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Announcements 

•  Project 1 due on Oct 7th 
•  Homework 2 is out (due Oct 13th) 
•  Readings from Silberchatz [6th chapter] 
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Test and Set semantics 

  What’s the effect of testAndset(value) when: 
  value = 0? (“unlocked”) 
  value = 1? (“locked”) 

int testAndset (int* v) { 
  int old = *v; 
  *v = 1; 
  return old; 
} 
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Blocking Locks 

  Suspend thread immediately 
–  Lets scheduler execute another thread 
–  Go to back of run queue or wait to be woken 

  Minimizes time spent waiting 
  But: always causes context switch 

void blockinglock (Lock* l) { 
  while (testAndSet(l.v) == 1) { 
    sched_yield(); 
  } 
} 
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Spin Locks 

  Instead of blocking, loop until released 

void spinlock (Lock* l) { 
  while (testAndSet(l.v) == 1) { 
    ; 
  } 
} 
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Other variants 

  Spin-then-yield: 
–  Spin for some time, then yield 

• Fixed spin time 
• Exponential backoff 
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Safety 

  Locks can enforce mutual exclusion, 
but notorious source of errors 
–  Failure to unlock 
–  Double locking 
–  Deadlock (its own lecture) 
–  Priority inversion 

•  not an “error” per se pthread_mutex_t l; 
void square (void) { 
  pthread_mutex_lock (&l); 
  // acquires lock 
  // do stuff 
  if (x == 0) { 
    return; 
  } else { 
    x = x * x; 
  } 
  pthread_mutex_unlock (&l); 
} 
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Bounded Buffer or Producer Consumer Problem 

  Suppose we have a thread-safe queue 
–  insert(item), remove(), empty() 
–  must protect access with locks 

  Consumer 
  Consumes items in the queue 
  Only if queue has items 

  Producer: 
  Produces items 
  Adds them only if the queue is not full 

A	
  simple	
  case:	
  max	
  size	
  of	
  queue	
  is	
  1	
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Solution (sleep?) 

  Sleep =  
–  “don’t run me until something happens” 

  What about this? 

Dequeue(){ 
   lock();  
   if (queue empty) { 
      sleep(); 
   } 

 take one item; 
   unlock(); 
}	
  

Enqueue(){ 
   lock();  
   insert item; 
   if (thread waiting) 
      wake up dequeuer(); 
   unlock(); 
}	
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Another solution 

  Does this work? 

Dequeue(){ 
   lock();  
   if (queue empty){ 
      unlock(); 
      sleep(); 
      remove item; 
   } 
   else unlock; 
} 

Enqueue(){ 
 lock();  
 insert item; 
 if (thread waiting) 
    wake up dequeuer(); 
 unlock(); 

}	
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Conditional variables 

  Make it possible/easy to go to sleep  
–  Atomically: 

•  release lock 
•  put thread on wait queue 
•  go to sleep 

  Each cv has a queue of waiting threads 
  Worry about threads that have been put on 

the wait queue but have NOT gone to sleep 
yet? 
–  no, because those two actions are atomic 

  Each condition variable associated with one 
lock 
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Conditional variables 

  Wait for 1 event, atomically release lock 
–  wait(Lock& l, CV& c) 

•  If queue is empty, wait 
–  Atomically releases lock, goes to sleep 
–  You must be holding lock! 
–  May reacquire lock when awakened (pthreads do) 

–  signal(CV& c) 
•  Insert item in queue 

–  Wakes up one waiting thread, if any 

–  broadcast(CV& c) 
•  Wakes up all waiting threads 

  Monitors = locks + condition variables 
–  Sometimes combined with data structures 

Lets take a look at a demo 
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Producer-consumer problem using pthread conditionals 

void * consumer (void *){ 
  while (true) { 
   pthread_mutex_lock(&l);  
   while (q.empty()){ 
      pthread_cond_wait(&nempty, &l); 
   } 
   cout << q.pop_back() << endl; 
   pthread_mutex_unlock(&l); 
  } 
}	
  

void * producer(void *){ 
  while (true) { 
   pthread_mutex_lock(&l); 
   q.push_front (1);  
   pthread_cond_signal(&nempty); 
   pthread_mutex_unlock(&l); 
  } 
}	
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Semaphores 

  Computer science: Dijkstra (1965) 

A	
  non-­‐nega)ve	
  
integer	
  counter	
  with	
  
atomic	
  increment	
  &	
  
decrement.	
  	
  
Blocks	
  rather	
  than	
  
going	
  nega)ve.	
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Semaphore Operations 

  P(sem), a.k.a. wait = 
decrement counter 
–  If sem = 0, block until 

greater than zero 
–  P = 

“prolagen” (proberen 
te verlagen, “try to 
decrease”) 

  V(sem), a.k.a. signal 
= increment counter 
–  Wake 1 waiting 

process 
–  V = “verhogen” 

 (“increase”) 
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How do you implement a mutex using semaphores 

  More elegant than locks 
–  Mutual Exclusion and Ordering 
–  By initializing semaphore to 0, 

threads can wait for an event to occur 

thread A 

// wait for thread B 

sem.wait(); 
// do stuff … 

thread B 

// do stuff, then 
// wake up A 

sem.signal(); 
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Counting Semaphores 

  Controlling resources: 
–  E.g., allow threads to use at most 5 files 

simultaneously 
•  Initialize to 5 

thread A 

sem.wait(); 
// use a file 

sem.signal(); 

thread B 

sem.wait(); 
// use a file 

sem.signal(); 
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  An in-class discussion 
 (producer consumer problem using sem) 


