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Administrivia 

•  Course webpage: http://www.csee.umbc.edu/~nilanb/teaching/421 
•  Instructor: Nilanjan Banerjee 
•  Class time: MW 5:30 – 6:45 pm, IT 233 
•  Email: nilanb@umbc.edu, room # 362 
•  http://www.csee.umbc.edu/~nilanb/ 
•  Office hours: MW: 2:00 ---3:00 pm, room 362 

•  Teaching Assistant for this course 
•  Lawrence Sebald 

•  Email: lsebald1@umbc.edu 
•  Office hours: Mon(11AM-1PM), Tu(9:30AM-11:30AM), ITE240 

•  Milind Patil 
•  Email: milind1@umbc.edu 
•  Office hours: Tu(11AM-1:00PM), Th(1PM-3PM), ITE240 
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Teaching Style 

•  Highly interactive 
•  Incentivize questions and discussions in class  

•  Live coding in class 
•  You are welcome to bring your laptops with toolkits installed 
•  Writing userland code in class (mostly) and some kernel code  

•  Kernel code surfing  
•  Will be using http://lxr.linux.no/linux/ 
•  Labeled, annotated linux source code 

Focus is on implementation and hands-on experience 
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Course webpage 

http://www.csee.umbc.edu/~nilanb/teaching/421/ 
       will be moved to a central place 

    Lets take a look at the webpage 

Blackboard page is a replica 
 All homeworks and projects would be submitted using blackboard  
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What is the grading distribution? 

•  Homeworks (10%, 3-4+1) 
•  Theoretical concepts 
•  Some small programming components 

•  Projects (40%) 
•  3 project 
•  Involve writing linux kernel code 

•  Midterm (20%) 
•  Final (25%) 

•  End of class discussions (5%) 
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What is end of class discussions! 

•  Puzzles from Microsoft, Google, Intel, etc. interviews 
•  Mathematical puzzles. 
•  Algorithmic puzzles 

•  Programming puzzles 
•  Bit hacks! 
•  Weird stuff on C 

•  How would be grading done 
•  0 or 1 --- 0 (if you do not attend class or do not attempt 

the problem at all) , 1 (if you make a plausible attempt 
at the problem– need not be best solution) 
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Late Policy and Plagiarism 

•  Very strict policy on plagiarism  
•  You can discuss questions but you are *NOT* supposed to 

see or replicate each others answers or source code 

•  There is no late policy for homeworks or projects! 
•  extra-ordinary circumstances you will have to get 

permission from the instructor 
•  We might extend deadlines if need be. 
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 Lets get started with some demonstrations 
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What does a OS really consist of? 

distribution    operating 
      system 

     kernel 

flavor of an OS 

e.g. Redhat 
       Ubuntu 

bunch of stuff 
 -- User interface 
 -- system management tools 
 -- developer tools 
    -- compilers/interpreters 
    -- assemblers/linkers 

 -- kernel 
    -- core OS 

resource mgmt 
 -- process mgmt 
 -- CPU scheduling 
  -- memory mgmt 
  -- storage mgmt 
  -- I/O subsystem 

user-space 

kernel-space 

      Where do drivers reside? 
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What does an OS provide us? 

•  Hardware abstractions 
•  Applications do not have to deal with nits and grits of 

hardware 
•  Applications cannot access hardware directly 

•  Use OS to access disk drives, Network cards, CPU, 
memory (some parts) 

•  Multi-tasking/multiprocessing 
•  Resource allocations 

•  One CPU, one disk, one memory 
•  Allocate resources to different applications 

•  Protection 
•  Sandbox applications & applications and the OS 
•  Usually done through the Memory controller (virtual 

memory) (First microprocessor to support MC?) 
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What does an Operating System look like? 

     Applications (UI, system mgmt) 

     User libraries (libc) 

      Kernel  

  System calls 

      Drivers 

        Hardware 

 User 
 space 

Kernel 
 space 

Memory Controller 
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Magnify the kernel 

 Task mgmt 
 CPU sched.  

     System call interface 

    Drivers 

 directly built  
 into the kernel 

memory      
mgmt 

 file 
system 

  I/O  
mgmt 

   loadable 
   modules 

Kernel source 
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Topics to be covered 

   user-kernel interface 

    bootup process 

   Process/task mgmt 

     CPU scheduling 

     memory mgmt 

 file system, I/O devices 

 Other topics 

 system calls 

    processes/threads 
        concurrency 
     inter-process comm. 

    scheduling algo etc. 

       virtual memory,  
  memory allocation, mmap() 

FAT,  ext2, RAID 

I/O devices 
Security 
Distributed OS 
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Kernel-userspace interaction 

Application   kernel 

Hardware interrupts 

software interrupts 
    system calls 

timers 

exceptions 

Timers/return from sys call 

A closer look at system calls 
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Lets take an example 

OS _start main: 

libc 

.c file .s file .o file Exec. assembler 

libraries 

linker 
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Let take a look at some x86 assembly 

mov $1, %eax 

mov $25, %ebx 

int  $0x80 

Software interrupt 

Jump to an address in the kernel  
 where the syscall table is stored 
And execute syscall # stored in %eax 
args for syscall in registers 
       [ebx, ecx, edx, esi, edi]  

  Execute interrupt # 128 
In the interrupt vector table 
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Next class 

•  System calls in detail 
•  What really happens during a system call 

•  Kernel Code surfing  
•  Intro to the linux kernel 
•  How the context switch happens to the kernel 

•  Writing System calls in the kernel 
•  Write a simple system call 
•  Things to know about system calls in the kernel 

•  Concurrency issues 
•  Copy data to and from the kernel 
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  An in-class discussion (pointers in C) 


