
Magic Sprites - Sprite based refraction and other Sprite Effects

Matthew Fioravante ∗

Abstract

Modern 3d graphics hardware provides a host of capabilities for
fast 2d sprite effects. This papers describes an implementation of
several fragment shaders that give realistic details to simple sprites.
In particular bump mapping, relief mapping, and sprite based re-
fraction have been implemented. Performance and possible future
direction is also discussed.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture;

Keywords: sprites, surface effects, shaders

Links: DL PDF

1 Introduction

Modern 3d graphics applications such as games take an extraor-
dinary amount of resources to create. While new technologies
have enabled developers to create ever more realistic renderings,
the costs and development time have also scaled at a geometric
rate [vgs]. According to an online study, in 2010 the average de-
velopment costs of a modern video game were around $28 mil-
lion[Crossley].

Independent developers simply do not have the resources to develop
3d applications of this caliber. In addition, mobile platforms are
becoming increasingly popular for 3d applications. Many of them
support embedded 3d graphics APIs such as OpenGL ES and sev-
eral low budget and indie video games have been developed for
them.

The goal of this project is to investigate how we can leverage the
features of the latest 3d hardware to produce 3d effects with min-
imal geometry. In particular the focus will be put on what effects
can be done with sprites.

Sprites are easy to work with because they only require an artist
to create 2d images. Details such as normals and depth can be
added with additional textures. Unlike complex models, each sprite
requires passing only a single vertex to the GPU, minimizing the
bandwidth bottleneck on the PCI-express bus. When working with
highly detailed sprites, we trade computation time on triangles and
meshes for computation time in the fragment shader.

The approach will be to analyze the performance and trade-offs of
3 sprite shaders. Bump mapping, relief mapping, and refraction
have been implemented using GLSL fragment shaders running in

∗e-mail:fmatthew5876@gmail.com

real time on the GPU. The aim of this work is to motivate further
research and development into sprite effects.

2 Related Work

Many techniques have been proposed to produce realistic looking
3d effects without the need for extra geometry. Blinn et al. intro-
duced traditional bump mapping [Blinn 1978]. Cook et al. [Cook
1984] introduced displacement mapping which is a technique to
actually perturb the underlying geometry. This idea was refined
by many others to produce parallax mapping [Kaneko et al. 2001;
Tatarchuk 2006] and relief mapping [Oliveira et al. 2000; Policarpo
et al. 2005; Policarpo and Oliveira 2006]. Both of these techniques
add height data to flat geometry though use of a texture to produce
self shadows, self occlusion, and parallax motion without any addi-
tional triangles. Another technique called impostors [Risser 2006]
creates a 3d object using several height fields oriented at different
positions. These can be viewed at several different angles. Layered
depth information such as used in [Eisemann and Décoret 2006]
can be used to produce volumetric effects and shadows.

All of these techniques can be used on sprites to produce realistic
3d effects with only 2d geometry. They can be used to augment an
entire two dimensional environment such as a 2d game or to draw a
three dimensional scene that contains sprites in place of models. In
some cases, the use of camera facing sprites allows optimizations
that were not possible before.

3 Implementation

The basic rendering framework was written in OpenGL using C++.
It is written to be compliant with the OpenGL 4.1 specification us-
ing the core profile, and takes advantage of some of the newest API
features.

Each sprite has 4 vertex attributes. The first is 3d position, the next
is a integer frame number (for texture animations), a rotation angle,
and finally a 2d scale factor in x and y. There are two classifications
of sprites in the rendering engine, static and dynamic. For dynamic
sprites, each of these vertex attributes can be updated every frame
to do animations. Static sprites are created once and stored on the
GPU for their entire lifetime.

In order to minimize data transfer to the GPU, each sprite is rep-
resented by a single vertex. The single vertex is transformed into
a triangle strip to form a quad that always faces the camera in the
geometry shader. Rotations are applied by a fast 2x2 matrix mul-
tiply. Scaling is simply a matter of scaling the initial positions of
each newly created vertices out further from the origin. The frame
attribute maps directly to the third texture coordinate of the texture
array holding the sprite sheet.

The vertex shader does nothing more than pass through vertex at-
tributes to the geometry shader. The fragment shader does all of the
real work for each of the sprite effects described below.

3.1 Texture lookups and bump mapping

Two dimensional texture arrays were used to store the sprite tex-
tures. This allows for easy animation of sprites. Each layer of the
array is a frame in the sprite sheet. Because a single texture array is
used, we don’t have to do multiple texture switches for each sprite

http://doi.acm.org/10.1145/1111111.2222222
http://portal.acm.org/ft_gateway.cfm?id=2222222&type=pdf

Figure 1: Color map and Normal map

sheet frame. An alternative approach would be to load the entire
sprite sheet as a single 2d texture, and use texture coordinates to
select each frame. That technique can cause bleeding artifacts at
the edges of each frame from adjacent frames. Using texture arrays
also allows one to control the clamping or repeating behavior of the
texture at the edge of the sprite.

With regards to normal vectors of screen facing sprites, tangent
space coordinates are the same as eye space coordinates. There-
fore we can save some computation in places where traditional al-
gorithms for 3d geometry would need to compute transformation
matrices to go from one space to another. In particular bump map-
ping becomes nothing more than one extra texture lookup. Figure
1 shows an example color map and normal map that will be used in
the performance benchmarking results in section 4.

3.2 Relief Mapping

Relief mapping is a technique that is used to create the illusion of
height based detail on a flat surface. For each fragment, a ray is
cast from the eye position into the depth texture to find where the
ray intersects the underlying surface. First linear search is used to
quickly find the general area where the intersection is located. Then
binary search is used to get closer to the exact point of intersection.
The number of linear search steps must be large enough to not be
able to skip over thin features. Adjusting the number of binary
search steps improves accuracy and reduces aliasing at the cost of
performance. The technique was originally proposed by Oliveira et.
al. [Oliveira et al. 2000] where they used image warping techniques
and software based rendering. Later Policarpo et. al. [Policarpo
et al. 2005] implemented relief mapping in real time using fragment
shaders.

Relief Mapping is implemented in the fragment shader using the
implementation provided by Policarpo et. al. [Policarpo et al. 2005]
as a base. Relief mapping works in tangent space, but since we are
using sprites we can work directly in eye space and avoid comput-
ing transformations. This implementation supports self shadowing,
fragment depth, and silhouettes. It was also extended to support
multiple light sources. Each active light source requires an addi-
tional pass through the relief mapping algorithm to compute shad-
ows.

3.3 Refraction

The most notable contribution of this work is sprite based refrac-
tion. Sprite based refraction is based on relief mapping. This time,
2 depth textures are used to define a volume of a refractive object.
Figure 2 gives an illustration.

The actual geometry of the sprite (quad) sits on the topmost layer
which is represented by the purple line in the diagram. The thicker
blue line is the color texture of the sprite. Let R be the refractive
sprite we wish to render.

Figure 2: Refraction diagram

First, render everything in the scene other thanR. We take the color
and depth values in the frame buffer and store them in textures.
Next we load these textures and render our sprite R.

As seen in the diagram, I0 is the incident vector from the eye to
the fragment on the surface of R. First, we must find the entry
point on the surface using the traditional relief mapping algorithm
on the top level depth texture. Once we find the entry point, we
can lookup the surface color and normal at that position. A quick
alpha test is done here, and if the surface color value alpha is 0,
we can discard the fragment immediately. The fragment depth is
updated and depth testing is performed to check for occlusion. If
the fragment is occluded we can also throw it away without needing
to continue processing.

The standard lighting computations are also done here at the re-
lief surface. This implementation uses blinn-phong but any other
lighting model could be substituted. Since the object is translu-
cent, shadow computation was disabled as an optimization. Multi-
ple lights are supported and the results of each lighting computation
at the surface are added up and saved until the blending step at the
end.

Given a ratio of indicies of refraction η, the next step is refract the
incident vector I0 into the surface to get a new incident vector I1.
The standard refract() function supplied by the GLSL API is used
here.

Now that we have the incident vector I1, we do another relief map-
ping pass on the bottom level depth texture to determine the exit
point. In addition, we also need to check whether I1 collides with
any of the background geometry. We do a third relief mapping pass
with I1 on the frame buffer depth texture, which is represented by
the orange line in figure 2.

If I1 collides with the background we are done and can move onto
the blending step at the end. If not then first we invert the ratio of
indices of refraction 1/η and refract I1 out of the surface the exit
point to get I2. Finally, we do the last relief mapping pass on the
frame buffer depth texture and I2, starting from the exit point, to
determine where the ray hits the background.

Now that we have a surface color value and and a color value of
where the incident ray hits the background, we blend the colors
together to get the final result.

Figure 3: Bump mapping example

Figure 4: Relief mapping example

4 Results

Figure 3 shows an image of a gargoyle with a normal map applied.
Diffuse and specular lighting can be seen. Compare to the original
image in figure 1.

Figure 4 shows an example of relief mapping with self shadows
and fragment depth. The shadows on the red object are produced in
real time by the relief mapping algorithm. A light source moving
across the scene generates moving shadows. The bricks also use
relief mapping to produce shadows and diffuse lighting. There are
three objects in this scene and each one is a single sprite. Fragment
depth testing can also be observed where the brick sprite and the
red relief sprite intersect. The normals in the relief texture produce
the diffuse lighting and specular highlights.

Figure 5 shows an example of a spherical glass ball doing refrac-
tion in real time. In the demo application the ball can be moved
over the scene. Objects inside of the ball appear differently than
objects behind it. Diffuse and specular lighting can also be seen
on the surface. Since this algorithm only uses the depth buffer to
determine collisions, it can be used with any kind of rendered or
pre-rendered scene.

The system used to render these scenes was a Core i7 860 at
2.80GHz with 16GB of memory running Ubuntu Linux 10.10 us-
ing the binary NVIDIA driver version 209.19.06. The GPU is an
NVIDIA GTX 470 with 1280 MB of GDDR5 memory. Due to
lack of time, neither the shaders nor the client side code have been

Figure 5: Sprite based refraction example

Table 1: Performance benchmarks for unoptimized code

Scene Data 1080p FPS 800x600 FPS

Bump mapped animated sprite 5000 10000
Relief mapped red box 700 2500
Relief mapped brick sprite 357 1428
Refraction Sprite with background 400 1500
All of the above 210 588

profiled or optimized.

Table 1 lists some benchmarks with different scenes. Each scene
had 2 directional lights. One light was fixed pointing in positive X,
Y, and Z. The second light was rotating around the Y axis at a fixed
speed. Benchmarks were taken at a full screen resolution of 1080p
(1920x1080) and a windowed resolution of 800x600.

The results turned out pretty good for unoptimized code. As ex-
pected, screen resolution has a significant impact on performance.
All of the work is being done in the fragment shader. When render-
ing the relief mapped sprites, the performance would immediately
improve if the camera was moved so that part of the relief sprite
was occluded.

The test system is a pretty high end system. It would be desirable
to increase performance to allow rendering of many sprites with
complicated shaders and also use on older systems that aren’t quite
as powerful. While the rendering engine was written to OpenGL 4.1
core, it could be back ported to support older versions of OpenGL.

5 Limitations and Future Work

The relief mapping algorithm given by Policarpo et. al. can produce
aliasing. In particular, the shadow produced by the pyramid object
in figure 4 exhibits some aliasing. Higher resolution relief maps can
be used to reduce the aliasing but not remove it entirely. Increasing
the number of binary steps can also reduce aliasing, at the cost of
performance. Relaxed cone stepping [Policarpo and Oliveira 2007]
could be used in place of the binary search approach used by tradi-
tional relief mapping to alleviate these aliasing problems. Relaxed
cone stepping would also improve performance at the cost of one-
time pre computation. As another optimization, fixed shadows and
highlights could be baked in to the color textures.

The refraction based sprite algorithm is still widely untested and
has not been thoroughly analyzed. Since it depends on the frame
buffer being rendered to a texture, it will not work correctly if the
refracted rays shoot off outside of the frame buffer region. The
refracted sprite must not get too close to the edge of the screen. De-
pending on the scene, this problem could be avoided by repeating
the background texture, choosing a fixed color, or using some other
texture lookup for rays that make it outside of the frame buffer re-
gion. At the cost of additional memory and computation time, a
larger window could be rendered into the background texture. One
could also do a separate rendering centered at the sprite to render
refractive sprites on the edge of the screen.

It is not clear what classes of shapes and ratios of refraction (η) are
acceptable. Certain combinations may produce rays that shoot off
too far past the background. For the initial implementation a sim-
ple sphere relief map was generated. Other simple shapes should
also be possible. For example one could render a glass of water. If
one only desires to render a basic shape such as a sphere, a proce-
dural approach would be much faster. Intersection points could be
computed directly and texture memory and lookups for relief maps
could be avoided entirely.

The refraction algorithm requires up to 4 relief mapping passes.
The shader code should be analyzed and profiled carefully for opti-
mizations.

6 Conclusion

An implementation of bump mapping, relief mapping, and refrac-
tion based sprites has been presented and analyzed. These tech-
niques illustrate how sprites can be used in place of complex mod-
els in three dimensional scenes to add realism. The performance,
quality, and work flow trade-offs between these mapping techniques
and creating complex models must be considered before choosing
which implementation to use. This work is only the beginning of
the possibilities of what can be done with sprites using 3d graphics
hardware.

References

BLINN, J. F. 1978. Simulation of wrinkled surfaces. SIGGRAPH
Comput. Graph. 12 (August), 286–292.

COOK, R. L. 1984. Shade trees. In Proceedings of the 11th
annual conference on Computer graphics and interactive tech-
niques, ACM, New York, NY, USA, SIGGRAPH ’84, 223–231.

CROSSLEY, R. Average dev costs as high as $28m
- game development - news by develop. http:
//www.develop-online.net/news/33625/
Study-Average-dev-cost-as-high-as-28m.

EISEMANN, E., AND DÉCORET, X. 2006. Fast scene voxelization
and applications. In Proceedings of the 2006 symposium on In-
teractive 3D graphics and games, ACM, New York, NY, USA,
I3D ’06, 71–78.

KANEKO, T., TAKAHEI, T., INAMI, M., KAWAKAMI, N.,
YANAGIDA, Y., MAEDA, T., AND TACHI, S. 2001. Detailed
shape representation with parallax mapping. In In Proceedings
of the ICAT 2001, 205–208.

OLIVEIRA, M. M., BISHOP, G., AND MCALLISTER, D. 2000.
Relief texture mapping. In Proceedings of the 27th annual con-
ference on Computer graphics and interactive techniques, ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA,
SIGGRAPH ’00, 359–368.

POLICARPO, F., AND OLIVEIRA, M. M. 2006. Relief mapping
of non-height-field surface details. In Proceedings of the 2006
symposium on Interactive 3D graphics and games, ACM, New
York, NY, USA, I3D ’06, 55–62.

POLICARPO, F., AND OLIVEIRA, M. M. 2007. GPU Gems 3 Ch.
18 Relaxed Cone Stepping for Relief Mapping. Addison-Wesley
Professional.

POLICARPO, F., OLIVEIRA, M. M., AND COMBA, J. A. L. D.
2005. Real-time relief mapping on arbitrary polygonal surfaces.
In Proceedings of the 2005 symposium on Interactive 3D graph-
ics and games, ACM, New York, NY, USA, I3D ’05, 155–162.

RISSER, E. 2006. True imposters. In ACM SIGGRAPH 2006
Research posters, ACM, New York, NY, USA, SIGGRAPH ’06.

TATARCHUK, N. 2006. Dynamic parallax occlusion mapping with
approximate soft shadows. In Proceedings of the 2006 sympo-
sium on Interactive 3D graphics and games, ACM, New York,
NY, USA, I3D ’06, 63–69.

Video game costs - video game sales wiki. http://vgsales.
wikia.com/wiki/Video_game_costs.

http://www.develop-online.net/news/33625/Study-Average-dev-cost-as-high-as-28m
http://www.develop-online.net/news/33625/Study-Average-dev-cost-as-high-as-28m
http://www.develop-online.net/news/33625/Study-Average-dev-cost-as-high-as-28m
http://vgsales.wikia.com/wiki/Video_game_costs
http://vgsales.wikia.com/wiki/Video_game_costs

