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Announcements 

•  Project 0 and Homework 1 are due this week 
•  Readings from Silberchatz [2nd chapter] 
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Discussion 2 

1000 Powers of two 8 

(Powers of two  - 1) 0111 7 

N & (N-1) 0000 
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Primer into kernel and user space memory  

Acknowledgement: http://duarts.org/gustavo/blog/category/internals 
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Primer into how context switching happens 

Acknowledgement: http://duarts.org/gustavo/blog/category/internals 
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Flow of control during a system call invocation 

system call  
invocation 

entry_32.S 

Saves registers  
    on stack 
Save return address 
 of user process 
 (thread_info) 

syscall_table.S 

       table of  
function pointers 

system call  
 execution 

Kernel space 

User space 

    your  
application 

library (libc) 

int 0x80 

 restore  
registers 

 return value stored 
 in  the stack location  
corresponding to %eax 

iret 

Return value 
Error = -1 
Errorcode = errorno 
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      Kernel dive. 
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Using sysenter/sysexit in Linux > 2.5 

•  Sysenter/sysexit is also called “Fast system Call” 
•  Available in Pentium II +  

•  Sysenter is made of three registers 
•  SYSENTER_CS_MSR  -- selecting segment of the kernel 

code (figuring out which kernel code to run) 
•  SYSENTER_EIP_MSR --- address of the kernel entry 
•  SYSENTER_ESP_MSR --- kernel stack pointer 
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Simplified view of sysenter/sysexit in Linux > 2.5  

_ _kernel_vsyscall   

entry_32.S 

Saves user mode  
        stack 
Save return address 
 of user process 
 (thread_info) 

syscall_table.S 

       table of  
function pointers 

system call  
 execution 

Kernel space 

User space 

    your  
application 

library (libc) 

sysenter 

 restore  
registers 

 return value stored 
 in  the stack location  
corresponding to %eax 

sysexit 

Return value 
Error = -1 
Errorcode = errorno 
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Lets write a system call in the kernel (sys_strcpy) 

       int strcpy(char *src, char *dest, int len) 

       asmlinkage long sys_strcpy(char *src, char *dest, int len) 

       compiler directive 
 params will be read from stack 

     can return values of 
 size of at most long? Why? 
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Important kernel files/ data structures for system calls 

•  implementation file for the sys call 
•  kernel/sys.c (most of the system calls are 

implemented) 
•  You can implement a system call anywhere 

•  include/asm-i386/unistd.h 
•  Defines the *number* of a system call 
•  Defined the total number of system calls. 

•  arch/i386/kernel/syscall_table.S 
•  Stores the system call table 
•  Stores the function pointers to system call definition 
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Issues to think about when writing system calls 

•  Moving data between the kernel and user process 
•  Concerns: security and protection 

•  Synchronization and concurrency (will revisit) 
•  Several (so called) kernel threads might be accessing 

the same data structure that you want to read/write 
•  Simple solution (disable interrupts “cli”) 

•  Usually not a good idea 
•  Big problem in preemptive CPU (which is almost every 

CPU) and multi-processor systems 
•  CONFIG_SMP or CONFIG_PREEMPT 
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Useful kernel API functions for bidirectional data movement 

•  access_ok (type, addr, size):  type (VERIFY_READ, VERIFY_WRITE) 
•  get_user(x, ptr) --- read a char or int from user-space 
•  put_user(x, ptr) --- write variable from kernel to user space 
•  copy_to_user(to, from, n) --- copy data from kernel to userspace 
•  copy_from_user(to, from, n) – copy data to kernel from userspace 
•  strnlen_user(src, n) – checks that the length of a buffer is n 
•  strcpy_from_user(dest, src, n) ---copies from kernel to user space   

Acknowledgement: http://www.ibm.com/developerworks/linux/library/l-kernel-memory-access/index.html 
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Bootup Process 

Acknowledgement:http://duartes.org/gustavo/blog/post/how-computers-boot-up 

BIST 
(Built in Self Test) 

CPU loads  
BIOS code 

BIOS reads 
MBR and loads  

Bootloader 

Bootloader 
Starts 

the kernel 
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Memory Organization during bootup 

Acknowledgement:http://duartes.org/gustavo/blog/post/how-computers-boot-up 

BIOS load up 

BIOS load up 
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Reading the first disk sector 

Acknowledgement:http://duartes.org/gustavo/blog/post/how-computers-boot-up 

Boot loader 
Stage 1 

(loads Stage 2) 

Boot loader 
Stage 2 

(presents users with OS options) 

Boot loader 
Stage 3 

(loads the OS) 
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    Lets take a look at some code 
       (Coreboot, GRUB, Kernel) 
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Creating Processes (fork()) 

system process 
         tree 
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Fork() primer into virtual memory management 

     virtual  
Address space 

 why virtual? 



20 

Fork() primer into virtual memory management 

Virtual addresses 

Physical addresses 

unallocated 
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Fork() Copy-on-write policy 

 Parent  
process 

Physical addresses 

 Child 
process 
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Fork() Copy-on-write policy 

 Parent  
process 

Physical addresses 

 Child 
process 

write to a  
   page 
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Unnamed Pipes+dup2 : communication child/parent process 

Pipe(fid); // where int fid[2] fid[0] is the read 
from the pipe and fid[1] is write to the pipe 	

dup2(oldfid, newfid) //creates an alias to oldfid	
//very handy when you do not want to use file 

descriptors for 	
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Process States 

  As a process executes, it changes state 

  new:  The process is being created 

  running:  Instructions are being executed 

  waiting:  The process is waiting for some event to occur 

  ready:  The process is waiting to be assigned to a processor 

  terminated:  The process has finished execution 
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Kernel data structure for processes (PCB) 

Information associated with each process 

  Process state 

  Program counter 

  CPU registers 

  CPU scheduling information 

  Memory-management information 

  Accounting information 

  I/O status information 
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Process Context Switch 
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Process Scheduling 
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Process Queues 
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         Lets take a kernel drive to study  
      the process data structure and fork() system call 
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Next class 

•  Process management 
•  Inter-process communication (Named pipes, shared 

memory (shmget, mmap), message passing) 
•  Intro to threads 
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  An in-class discussion  
        (a bit-hack) 


