
1

CMSC421: Principles of Operating Systems

Nilanjan Banerjee

Principles of Operating Systems

Assistant Professor, University of Maryland

Baltimore County
nilanb@umbc.edu

http://www.csee.umbc.edu/~nilanb/teaching/421/

2

Announcements

•  Project 0 and Homework 1 out
•  Discussion grades will not be on Blackboard
•  Readings from Silberchatz

•  Optional but important

3

Discussion 1

Sign bit Mantissa exponent

1000

1000

1000

Integer/2s compliment

*(int *)&a

4

Kernel-userspace interaction

Application kernel

Hardware interrupts

software interrupts
 system calls

timers

exceptions

Timers/return from sys call

A closer look at system calls

5

Lets take an example

OS _start main:

libc

.c file .s file .o file Exec. assembler

libraries

linker

6

X86 assembly for system calls (older mechanism)

mov $1, %eax

mov $25, %ebx

int $0x80

Software interrupt

Jump to an address in the kernel
 where the syscall table is stored
And execute syscall # stored in %eax
args for syscall in registers
 [ebx, ecx, edx, esi, edi]

 Execute interrupt # 128
In the interrupt vector table

7

Primer into virtual memory management

Virtual addresses

Physical addresses

unallocated

8

Primer into kernel and user space memory

Acknowledgement: http://duarts.org/gustavo/blog/category/internals

9

Primer into how context switching happens

Acknowledgement: http://duarts.org/gustavo/blog/category/internals

10

Flow of control during a system call invocation

system call
invocation

entry_32.S

Saves registers
 on stack
Save return address
 of user process
 (thread_info)

syscall_table.S

 table of
function pointers

system call
 execution

Kernel space

User space

 your
application

library (libc)

int 0x80

 restore
registers

 return value stored
 in the stack location
corresponding to %eax

iret

Return value
Error = -1
Errorcode = errorno

11

 Kernel dive.

12

Important kernel files/ data structures for system calls

•  implementation file for the sys call
•  kernel/sys.c (most of the system calls are

implemented)
•  You can implement a system call anywhere

•  include/asm-i386/unistd.h
•  Defines the *number* of a system call
•  Defined the total number of system calls.

•  arch/i386/kernel/syscall_table.S
•  Stores the system call table
•  Stores the function pointers to system call definition

13

Using sysenter/sysexit in Linux > 2.5

•  Sysenter/sysexit is also called “Fast system Call”
•  Available in Pentium II +

•  Sysenter is made of three registers
•  SYSENTER_CS_MSR -- selecting segment of the kernel

code (figuring out which kernel code to run)
•  SYSENTER_EIP_MSR --- address of the kernel entry
•  SYSENTER_ESP_MSR --- kernel stack pointer

14

Simplified view of sysenter/sysexit in Linux > 2.5

_ _kernel_vsyscall

entry_32.S

Saves user mode
 stack
Save return address
 of user process
 (thread_info)

syscall_table.S

 table of
function pointers

system call
 execution

Kernel space

User space

 your
application

library (libc)

sysenter

 restore
registers

 return value stored
 in the stack location
corresponding to %eax

sysexit

Return value
Error = -1
Errorcode = errorno

15

Lets write a system call in the kernel (sys_strcpy)

 int strcpy(char *src, char *dest, int len)

 asmlinkage long sys_strcpy(char *src, char *dest, int len)

 compiler directive
 params will be read from stack

 can return values of
 size of at most long? Why?

16

Issues to think about when writing system calls

•  Moving data between the kernel and user process
•  Concerns: security and protection

•  Synchronization and concurrency (will revisit)
•  Several (so called) kernel threads might be accessing

the same data structure that you want to read/write
•  Simple solution (disable interrupts “cli”)

•  Usually not a good idea
•  Big problem in preemptive CPU (which is almost every

CPU) and multi-processor systems
•  CONFIG_SMP or CONFIG_PREEMPT

17

Useful kernel API functions for bidirectional data movement

•  access_ok (type, addr, size): type (VERIFY_READ, VERIFY_WRITE)
•  get_user(x, ptr) --- read a char or int from user-space
•  put_user(x, ptr) --- write variable from kernel to user space
•  copy_to_user(to, from, n) --- copy data from kernel to userspace
•  copy_from_user(to, from, n) – copy data to kernel from userspace
•  strnlen_user(src, n) – checks that the length of a buffer is n
•  strcpy_from_user(dest, src, n) ---copies from kernel to user space

Acknowledgement: http://www.ibm.com/developerworks/linux/library/l-kernel-memory-access/index.html

18

Next class

•  Linux Boot process
•  How the first process gets started

•  Process management
•  Process creation and basic IPC: fork(), pipe(), dup2(),

wait()
•  Theory on processes

19

 An in-class discussion
 (a Microsoft Interview Question)

