendered as usual.  The 

depth of each fragment is compared with the value 

inside the shadow map.  If the sampled depth is 

greater than the current fragment’s depth, then the 

fragment is considered to be in shadow and is shaded 

as such. 

 

Lokovic and Veach [5] introduced an extension of the 

traditional technique called Deep Shadow Maps.  

Instead of storing the depth of a fragment in the map, 

DSMs store a representation of the visibility through a 

pixel at all possible depths.  While traditional shadow 

maps can only tell you if a fragment is occluded by 

another fragment, it cannot tell you anything about 

the fragment itself.  Deep shadow maps attempt to 

remedy this by storing this representation.  Because of 

this, we can shade fragments that are partially 

occluded by fog or sparse data like hair. 

 

Amantatides and Woo [1] presented an algorithm to 

quickly traverse a voxelization of primitive data.  A 

3D grid is created to form smaller 3D cubes or voxels.  

From here, a scene is parsed and the primitives are 

stored in individual voxels.  The presented traversal 

algorithm provides a way to quickly traverse this 

voxelization for a great performance enhancement.   

 

Eisemann and Décoret [2] presented a hardware 

implementation of voxelization as well as many 

applications of their technique.  A scene is voxelized 

in real time on the GPU into a 2D texture called a 

slice map.  Each bit in a pixel of a 2D texture 

represents a voxel, where a value of 1 represents a 

fragment is present in the voxel.  This allows for a 3D 

representation of a scene with a depth of 32 “voxels” 

using a single texture.  Using multiple render targets 

will allow for greater depths.  The related application 

of this technique was using this voxelization to create 

what they called Transmittance Shadow Maps.  It 

allows for colored shadows due to semi-transparent 

objects such as glass. 
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Enderton et al. [3] offer a technique called Stochastic 

Transparency to render accurate shadows with many 

types of transparent geometry such as hair, smoke, 

foliage, etc.  It utilizes a stochastic sampling approach 

that produces correct alpha-blended colors in a single 

render pass with no sorting, but introduces noise.  

Several smoothing methods were presented to reduce 

the noise in the image.  Comparisons were made to 

other algorithms, specifically depth peeling which 

requires many passes to produce a correct image.  The 

algorithm presented produces a correct image 

extremely similar to depth peeling but in a much 

shorter time. 

 

Implementation 
The chosen implementation uses 3D textures to store 

volumetric data sets.  Cubes are physically rendered 

and then a hardware accelerated implementation of a 

ray tracer is used to cast rays through the 3D texture 

in order to both generate a deep shadow map and 

produce the final shadowed rendering. 

 

First, cubes are rendered utilizing the light’s view and 

projection matrix.  The bulk of the ray tracing 

algorithm for the deep shadow map generation is in 

the fragment shader. The RGB channels of the deep 

shadow map store the depth of a chosen opacity, 

while the alpha channel stores the maximum opacity 

for the given fragment.  The chosen opacities were 

10%, 50%, and 90% respectively.  These particular 

values were chosen based off a presentation by 

Kobayashi [4]. The following pseudocode segment 

will outline the ray tracing routine to generate a deep 

shadow map: 

 

1. Determine the texture-space coordinates where a 

ray enters the cube. 

2. Determine the normalized direction the ray will 

be cast through this cube based on the world-

space vertex coordinates and the position of the 

light. 

3. Choose an arbitrary scaling value to determine the 

length of each step.  The smaller this value, the 

more samples but better results. 

4. Begin tracing through texture space.  Sample the 

3D texture at each step and attenuate the opacity 

as you are tracing. 

5. For 10% opacity, 50% opacity, and 90% opacity, 

record the depth that has been traversed so far in 

the RGB channels of the texture, respectively. 

6. Once the entire cube has been traversed, store the 

maximum opacity into the alpha channel of the 

texture. 

 

Our deep shadow map is now created.  We have the 

depths at 10%, 50%, and 90% opacity and the 

maximum opacity value of the texture. 

 

For Step 5 above, the previously calculated opacity 

and depth were stored as each voxel was processed. 

The previous opacity and current opacity were used to 

determine when the borders of 10%, 50%, and 90% 

were crossed.  At each border, a smooth step was used 

to determine at what location in the interval [0, 1] the 

border was crossed.  The previous depth and current 

depths are then linearly interpolated based on this 

value.  This linearly interpolated value is then stored 

in the appropriate channel. 

 

Another approach to storing the depths would be to 

just check if the current opacity is less than 10%, 

50%, or 90% with a simple if-else if block.  Store the 

current depth in the channel that falls into the 

particular “bucket”.  For example, once the border is 

crossed from 10% to 50%, the red channel will have 

the greatest depth that is less than or equal to 10%.  

This will produce less accurate results but increase 

performance.  In most cases, the decrease in accuracy 

is not noticeable – especially with a large number of 

steps through the data. 

 

Once the deep shadow map is created, the scene is 

rendered using the camera’s view and projection.  

Ray tracing is used again to accumulate color through 

the data set to use as the base for our final rendering.  

A standard volume rendering technique is used in a 

similar manner of how the DSM was generated. 
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1. Determine the texture-space coordinates where a 

ray enters the cube. 

2. Determine the normalized direction the ray will 

be cast through this cube based on the world-

space vertex coordinates and the position of the 

camera. 

3. Choose an arbitrary scaling value to determine the 

length of each step.  The smaller this value, the 

more samples but better results. 

4. Begin tracing through texture space.  Sample the 

3D texture and accumulate color as we traverse. 

The sampled value is used as each RGBA 

channel. 

5. Return the final color once parsing is complete. 

 

Once we have the color, we now need to sample our 

DSM along a ray to determine the appropriate opacity 

for the fragment.  Figure 1 shows a 2D visual 

representation of the rays being used.  The extension 

to 3D is trivial. 

 

1. Determine the texture-space coordinates where a 

ray enters the cube. 

2. Determine the normalized direction the ray will 

be cast through this cube based on the world-

space vertex coordinates and the position of the 

camera. 

3. Using this direction and origin, calculate where 

the ray intersects with the other side of the cube. 

4. Calculate the length of this line segment and 

divide it by the desired number of samples. 

5. Begin stepping through the cube. For each sample 

point in the cube, create a ray with this origin and 

a direction towards the light position.   

6. Determine where this ray will exit the cube. 

7. Calculate the length between these two points.  

This is the depth we will use to compare with our 

DSM. 

8. Project the point in the cube into shadow map 

space using the light’s WVP matrix and sample. 

9. Determine the opacity for this point based on the 

DSM (explained below). 

10. Average all the sampled opacities to determine 

the lighting. 

 
Figure 1: Yellow represents the ray inside the cube that is 

based on two points and a direction from the eye.  Red are 

the projections of a sample point on the yellow line to their 

associated point on the cube.  These points are then 

projected into light space texture coordinates and used to 

sample our deep shadow map. 

 

You may recall the RGB channels are storing depths 

at 10%, 50% and 90% opacity, respectively.  We use 

these stored depth values to find which two channels 

the current depth lies between.  From here, the 

smooth step operation is used to determine a value 

between [0, 1] as to where the current depth lies 

between the two depths in the channels.  This value is 

then used to linearly interpolate between the 

appropriate opacities (10%, 50%, or 90%).  This 

interpolated value is then returned as the opacity at 

that particular location in the cube.  If the depth is less 

than the closest depth (red channel), a value of 0 is 

returned, anything greater than the furthest recorded 

depth (blue channel) returns the maximum opacity 

stored in the alpha channel. 

 

All of these opacities are averaged together for each 

ray to determine the final lighting at that fragment.  

The number of samples is up to the user to hit the 

balance between performance and quality. 

 

The final lighting value is used in coherence with the 

color from the initial volume ray trace to darken the 

fragment. 
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Finally, the DSM can be used to cast shadows on 

arbitrary objects outside of the volumetric data set.  

The value stored in the alpha channel is the maximum 

opacity of each ray cast through the volume.  This 

value can be retrieved in a fragment shader and used 

to shadow a plane where appropriate. 

 

Results 
The results presented in this paper were generated 

using DirectX 9 and HLSL 3.0 on an NVIDIA 

GeForce GTX 465, an Intel Core 2 Duo processor at 

2.66 GHz, and 4 GB of DDR2 RAM.  A maximum of 

512 steps were used to create the DSM and the 

volume rendering, while 128 steps were used to 

sample the DSM.  All images were produced in real 

time on the above hardware configuration – between 

180 and 330 FPS based on the size of the data set. 

 

Figure 2 shows renderings of deep shadow maps for 

four different volumetric data sets – a standard box 

that gets more opaque towards the center of the box 

(64x64x64), a set of bucky balls (32x32x32), crossed 

rods (64x64x64), and clouds (512x512x32).  The 

DSM itself is shown on the far left, and the individual 

RGBA channel values are also represented.  For the 

RGB channels, brighter pixels represent a greater 

depth until the 10%, 50%, or 90% opacity was met for 

a particular fragment.  For the alpha channel, brighter 

values represent a higher maximum opacity for the 

fragment. 

 

Figure 3 shows renderings of the box data set.  Here, 

we can a straight accumulation of the data, the final 

lighting value accumulated from traversing the DSM, 

and the data darkened with this value. 

 

Figure 4 shows shadows cast on a plane using the 

maximum opacity stored in the DSM. 

 

Due to the nature of these volumetric sets, there is 

often noise that is sampled where usually there would 

be empty space.  3D textures usually contain a single 

value at each voxel.  Often, 2D textures are sampled 

to return a color and opacity based on the sampled 

value.  This will allow for volumetric data to contain 

colors and opacities determined by an artist.  For this 

paper, the sampled value was used across the board 

for the RBGA channels, resulting in blurrier 

renderings of the data itself.  These artifacts can be 

seen as streaks and blurred data in the volume 

renderings in Figure 4. 

 

Future Work 
The presented algorithm can be extended to allow for 

colored data as well as colored shadows.  By using 

multiple render targets, the RGB channels can be used 

to store depth information related to the amount of 

red, green, and blue at each pixel.  These values can 

then be attenuated in a similar manner to color the 

shadows instead of just darkening them.  These color 

values can also be used to color shadows cast onto 

other objects. 

 

Currently, two ray tracing steps are used during the 

final render stage to acquire the volume rendering and 

the opacity rendering.  These two could be reduced 

into one, thus slightly increasing performance. 

 

Further research can be done to extend this ray tracing 

approach to generate and utilize shadow maps for 

more than one volumetric data set. 
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Figure 2: 512x512 Deep Shadow Maps of four volumes: Box, Bucky Ball, Crossed Rods, Clouds. 

From left to right: 1) Entire Deep Shadow Map 2) Red Channel (depth at 10%) 3) Blue Channel (depth at 50%) 4) Green 

Channel (depth at 90%) 5) Alpha Channel (Maximum Opacity at each pixel).   

Brighter values represent greater depths and a larger maximum opacity 
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Figure 3: Renderings of a volumetric box that gets more transparent as the distance grows from the center.  From left to 

right: 1) The volumetric rendering without any shadowing.  2) Combination of the volumetric rendering and the sampled 

opacity.  3) The opacity generated from sampling the DSM. 

 

 

   

Figure 4: Renderings showing the shadow on a plane taken from a DSM. 

From left to right: 1) Crossed rods 2) Bucky Balls 3) Box 

 


