CMSC421: Principles of Operating Systems

Nilanjan Banerjee

Assistant Professor, University of Maryland
Baltimore County
nilanb@umbc.edu

http://www.csee.umbc.edu/~nilanb/teaching/421/

Principles of Operating Systems

Announcements

e Project 0 and Homework 1 are due this week
« Readings from Silberchatz [2"d chapter]

Discussion 2

Powers of two 1000

(Powers of two - 1) 0111

N & (N-1) 0000

Primer into kernel and user space memory

-

/

3GB <<

-

0xCc0000000 == TASK_SIZE
} Random stack offset

RLIMIT_STACK (e.g., 8MB)

} Random mmap offset

program break
brk

start_brk

Random brk offset

end_data

start_data
end_code

0x08048000
0

Acknowledgement: http://duarts.org/gustavo/blog/category/internals

Primer into how context switching happens

Process
Switch

Process
Switch

User Mode Space > User Mode Space v User Mode Space
(/bin/1s)

I

Acknowledgement: http://duarts.org/gustavo/blog/category/internals 5

Flow of control during a system call invocation

library (libc)

User space

int 0x80

Kernel space
syscall_table.S

iret

v
entry_32.S

return value stored
in the stack location

corresponding to %eax
table of

function pointers

Kernel dive.

Using sysenter/sysexit in Linux > 2.5

o Sysenter/sysexit is also called “Fast system Call”
e Available in Pentium Il +

o Sysenter is made of three registers

o SYSENTER_CS_MSR -- selecting segment of the kernel
code (figuring out which kernel code to run)

e SYSENTER_EIP_MSR --- address of the kernel entry
o SYSENTER_ESP_MSR --- kernel stack pointer

Simplified view of sysenter/sysexit in Linux > 2.5

library (libc)

User space

sysenter Kernel space

syscall_table.S

sysexit

v
entry_32.S

return value stored
in the stack location

corresponding to %eax
table of

function pointers

Lets write a system call in the kernel (sys_strcpy)

int strcpy(char *src, char *dest, int len)

can return values of
size of at most long? Why?

l

asmlinkage long sys_strcpy(char *src, char *dest, int len)

compiler directive
params will be read from stack

10

Important kernel files/ data structures for system calls

« implementation file for the sys call

e kernel/sys.c (most of the system calls are
implemented)

e You can implement a system call anywhere

e include/asm-i386/unistd.h
e Defines the *number® of a system call
e Defined the total humber of system calls.

e arch/i386/kernel/syscall_table.S

e Stores the system call table
o Stores the function pointers to system call definition

11

Issues to think about when writing system calls

e Moving data between the kernel and user process

Concerns: security and protection

e Synchronization and concurrency (will revisit)

Several (so called) kernel threads might be accessing
the same data structure that you want to read/write

Simple solution (disable interrupts “cli”)
e Usually not a good idea

Big problem in preemptive CPU (which is almost every
CPU) and multi-processor systems

o CONFIG_SMP or CONFIG_PREEMPT

12

Useful kernel API functions for bidirectional data movement

Simple types Aggregate types sl;;i;
A A A
\ <
> N\
Y
copy_from_user()
put_user() ! GOpy_So_usail) strcpy_from_user() Kemel
space
get_user() clear_user() '

e access_ok (type, addr, size). type (VERIFY_READ, VERIFY_WRITE)

e get_user(x, ptr) --- read a char or int from user-space

e put_user(x, ptr) --- write variable from kernel to user space

e copy_to_user(to, from, n) --- copy data from kernel to userspace
e copy_from_user(to, from, n) - copy data to kernel from userspace
e strnlen_user(src, n) - checks that the length of a buffer is n

e strcpy_from_user(dest, src, n) ---copies from kernel to user space

Acknowledgement: http://www.ibm.com/developerworks/linux/library/l-kernel-memory-access/index.html

13

Bootup Process

BIOS reads Bootloader
BIST CPU loads
(Built in Self Test)y ~ BIOS code > MBR and loads > Starts
Bootloader the kernel

Time Flow

CPU in Real Mode 1 CPU in Protected Mode

T o o e e e

Acknowledgement:http://duartes.org/gustavo/blog/post/how-computers-boot-up 14

Memory Organization during bootup

OxFFFFFFFF 4GB
BIOS load up
Reset vector
0xFFFFFFFOQ 4GB - 16 bytes
0xFFFFF 1MB
BIOS load up

0xF0000 960 KB

896 KB

768 KB

640 KB

Accessible RAM
Memory (640KB is
enough for anyone -
old DOS area)

0 0

Acknowledgement:http://duartes.org/gustavo/blog/post/how-computers-boot-up

15

Reading the first disk sector

N-sector disk drive. E ach sector has 512 bytes.

Sector0
Master | Sector1 | Sector2 | Sector 3 Sector N-2|Sector N-1
Boot
Record
Master Boot Record (512 bytes)
- Partition Table
(44%0:):%) Sig?‘l::i' — ' U(Z"s en(tfg:; 1&?;:83 Si;:gz Iz
(4 bytes) bytes) t c'>t al) (2 bytes)

Boot loader
Stage 1
(loads Stage 2)

Boot loader
Stage 2

(presents users with OS options)

Boot loader

Stage 3

(loads the 0S)

Acknowledgement:http://duartes.org/gustavo/blog/post/how-computers-boot-up

Lets take a look at some code
(Coreboot, GRUB, Kernel)

17

Creating Processes (fork())

parent

child - exec()

Netscape
pid = 7785

. resumes
walit

system process
tree

18

Fork() primer into virtual memory management

1GB //f
L

3GB <<

/"

Kernel space
User code CANNOT read from nor write to these addresses,

doing so results in a Segmentation Fault 0XxC000000O == TASK SIZE

} Random stack offset

Stack (grows down)

} Random mmap offset

Memory Mapping Segment
File mappings (including dynamic libraries) and anonymous
mappings. Example: /lib/libc.so

program break

ﬁ brk
Heap start_brk
Random brk offset
BSS segment

Uninitialized static variables, filled with zeros.
Example: static char *userName;

Data segment
Static variables initialized by the programmer.
Example: static char *gonzo = “God’s own prototype”;

Text segment (ELF)
Stores the binary image of the process (e.g., /bin/gonzo)

end_data

start_data
end_code

0x08048000

<]

RLIMIT_STACK (e.g., 8MB)

virtual
Address space

why virtual?

19

Fork() primer into virtual memory management

Virtual addresses

unallocated

Physical addresses

20

Fork() Copy-on-write policy

Physical addresses

Parent
process

Child
process

21

Fork() Copy-on-write policy

Physical addresses

Parent
process

Child
process

22

Unnamed Pipes+dup2 : communication child/parent process

parent child
fd(0) fd(1) fd(0) fd(1)

S

Pipe(fid); // where int fid[2] fid[@] is the read
from the pipe and fid[1] 1s write to the pipe

dup2(oldfid, newfid) //creates an alias to oldfid

//very handy when you do not want to use file
descriptors for

23

Process States

B As a process executes, it changes state
® new: The process is being created
running: Instructions are being executed
waiting: The process is waiting for some event to occur
ready: The process is waiting to be assighed to a processor

terminated: The process has finished execution

admitted interrupt

scheduler dispatch

I/O or event completion I/O or event wait

24

Kernel data structure for processes (PCB)

Information associated with each process
B Process state

Program counter

CPU registers

CPU scheduling information
Memory-management information
Accounting information

/0 status information

Process Context Switch

process P, operating system process P,

interrupt or system call

executing ‘l / l
T O save state into PCB,
. - idle
reload state from PCB, 1
-idle interrupt or system call executing
h 4 \ ! ~
save state into PCB;,
. \ idle
) reload state from PCB, y
executing | _\
L4

Process Scheduling

| readyqueue

/O queue re—

interrupt
OCCurs

child
executes

CPU
I/O request [&——
time slice :
expired
fork a
child
walit for an E
Interrupt

27

Process Queues

ready
queue

mag
tape
unit O

mag
tape
unit 1

disk
unit O

terminal
unit O

queue header PCB, PCB,
head > =
tail N registers registers
head —+——=
tail —
head T——=
tail] PCB; PCB,, PCBsg
/ [-
head 4
PCBs
head —T—> ——
@il

28

Lets take a kernel drive to study
the process data structure and fork() system call

29

Next class

e Process management

e Inter-process communication (Named pipes, shared
memory (shmget, mmap), message passing)

e |Intro to threads

30

An in-class discussion
(a bit-hack)

31

