
1

CMSC421: Principles of Operating Systems

Nilanjan Banerjee

Principles of Operating Systems
Acknowledgments: Some of the slides are adapted from Prof. Mark Corner and Prof. Emery

Berger’s OS course at Umass Amherst

Assistant Professor, University of Maryland

Baltimore County
nilanb@umbc.edu

http://www.csee.umbc.edu/~nilanb/teaching/421/

2

Announcements

•  Readings from Silberchatz [4th chapter]
•  Project 1 is out
•  Homework 2 would be out end of this week
•  Homework 1 grades are out

3

POSIX Signals

Linux kernel

Process 1 Process 2

Register a
 signal

 deliver
a signal

4

signals

•  int kill(pid_t pid, int signo);
–  Send a signal to a process with a process id

•  signal(<signal name>, <pointer to
handler>)
–  Handle a maskable signal in your code

5

Message Passing Using Sockets

•  A socket is defined as an endpoint for
communication

•  Concatenation of IP address and port

•  The socket 161.25.19.8:1625 refers to port
1625 on host 161.25.19.8

•  Communication consists between a pair of
sockets

6

Message Passing Using Sockets

7

Concept of Remote Procedure calls

  Remote procedure call (RPC) abstracts procedure calls between
processes on networked systems

  Stubs – client-side proxy for the actual procedure on the server

  The client-side stub locates the server and marshalls the parameters

  The server-side stub receives this message, unpacks the marshalled
parameters, and performs the procedure on the server

Execution of RPC

9

A Step back: Definition of a Process

  One or more threads running in an address space

10

What is an address space?

  A collection of data and code for the program organized in an
memory (addressable) region

11

Why do we need processes?

  A process (with a single thread) supports a serial flow of execution

  Is that good enough for all purposes?

  What if something goes wrong in one process?

  What if something takes a long amount of time in one process?

  What if we have more than one user?

12

Processes Vs Threads

  Both abstractions are very important

  They can provide parallel programming & concurrency

  They can hide latency from the end user

  Maximize CPU utilization

  Handle multiple, asynchronous events

  But they support different programming styles, have different
performances

13

What is difference between Process and Threads

  The execution context of the process are (Program Counter,
registers), address space, files, mmaped regions etc.

14

What is difference between Process and Threads

  Threads share an address space. They have same files, sockets etc.

  They have their own stack, program counters, registers, and stack
specific data

15

Creating Threads

  UNIX

  Pthreads (POSIX threads)

  Pthread_create() --- creating a thread

  Pthread_join() --- wait for thread to finish

 Lets see a demonstration of using pthreads.

16

Scheduling

One-one (linux) Many-one (Green Threads)

Many-many (Window-NT)

17

When to use Threads and When to use processes

  Processes or Threads

  Performance?

  Flexibility/Ease-of-use

  Robustness

  Simple Scheduling

  OS has a list of Threads and schedules them similar to
Processes. In Linux, threads/processes treated similarly

  Chooses one of the threads and loads them to be run

  Runs them for a while, runs another.

18

How does it work in Linux

  Linux refers to them as tasks rather than threads

  Thread creation is done through clone() system call

  clone() allows a child task to share the address space of the parent
task (process)

  struct task_struct points to process data structures (shared or
unique)

19

Threads Vs Processes

  Processes or Threads

  Performance?

  Flexibility/Ease-of-use

  Robustness

  Simple Scheduling

  OS has a list of Threads and schedules them similar to
Processes. In Linux, threads/processes treated similarly

  Chooses one of the threads and loads them to be run

  Runs them for a while, runs another.

20

Flexibility/Ease of use?

  Process are more flexible

  Easy to spawn processes, I can ssh into a server and spawn a
process

  Can communicate over sockets= distributes across machines

  Threads

  Communicate using memory – must be on the same machine

  Requires thread-safe code

21

Robustness

  Process are more robust

  Processes are separate or sandboxed from other processes

  If one process dies, no effect on other processes

  Threads

  If one thread crashes, whole process terminates

  Since there is sharing, there are problems with using the stack
efficiently

22

 An in-class discussion

