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Abstract

In the past decade, the GPU has quickly become a 
powerhouse of computation. Even commodity machines have 
GPUs capable of hundreds of gigaflops of computation. Most 
of the computational power that exists in the GPUs of today 
is within the shading units of the device. These shading units 
are highly optimized SIMD floating-point engines that can be 
used for various types of computation, not just  simply 
shading traditional Z-buffer rendered scenes as they were 
originally intended.

Nevertheless, traditional Z-buffer based rendering is still the 
most common operation performed on GPUs today. 
Computer games have taken advantage of GPUs by pumping 
greater amounts of polygons into scenes to produce more 
lifelike images. Recently, work has been done in the area of 
GPU-based real-time raytracing. Raytracing has many 
advantages over traditional Z-buffer based rendering in 
visual quality; however, its computational complexity has 
limited its applications in real-time rendering. This paper 
builds on the work done in real-time raytracing to add 
randomized volumetric effects to the scenes, in an  attempt to 
add effects such  as smoke and fog in a visually pleasing 
manner.

1. Introduction

The computing landscape has changed greatly  over the past 
several years. As recent as five or so years ago, in the 
consumer market, only the higher end enthusiast machines 
would have multiple CPU cores, often provided by two 
separate CPUs. These machines, while they would  have 
GPUs, had nowhere near the computational power seen 
today. Now, one would be hard pressed to  find a machine that 
did not have at least  a dual-core CPU, even in the fairly low 
end laptop space (ignoring the space of ultra-low power 
laptops and netbooks). This has prompted a paradigm shift 
away from single-threaded monolithic programs into multi- 
and many-threaded programs designed to use this additional 
CPU horsepower.

In line with the shift from single-core to dual-core general 
purpose CPUs, GPUs have, likewise, seen a shift  to having 
more computational cores. The initial impetus for the 
expanding of the number of cores in  GPUs was for real-time 
shading applications. In the past ten  years, the landscape of 
real-time visual programs has gone from a fixed-function 
pipeline to a programmable pipeline with many options to be 

tweaked by programmers. Real-time shading led to vast 
improvements in  the visual quality of games and other 
applications, without decreasing the frame rate.

As these shading cores are, at their root, highly optimized 
floating-point computational engines, it is only natural  that 
they would be used for more general purpose computation. 
At first, general purpose computation on  a GPU had to  be 
molded to fit the shader-based pipeline through OpenGL or 
DirectX; however, since that time, frameworks have begun to 
spring forth that  make matters simpler for general  purpose 
computation. NVIDIA’s CUDA framework was the first of 
these to gain mass acceptance in the field; however, other 
frameworks not limited to NIVIDA’s GPUs, such as 
OpenCL and Microsoft’s DirectCompute have recently been 
implemented. These frameworks can be used to create 
general purpose programs, but they can also be used to 
accelerate classic rendering techniques other than Z-buffer 
based rendering.

Various work has been done in the recent past on GPU-based 
raytracing. Raytracing is essentially an embarrassingly 
parallel algorithm that can benefit from the many-core nature 
of GPUs. While the images produced by such programs are  
visually pleasing and do run at interactive speeds, they  often 
lack many effects that can  add to their visual appeal  and 
realism. Notably, volumetric effects like fog are all but 
completely absent from consideration.

One important factor in generating convincing volumetric 
effects is having appropriate noise backing the rendering. 
Noise is used to bring  variation to the volume data. While it 
is possible to fully  define a volumetric effect such as fog as a 
series of voxels imported into  the program from a data file, 
this is suboptimal as it is possible to randomly generate the 
data at runtime. Visually interesting and appealing fog 
effects, for instance, can be generated by combining 2D 
noise, such as that introduced by Perlin [Perlin  1985], with a 
simple falloff function for height. Random generation of the 
data has other advantages, such as the potential  for making 
the visual experience different each time the program is run, 
which raises its appeal as well.

This paper has two primary contributions. The first of these is 
an improvement upon existing pseudorandom number 
generation techniques for noise data on a GPU. This paper 
explores a PRNG based on the Tiny Encryption Algorithm 



(TEA) and how to improve it across multiple-GPU systems 
so  that each GPU generates a unique stream of 
pseudorandom numbers, regardless of the input stream. In 
addition, this paper explores the use of noise based on these 
pseudorandom numbers to generate simple volumetric effects 
in a GPU-based raytracer using OptiX.

The remainder of this paper is organized as follows. Related 
work on GPGPU computation, GPU-based raytracing, and 
GPU PRNGs is presented  in section 2. The implementation 
details of the improved TEA-based PRNG, as well as the 
OptiX-based raytracer, is presented  in section 3. Section 4 
presents results and  performance data. Future work is 
presented in section 5, and  conclusions are presented in 
section 6.

2. Related Work

2.1. General Purpose GPU Computation
Many frameworks have been proposed for using the 
computational power of the GPU for general  purpose 
computations. The first widespread framework for general 
purpose computation on GPUs was the OpenGL Shading 
Language [Kessenich et al. 2004]. The OpenGL Shading 
Language (GLSL) was primarily designed for real-time 
shading of Z-buffer rendered scenes but  found acceptance as 
a general purpose computational language as well, through 
its support of a SIMD programming paradigm. More 
recently, frameworks have begun appearing that focus 
entirely on the general purpose aspect  and do not constrain 
the programmer to a graphics pipeline. The most widespread 
of these is NVIDIA’s Compute Unified Device Environment   
(CUDA), introduced in 2006 [NVIDIA 2010]. CUDA allows 
programmers to  think in terms more natural than graphics 
shaders for computation. Specifically, CUDA allows one to 
write so-called kernel functions that perform some 
computation. These kernel functions are to be executed on 
many threads at a time sectioned off in a grid. However, one 
must pay careful attention to how memory is accessed, as the 
memory access pattern can negatively affect the performance 
of the application.

CUDA is a very good model for general purpose 
programming on the GPU; however, it  is limited in scope. 
CUDA is only available for GPUs from NVIDIA. To rectify 
this, Apple and the Khronos group proposed the Open 
Compute Language (OpenCL) as a standard compute 
framework for GPUs [Khronos Group 2010]. The design of 
OpenCL closely resembles that  of CUDA, as NVIDIA also 
was involved in the development of OpenCL. Unlike CUDA, 
OpenCL is available for use without  an NVIDIA GPU, with 
implementations provided by Apple, Intel, AMD, and IBM.

2.2. Real-time GPU-based Raytracing
There has been a recent interest  in work on GPU-based real-
time raytracing algorithms. Among the early work  on this 
subject, a modified KD-tree algorithm found use [Foley and 
Sugerman 2005]. Specifically, the algorithms kd-restart and 

kd-backtrack were found to  be quite helpful in developing 
fast GPU-based raytracers. These algorithms are noteworthy 
as they do not  require the recursive structure that most 
raytracing algorithms require. GPU compute languages all 
disallow recursion due to a lack of a hardware supported 
stack on the architectures. Various other work has also been 
done on KD-Tree based acceleration of GPU raytracing 
[Reiter Horn et al. 2007; Zhou et al. 2008].

In addition to KD-Tree based acceleration, other acceleration 
structures have been investigated  for GPU-based raytracing. 
Bounding Volume Hierarchies have found use and have been 
found to be quite suitable for acceleration of a GPU-based 
raytracer [Carr et  al. 2006; Günther et al. 2007]. In addition, 
several more exotic approaches have been tried, including 
using the GPU’s Z-buffer rasterization to  accelerate 
raytracing intersection operations [Chen and Liu 2007].

Recently, NVIDIA has proposed a system called OptiX, 
which is developed in CUDA to provide a framework for 
easy GPU-based raytracing [Parker et al. 2010]. The OptiX 
framework was designed to help bring interactive raytracing 
to programmers in a simple-to-use manner.

2.3. GPU Random Numbers
Generation of random numbers on a GPU has been 
researched by many. Random numbers have many uses in 
graphics related applications. Among these uses are 
generation of noise for texture synthesis and various shading 
effects. While it is possible to generate noise into a texture on 
the CPU and upload that to the GPU, this is often suboptimal. 
Doing so stresses the texture fetch unit of the GPU and can 
cause slowdowns if a large amount of noise is needed. Thus, 
it  is helpful to have a completely computational solution that 
does not stress the GPU’s memory or texture fetch units.

Many techniques for random number generation have been 
ported from CPU-based systems to GPUs, and there is large 
amounts of information about the techniques that  have been 
tried with success. One area that  has seen research is in  the 
use of cryptographic and hashing algorithms to generate 
random numbers. Often, the purpose of cryptography is to 
make real  data indistinguishable from random noise 
(especially in the area of disk encryption), thus encryption 
algorithms seem well suited to the task of generating random 
numbers.

Among the work that has followed the path of using 
cryptography to generate random numbers, many algorithms 
have been tried. Olano’s mNoise algorithm, for instance, uses 
the Blum Blum Shub pseudorandom number generator to 
generate the random numbers needed for quality noise in 
very few instructions in a GPU fragment shader [Olano 
2005]. Following this, Tzeng and Wei  implemented a 
pseudorandom number generator on GPUs using the MD5 
hashing algorithm as its base [Tzeng and Wei 2008]. This 
approach vastly improved the randomness of the numbers 
generated over the BBS-based approach  of Olano. However, 



this increase in quality was accompanied by a decrease in the 
performance. Even the most highly optimized MD5-based 
PRNG presented by Tzeng and Wei took over 28  times the 
amount of time in their tests to generate a 4096x4096 patch 
of random data when compared to BBS.

Zafar et al. proposed using the Tiny Encryption Algorithm to 
produce high-quality random numbers on the GPU with 
higher speed than MD5 [Zafar et al. 2010]. TEA is generally 
used in encryption with 32 rounds; however, adequate 
random numbers for noise generation can be generated with 
as few as two rounds of the algorithm. In comparison, the 
MD5-based approach was found to require at least 6 rounds 
before adequate randomness for noise was found. Zafar et  al. 
demonstrated that a 2-round TEA PRNG compares quite well 
in  performance to the BBS approach of Olano; however, the 
results are of greater quality. Higher quality numbers can be 
obtained by performing additional rounds of TEA, which 
makes the algorithm quite flexible and able to be tailored to 
the application.

3. Implementation

To implement the raytracing application and the random 
number generation driving the volumetric rendering, 
NVIDIA’s CUDA was used. CUDA is perhaps the most 
widespread GPGPU programming environment at  the current 
time, even though it is limited to supporting only NVIDIA’s 
GPUs. OpenCL was a possibility; however, there is not  as 
full of a support infrastructure available with  OpenCL as 
there is for CUDA. Perhaps the most important infrastructure 
piece to this project is NVIDIA’s OptiX framework, which is 
built on top of CUDA. Indeed, the raytracing application is a 
modification of one of the OptiX SDK example programs to 
add the volumetric fog effect that  demonstrates the 
techniques described herein.

All benchmarking for the raytracing application was 
performed on an Apple MacBook Pro using Mac OS X 
10.6.7. The particular machine used is a mid 2010 model, 
featuring a 2.66 Intel Core i7 (Arrandale) processor and 4GB 
of RAM. The machine has two GPUs that the OS switches 
between as applications demand it. This application only 
makes use of the NVIDIA GeForce GT 330M GPU, as it  is 
based on  CUDA. This particular GPU has 512 MB of 
dedicated RAM and is run on a PCI Express x16 bus. The 
GeForce GT 330M has a total of 48 unified shader cores 
which are used for CUDA computation.

The version of the CUDA toolkit used for this research was 
3.2, with CUDA driver version 3.2.17. The GPU driver was 
version 1.6.26.31 (256.00.35f05). In  addition, version 2.1.0 
Release Candidate 2 of the OptiX SDK was used. During the 
course of this research, NVIDIA released Version 4.0 RC2 of 
the CUDA toolkit and the corresponding CUDA driver; 
however, for consistency of results, these architectural pieces 
were not updated.

Figure 1: Initial version of the tutorial application used to 
develop the raytracing application for this research. This is 
the tenth iteration of the “tutorial” example from the OptiX 

SDK.

3.1. Implementation of the Raytracing Application
The raytracing application that  was enhanced with 
volumetric effects as a part of this work is based on an 
example program provided with the OptiX SDK. 
Specifically, the “tutorial”  application was used. This 
application is used by the OptiX SDK documentation to 
teach application developers how to add features to a 
raytracing application using OptiX one step at a time. For 
this research, the tenth iteration of the tutorial  was used, and 
all nonessential pieces to that version were removed. The 
tenth tutorial  draws a reflective box and a translucent 
crystalline object on a floor, with  an environment map in the 
background. Both the reflective box and the floor have 
procedurally generated textures applied to them, as is shown 
in Figure 1.

Once the tutorial program was adequately stripped down to 
remove anything other than the tutorial that was modified, 
the framework for the volumetric effects were added. To this 
end, OptiX requires a set of material programs to be defined. 
A set of material programs consist of two CUDA device 
functions. The first, and simplest  of these two functions is 
called the “any hit” program. The any hit program is written 
to  be called for calculations involving shadows. It  should be 
fast and easy to  compute, as it can be called quite often in the 
execution of a scene. The any hit program for the volumetric 
fog that is demonstrated simply ignores the intersection with 
the object containing the fog. While this is not completely 
physically accurate, it  does reflect what the author generally 
expects from fog. The second material program is called the 
“closest hit”  program. The closest  hit program is responsible 
for calculating the full  model of the material in use on the 
primitive that  has been hit by  a ray. Closest hit programs can 
cast additional rays (for reflection or refraction, for instance), 
and must calculate the full  contribution of the ray that  is 
currently being cast to  the visual output. For the volumetric 
fog effect, a very simple “refraction”  is performed through 
the fog layer to determine what the ray would hit underneath  



Figure 2: Raytracing application with added volumetric fog 
effect. This image was rendered with 2 rounds of the Tiny 
Encryption Algorithm used to generate noise for the fog.

the fog and calculate its contribution to the scene. After 
performing this step, the actual fog rendering is performed by 
stepping the incoming ray through the volume until it exits 
the volume. The step size can be controlled by setting a 
variable in the material  program. The contribution of each 
step is determined by a TEA-based noise function in the XZ 
plane and a linear falloff in the Y direction. The TEA-based 
noise is detailed further later in this section. The resulting 
program is shown in Figure 2.

The fog is implemented inside of a box primitive, which was 
provided with the tutorial example. In this application, the 
box is the same dimensions in the XZ plane as the floor 
underneath, however it, unlike the floor, has height in the Y 
direction. In the example shown in Figure 2, the fog 
primitive has a height of 2 units (to give context, the 
reflective box has a height of 7 units).

3.2. Implementation of Pseudorandom Numbers
To generate gradient  noise, a pseudorandom number 
generator is used to generate some data. While many 
different PRNGs are available, one that has been studied on 
GPUs for efficient implementation is based on the Tiny 
Encryption Algorithm. Zafar et  al. demonstrated that TEA is 
capable of generating relatively high quality pseudorandom 
numbers on a GPU with relatively little code and thus with 
high  performance. A simple implementation of TEA with 
CUDA is shown in Figure 3.

This simple implementation has one major drawback that  this 
research hopes to  address. Namely, how to choose and 
appropriate key to perform the encryption. This key must be 
chosen such that it  generates data that appears to be random. 
In the research of Zafar et al., the key used was chosen 
somewhat arbitrarily, and no further explanation is given for 
why that key was used over any other key. While many 
methods are available for generating  a cryptographically 
random key, none seem well suited to generate such a key on 
a GPU.

__device__ uint2 tea(uint2 v, uint4 k) {
  unsigned int v0 = v.x;
  unsigned int v1 = v.y;
  unsigned int sum = 0;
  unsigned int delta = 0x9E3779B9;
  int i;
  uint2 rv;

  for(i = 0; i < NROUNDS; ++i) {
    v0 += ((v1 << 4) + k.x) ^
          (v1 + sum) ^ ((v1 >> 5) + k.y);
    v1 += ((v0 << 4) + k.z) ^
          (v0 + sum) ^ ((v0 >> 5) + k.w);
  }

  rv.x = v0;
  rv.y = v1;
  return rv;
}

Figure 3: CUDA implementation of TEA. Input is two 32-bit 
words containing the data to be encrypted (v) and four 32-bit 

words containing the key to use for the encryption (k). The 
result is the encrypted data. Note that for performance, the 

loop should be unrolled.

In addition to the key being random, it  would be desirable for 
a system containing multiple GPUs to be able to have 
separate random streams for each GPU. The initial work of 
Zafar et al. would generate the same random number given 
the same input on all GPUs if run  in parallel. This is quite 
undesirable for some types of applications, even if the 
objective is only to generate random data for a noise 
function. To this end, a relatively  simple bootstrapping 
procedure to be performed on the PRNG is proposed, using 
the same algorithm to generate the key that is used to 
generate the random numbers later on. The general idea is 
relatively simplistic, however it is found to create decent 
results that are comparable to the fixed key used by Zafar et 
al.

The approach  taken is to essentially encrypt some device-
specific information along with a seed value to become the 
key. The initial key chosen  to encrypt the data can be 
arbitrary. While 2 rounds of TEA are appropriate for 
generating random data used for noise, this is not quite as 
appropriate for generating the key to  be used. At least 6 
rounds of TEA should be used, but more can be used for 
additional assurance of the randomness of the key. As the key 
generation phase only occurs once for the duration of the 
program, it does not negatively affect the performance of the 
random number generation to use many rounds for the key 
generation. The only  difference is in the startup time for the 
algorithm, which is not terribly significant. Pseudocode for 
the method used to combine the device-specific data and the 
random seed value is shown in Figure 4.



uint4 generate_key(uint4 ik, uint2 d) {
  uint4 rv;

  rv.yw = tea(d, ik);
  rv.xz = ik.yw;
  rv.xz = tea(d, rv);

  return rv;
}

Figure 4: Function to be used to combine the unique device 
information and a random seed (stored as the elements of d) 

to form a device-unique key. ik is an initial key, chosen 
arbitrarily. The tea() function is as defined in Figure 3, with 

NROUNDS equal to 16.

FPS

No Fog

Fog, step size = 0.1

Fog, step size = 0.05

Fog, step size = 0.01

8.63031

3.32626

2.0666

0.556651

Table 1: Average Frames Per Second (FPS) rendered with 
and without added volumetric fog. All tests were averaged 

over 30 seconds, with a moving camera.

4. Results

4.1. Effects of Volumetric Fog on Performance
Volumetric fog that is rendered by marching along rays can 
reasonably be expected to  be quite expensive to render, 
especially when many rays will need to be traced. As the 
primitive containing the fog covered the entirety of the floor 
of the scene, fog calculations were involved in almost every 
pixel that did  not fall completely through to the background 
environment map.

The OptiX SDK examples have built-in support for 
performing benchmarks, and this support was used to 
generate the results shown in Table 1. For the first of these 
experiments, fog was disabled completely and the program 
was tested to get a baseline. This is equivalent to the original 
Tutorial 10 SDK example. For the tests with fog  enabled, the 
effect of the step size of rays within the volume was tested. 
A smaller step size produces more visually pleasing fog, but 
it  also can have a drastic influence on the rendering speed. As 
the step size is the amount along each ray  that each sample is 
taken within the volume, the effect on rendering speed is 
easily understandable. As would be expected, for more 
realistic volume rendering, there is quite a bit of a 
performance degradation.

Figure 5: 64 x 64 pixel white noise produced by the original 
GPU-based TEA implementation of Zafar et al. on the left, 

modified TEA implementation on the right (both using 4 
rounds of TEA). Both produce similarly random results.

Figure 6: 256 x 256 pixel gradient noise produced by the 
original GPU-based TEA implementation of Zafar et al. on 

the left, modified TEA implementation on the right. Both 
render a single octave of noise, using 4 rounds of TEA.

Figure 7: Fourier Transform of a larger patch of noise 
(1024x1024 pixels). As with earlier images, the technique of 
Zafar et al. is on the left. Both were created with The GIMP 
and the G’MIC plugin, and are shown with 4 rounds of TEA.

4.2. Analysis of Modifications to the TEA PRNG
The version of the TEA-based pseudorandom number 
generator presented by Zafar et  al. uses one key that  is never 
modified  and produces decent results. With the modifications 
to  TEA proposed in this paper, similar visual results are seen. 
In addition, the results produced by the modified TEA are 
different for each run and potentially each device available in 
the system.



Time to Generate 
(μs)

Megabytes Per 
Second

Original

Modified

444,180 4,610.74

457,443 4,477.06

Table 2: Performance of modified TEA versus the technique 
of Zafar et al. Numbers given are for generating 2048 MB of 
data. Tests were performed by running 2048 calculations of 

1MB of data each using each of the two algorithms.

As can be seen from Figures 5, 6, and  7, the quality of 
random data and noise between the implementation of Zafar 
et al. and that of this paper is quite comparable.

One side effect of the way the key generation is performed in 
the modified TEA algorithm is that the key is stored in the 
device memory on the GPU. In  the original algorithm, the 
constant key would be rolled into the code directly. The fact 
that the key is stored in device memory does decrease 
performance a slight amount, as the data must be loaded into 
the registers of the GPU to be used. However, the flexibility 
afforded by the modified algorithm more than makes up for 
the small difference in time to run. Table 2 summarizes the 
timing information for generating 2048MB of random data 
using the original and modified TEA.

5. Future Work

There are several  areas in which this work can be extended in 
the future. The most obvious of these is to address some of 
the limitations of the design that was chosen. As the fog 
volume was contained within a single large box primitive, 
there is no way for rays originating inside of the volume to 
be properly shaded. This could be alleviated somewhat by 
dividing  the volume into smaller boxes, but this would not 
solve the problem in its entirety. A deeper understanding of 
the way that OptiX handles some aspects would certainly 
help solve this problem as well.

The voxel traversal  code used for the benchmarking is 
somewhat simplistic and is not particularly well optimized. 
The code used essentially blindly steps along the ray cast  into 
the volume, not using  any sort  of more optimized approach to 
volume rendering.

A second area where this work could be extended is in 
automatically determining the device specific information 
that is needed to initialize the key generation phase of the 
algorithm. For the data in this paper, the device specific 
identifier was simply an index. The random seed spoken of 
was simply the UNIX timestamp when the initialization 
function was called. It would be interesting to research 
whether there are registers available to CUDA device code 
that could be used to determine some more unique identifier 
than just an index into the devices available on the system. 

Unfortunately, no such information seems to be available in 
documentation.

The key generation function used was chosen for its 
simplicity, and only a few alternatives were tried before 
deciding on the function used. A more exhaustive review of 
potential key generation functions, including those that do 
not use TEA themselves for generating the key could very 
likely produce a more useful key generation function than 
what is provided here.

6. Conclusions

This paper demonstrates that it is not only possible, but fairly 
straightforward to create a real-time raytracing application 
using OptiX that has volumetric fog effects. Also, this paper 
demonstrates that it is possible to modify the TEA algorithm 
for random number generation on a GPU to handle multiple 
separate random streams without a major performance 
impediment and without degrading the quality of the random 
number generation. While the volumetric fog effects 
demonstrated herein have degraded performance 
significantly, future optimization  work and future directions 
in GPU technology should alleviate these concerns.
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