
1

CMSC421: Principles of Operating Systems

Nilanjan Banerjee

Principles of Operating Systems
Acknowledgments: Some of the slides are adapted from Prof. Mark Corner and Prof. Emery

Berger’s OS course at Umass Amherst

Assistant Professor, University of Maryland

Baltimore County
nilanb@umbc.edu

http://www.csee.umbc.edu/~nilanb/teaching/421/

2

Announcements

•  Project 1 due on Oct 7th
•  Homework 2 is out (due Oct 13th)
•  Readings from Silberchatz [6th chapter]

3

Test and Set semantics

  What’s the effect of testAndset(value) when:
  value = 0? (“unlocked”)
  value = 1? (“locked”)

int testAndset (int* v) {
 int old = *v;
 *v = 1;
 return old;
}

4

Blocking Locks

  Suspend thread immediately
–  Lets scheduler execute another thread
–  Go to back of run queue or wait to be woken

  Minimizes time spent waiting
  But: always causes context switch

void blockinglock (Lock* l) {
 while (testAndSet(l.v) == 1) {
 sched_yield();
 }
}

5

Spin Locks

  Instead of blocking, loop until released

void spinlock (Lock* l) {
 while (testAndSet(l.v) == 1) {
 ;
 }
}

6

Other variants

  Spin-then-yield:
–  Spin for some time, then yield

• Fixed spin time
• Exponential backoff

7

Safety

  Locks can enforce mutual exclusion,
but notorious source of errors
–  Failure to unlock
–  Double locking
–  Deadlock (its own lecture)
–  Priority inversion

•  not an “error” per se pthread_mutex_t l;
void square (void) {
 pthread_mutex_lock (&l);
 // acquires lock
 // do stuff
 if (x == 0) {
 return;
 } else {
 x = x * x;
 }
 pthread_mutex_unlock (&l);
}

8

Bounded Buffer or Producer Consumer Problem

  Suppose we have a thread-safe queue
–  insert(item), remove(), empty()
–  must protect access with locks

  Consumer
  Consumes items in the queue
  Only if queue has items

  Producer:
  Produces items
  Adds them only if the queue is not full

A	
 simple	
 case:	
 max	
 size	
 of	
 queue	
 is	
 1	

9

Solution (sleep?)

  Sleep =
–  “don’t run me until something happens”

  What about this?

Dequeue(){
 lock();
 if (queue empty) {
 sleep();
 }

 take one item;
 unlock();
}	

Enqueue(){
 lock();
 insert item;
 if (thread waiting)
 wake up dequeuer();
 unlock();
}	

10

Another solution

  Does this work?

Dequeue(){
 lock();
 if (queue empty){
 unlock();
 sleep();
 remove item;
 }
 else unlock;
}

Enqueue(){
 lock();
 insert item;
 if (thread waiting)
 wake up dequeuer();
 unlock();

}	

11

Conditional variables

  Make it possible/easy to go to sleep
–  Atomically:

•  release lock
•  put thread on wait queue
•  go to sleep

  Each cv has a queue of waiting threads
  Worry about threads that have been put on

the wait queue but have NOT gone to sleep
yet?
–  no, because those two actions are atomic

  Each condition variable associated with one
lock

12

Conditional variables

  Wait for 1 event, atomically release lock
–  wait(Lock& l, CV& c)

•  If queue is empty, wait
–  Atomically releases lock, goes to sleep
–  You must be holding lock!
–  May reacquire lock when awakened (pthreads do)

–  signal(CV& c)
•  Insert item in queue

–  Wakes up one waiting thread, if any

–  broadcast(CV& c)
•  Wakes up all waiting threads

  Monitors = locks + condition variables
–  Sometimes combined with data structures

Lets take a look at a demo

13

Producer-consumer problem using pthread conditionals

void * consumer (void *){
 while (true) {
 pthread_mutex_lock(&l);
 while (q.empty()){
 pthread_cond_wait(&nempty, &l);
 }
 cout << q.pop_back() << endl;
 pthread_mutex_unlock(&l);
 }
}	

void * producer(void *){
 while (true) {
 pthread_mutex_lock(&l);
 q.push_front (1);
 pthread_cond_signal(&nempty);
 pthread_mutex_unlock(&l);
 }
}	

14

Semaphores

  Computer science: Dijkstra (1965)

A	
 non-­‐nega)ve	

integer	
 counter	
 with	

atomic	
 increment	
 &	

decrement.	
 	

Blocks	
 rather	
 than	

going	
 nega)ve.	

15

Semaphore Operations

  P(sem), a.k.a. wait =
decrement counter
–  If sem = 0, block until

greater than zero
–  P =

“prolagen” (proberen
te verlagen, “try to
decrease”)

  V(sem), a.k.a. signal
= increment counter
–  Wake 1 waiting

process
–  V = “verhogen”

 (“increase”)

16

How do you implement a mutex using semaphores

  More elegant than locks
–  Mutual Exclusion and Ordering
–  By initializing semaphore to 0,

threads can wait for an event to occur

thread A

// wait for thread B

sem.wait();
// do stuff …

thread B

// do stuff, then
// wake up A

sem.signal();

17

Counting Semaphores

  Controlling resources:
–  E.g., allow threads to use at most 5 files

simultaneously
•  Initialize to 5

thread A

sem.wait();
// use a file

sem.signal();

thread B

sem.wait();
// use a file

sem.signal();

18

 An in-class discussion
 (producer consumer problem using sem)

