
1

CMSC421: Principles of Operating Systems

Nilanjan Banerjee

Principles of Operating Systems

Assistant Professor, University of Maryland

Baltimore County
nilanb@umbc.edu

http://www.csee.umbc.edu/~nilanb/teaching/421/

2

Administrivia

•  Course webpage: http://www.csee.umbc.edu/~nilanb/teaching/421
•  Instructor: Nilanjan Banerjee
•  Class time: MW 5:30 – 6:45 pm, IT 233
•  Email: nilanb@umbc.edu, room # 362
•  http://www.csee.umbc.edu/~nilanb/
•  Office hours: MW: 2:00 ---3:00 pm, room 362

•  Teaching Assistant for this course
•  Lawrence Sebald

•  Email: lsebald1@umbc.edu
•  Office hours: Mon(11AM-1PM), Tu(9:30AM-11:30AM), ITE240

•  Milind Patil
•  Email: milind1@umbc.edu
•  Office hours: Tu(11AM-1:00PM), Th(1PM-3PM), ITE240

3

Teaching Style

•  Highly interactive
•  Incentivize questions and discussions in class

•  Live coding in class
•  You are welcome to bring your laptops with toolkits installed
•  Writing userland code in class (mostly) and some kernel code

•  Kernel code surfing
•  Will be using http://lxr.linux.no/linux/
•  Labeled, annotated linux source code

Focus is on implementation and hands-on experience

4

Course webpage

http://www.csee.umbc.edu/~nilanb/teaching/421/
 will be moved to a central place

 Lets take a look at the webpage

Blackboard page is a replica
 All homeworks and projects would be submitted using blackboard

5

What is the grading distribution?

•  Homeworks (10%, 3-4+1)
•  Theoretical concepts
•  Some small programming components

•  Projects (40%)
•  3 project
•  Involve writing linux kernel code

•  Midterm (20%)
•  Final (25%)

•  End of class discussions (5%)

6

What is end of class discussions!

•  Puzzles from Microsoft, Google, Intel, etc. interviews
•  Mathematical puzzles.
•  Algorithmic puzzles

•  Programming puzzles
•  Bit hacks!
•  Weird stuff on C

•  How would be grading done
•  0 or 1 --- 0 (if you do not attend class or do not attempt

the problem at all) , 1 (if you make a plausible attempt
at the problem– need not be best solution)

7

Late Policy and Plagiarism

•  Very strict policy on plagiarism
•  You can discuss questions but you are *NOT* supposed to

see or replicate each others answers or source code

•  There is no late policy for homeworks or projects!
•  extra-ordinary circumstances you will have to get

permission from the instructor
•  We might extend deadlines if need be.

8

 Lets get started with some demonstrations

9

What does a OS really consist of?

distribution operating
 system

 kernel

flavor of an OS

e.g. Redhat
 Ubuntu

bunch of stuff
 -- User interface
 -- system management tools
 -- developer tools
 -- compilers/interpreters
 -- assemblers/linkers

 -- kernel
 -- core OS

resource mgmt
 -- process mgmt
 -- CPU scheduling
 -- memory mgmt
 -- storage mgmt
 -- I/O subsystem

user-space

kernel-space

 Where do drivers reside?

10

What does an OS provide us?

•  Hardware abstractions
•  Applications do not have to deal with nits and grits of

hardware
•  Applications cannot access hardware directly

•  Use OS to access disk drives, Network cards, CPU,
memory (some parts)

•  Multi-tasking/multiprocessing
•  Resource allocations

•  One CPU, one disk, one memory
•  Allocate resources to different applications

•  Protection
•  Sandbox applications & applications and the OS
•  Usually done through the Memory controller (virtual

memory) (First microprocessor to support MC?)

11

What does an Operating System look like?

 Applications (UI, system mgmt)

 User libraries (libc)

 Kernel

 System calls

 Drivers

 Hardware

 User
 space

Kernel
 space

Memory Controller

12

Magnify the kernel

 Task mgmt
 CPU sched.

 System call interface

 Drivers

 directly built
 into the kernel

memory
mgmt

 file
system

 I/O
mgmt

 loadable
 modules

Kernel source

13

Topics to be covered

 user-kernel interface

 bootup process

 Process/task mgmt

 CPU scheduling

 memory mgmt

 file system, I/O devices

 Other topics

 system calls

 processes/threads
 concurrency
 inter-process comm.

 scheduling algo etc.

 virtual memory,
 memory allocation, mmap()

FAT, ext2, RAID

I/O devices
Security
Distributed OS

14

Kernel-userspace interaction

Application kernel

Hardware interrupts

software interrupts
 system calls

timers

exceptions

Timers/return from sys call

A closer look at system calls

15

Lets take an example

OS _start main:

libc

.c file .s file .o file Exec. assembler

libraries

linker

16

Let take a look at some x86 assembly

mov $1, %eax

mov $25, %ebx

int $0x80

Software interrupt

Jump to an address in the kernel
 where the syscall table is stored
And execute syscall # stored in %eax
args for syscall in registers
 [ebx, ecx, edx, esi, edi]

 Execute interrupt # 128
In the interrupt vector table

17

Next class

•  System calls in detail
•  What really happens during a system call

•  Kernel Code surfing
•  Intro to the linux kernel
•  How the context switch happens to the kernel

•  Writing System calls in the kernel
•  Write a simple system call
•  Things to know about system calls in the kernel

•  Concurrency issues
•  Copy data to and from the kernel

18

 An in-class discussion (pointers in C)

