
1

CMSC421: Principles of Operating Systems

Nilanjan Banerjee

Principles of Operating Systems

Assistant Professor, University of Maryland

Baltimore County
nilanb@umbc.edu

http://www.csee.umbc.edu/~nilanb/teaching/421/

2

Announcements

•  Project 0 and Homework 1 are due this week
•  Readings from Silberchatz [2nd chapter]

3

Discussion 2

1000 Powers of two 8

(Powers of two - 1) 0111 7

N & (N-1) 0000

4

Primer into kernel and user space memory

Acknowledgement: http://duarts.org/gustavo/blog/category/internals

5

Primer into how context switching happens

Acknowledgement: http://duarts.org/gustavo/blog/category/internals

6

Flow of control during a system call invocation

system call
invocation

entry_32.S

Saves registers
 on stack
Save return address
 of user process
 (thread_info)

syscall_table.S

 table of
function pointers

system call
 execution

Kernel space

User space

 your
application

library (libc)

int 0x80

 restore
registers

 return value stored
 in the stack location
corresponding to %eax

iret

Return value
Error = -1
Errorcode = errorno

7

 Kernel dive.

8

Using sysenter/sysexit in Linux > 2.5

•  Sysenter/sysexit is also called “Fast system Call”
•  Available in Pentium II +

•  Sysenter is made of three registers
•  SYSENTER_CS_MSR -- selecting segment of the kernel

code (figuring out which kernel code to run)
•  SYSENTER_EIP_MSR --- address of the kernel entry
•  SYSENTER_ESP_MSR --- kernel stack pointer

9

Simplified view of sysenter/sysexit in Linux > 2.5

_ _kernel_vsyscall

entry_32.S

Saves user mode
 stack
Save return address
 of user process
 (thread_info)

syscall_table.S

 table of
function pointers

system call
 execution

Kernel space

User space

 your
application

library (libc)

sysenter

 restore
registers

 return value stored
 in the stack location
corresponding to %eax

sysexit

Return value
Error = -1
Errorcode = errorno

10

Lets write a system call in the kernel (sys_strcpy)

 int strcpy(char *src, char *dest, int len)

 asmlinkage long sys_strcpy(char *src, char *dest, int len)

 compiler directive
 params will be read from stack

 can return values of
 size of at most long? Why?

11

Important kernel files/ data structures for system calls

•  implementation file for the sys call
•  kernel/sys.c (most of the system calls are

implemented)
•  You can implement a system call anywhere

•  include/asm-i386/unistd.h
•  Defines the *number* of a system call
•  Defined the total number of system calls.

•  arch/i386/kernel/syscall_table.S
•  Stores the system call table
•  Stores the function pointers to system call definition

12

Issues to think about when writing system calls

•  Moving data between the kernel and user process
•  Concerns: security and protection

•  Synchronization and concurrency (will revisit)
•  Several (so called) kernel threads might be accessing

the same data structure that you want to read/write
•  Simple solution (disable interrupts “cli”)

•  Usually not a good idea
•  Big problem in preemptive CPU (which is almost every

CPU) and multi-processor systems
•  CONFIG_SMP or CONFIG_PREEMPT

13

Useful kernel API functions for bidirectional data movement

•  access_ok (type, addr, size): type (VERIFY_READ, VERIFY_WRITE)
•  get_user(x, ptr) --- read a char or int from user-space
•  put_user(x, ptr) --- write variable from kernel to user space
•  copy_to_user(to, from, n) --- copy data from kernel to userspace
•  copy_from_user(to, from, n) – copy data to kernel from userspace
•  strnlen_user(src, n) – checks that the length of a buffer is n
•  strcpy_from_user(dest, src, n) ---copies from kernel to user space

Acknowledgement: http://www.ibm.com/developerworks/linux/library/l-kernel-memory-access/index.html

14

Bootup Process

Acknowledgement:http://duartes.org/gustavo/blog/post/how-computers-boot-up

BIST
(Built in Self Test)

CPU loads
BIOS code

BIOS reads
MBR and loads

Bootloader

Bootloader
Starts

the kernel

15

Memory Organization during bootup

Acknowledgement:http://duartes.org/gustavo/blog/post/how-computers-boot-up

BIOS load up

BIOS load up

16

Reading the first disk sector

Acknowledgement:http://duartes.org/gustavo/blog/post/how-computers-boot-up

Boot loader
Stage 1

(loads Stage 2)

Boot loader
Stage 2

(presents users with OS options)

Boot loader
Stage 3

(loads the OS)

17

 Lets take a look at some code
 (Coreboot, GRUB, Kernel)

18

Creating Processes (fork())

system process
 tree

19

Fork() primer into virtual memory management

 virtual
Address space

 why virtual?

20

Fork() primer into virtual memory management

Virtual addresses

Physical addresses

unallocated

21

Fork() Copy-on-write policy

 Parent
process

Physical addresses

 Child
process

22

Fork() Copy-on-write policy

 Parent
process

Physical addresses

 Child
process

write to a
 page

23

Unnamed Pipes+dup2 : communication child/parent process

Pipe(fid); // where int fid[2] fid[0] is the read
from the pipe and fid[1] is write to the pipe 	

dup2(oldfid, newfid) //creates an alias to oldfid	
//very handy when you do not want to use file

descriptors for 	

24

Process States

  As a process executes, it changes state

  new: The process is being created

  running: Instructions are being executed

  waiting: The process is waiting for some event to occur

  ready: The process is waiting to be assigned to a processor

  terminated: The process has finished execution

25

Kernel data structure for processes (PCB)

Information associated with each process

  Process state

  Program counter

  CPU registers

  CPU scheduling information

  Memory-management information

  Accounting information

  I/O status information

26

Process Context Switch

27

Process Scheduling

28

Process Queues

29

 Lets take a kernel drive to study
 the process data structure and fork() system call

30

Next class

•  Process management
•  Inter-process communication (Named pipes, shared

memory (shmget, mmap), message passing)
•  Intro to threads

31

 An in-class discussion
 (a bit-hack)

