CMSC421: Principles of Operating Systems

Nilanjan Banerjee

Assistant Professor, University of Maryland
Baltimore County
nilanb@umbc.edu

http://www.csee.umbc.edu/~nilanb/teaching/421/

Principles of Operating Systems

Announcements

« Readings from Silberchatz [3" chapter]
e Project 1 is out
« Homework 2 would be out next week

Process Context Switch

When CPU switches to another process, the system must save the

state of the old process and load the saved state for the new process
via a context switch.

Context of a process represented in the PCB

Context-switch time is overhead; the system does no useful work
while switching

® The more complex the OS and the PCB -> longer the context
switch

Time dependent on hardware support

® Some hardware provides multiple sets of registers per CPU ->
multiple contexts loaded at once

Process Context Switch

process P, operating system process P,

interrupt or system call

executing ‘l / l
T O save state into PCB,
. - idle
reload state from PCB, 1
-idle interrupt or system call executing
h 4 \ ! ~
save state into PCB;,
. \ idle
) reload state from PCB, y
executing | _\
L4

Process Scheduling

| readyqueue CPU
I/O queue «— |/O request |[&—
time slice :
expired

interrupt wait for an
OCCUrs interrupt

child fork a
@ child)

Process Queues

ready
queue

mag
tape
unit O

mag
tape
unit 1

disk
unit O

terminal
unit O

tail

1

queue header PCB, PCB,
head > =
tail N registers registers
L °
head —+——=
tail —
head T——=
tail] PCB; PCB,, PCBsg
/ [-
head 4
PCBs
head —T—> ——
/

Lets take a kernel dive to study
the process data structure and fork() system call

Inter-process communication

e Processes within a system may be independent or
cooperating

o Cooperating process can affect or be affected by other
processes, including sharing data

« Reasons for cooperating processes:

- Information sharing
- Computation speedup
- Convenience

o Cooperating processes need interprocess communication
(IPC)

IPC mechanisms

e Pipes (unidirectional)
- Anonymous pipes (we have seen this)

- Named pipes (FIFOs) (communication between processes that are
not child and parent) (makes use of semaphores)

Shared memory
- Share a chunk of memory for read/write between processes

Mmaped files

- Communication through a file mapped to memory
Message passing

- Network sockets

Signals

- Slightly weird way of IPC

Pipes (unidirectional data transfer)

parent child
fd(0) fd(1) fd(0) fd(1)

S

e Anonymous pipes
- Defined within a process
- Communication between parent and child processes
 Named pipes (FIFO)
- Allows communication between processes which are not child/
parent
- Linux utilty: mkfifo

10

mkfifo

int retval = mkfifo (“path to the pipe”,
permissions)

- Creates a pipe
- Use this pipe for reading writing, just like a file

int fid = open(“path to file”, O RDWR);

use read (fid, char *, length) and

write (fid, char *, length) to read and write from
the pipe

11

Shared memory

Process 2
Process 1

Page table

Page table

physical
memory

Linux utilty: shmget, shmat, shmdt

12

Shared memory

e POSIX Shared Memory

- Process first creates shared memory segment
segment 1d = shmget (IPC PRIVATE, size, S IRUSR

| S IWUSR) ;

- Process wanting access to that shared memory must attach
to it

shared memory = (char *) shmat(id, NULL, O0);

- Now the process could write to the shared memory

sprintf (shared memory, "Writing to shared
memory") ;

- When done a process can detach the shared memory from
its address space

shmdt (shared memory) ;

13

Memory mapped files (awesome hack!)

L5

File pages cached
in memory

Page table _ Page table

e Linux utility
- mmap()

14

Mmap()

e F'1rst create a file of all zeros

dd if=/dev/zero of=“your file” bs=1024
count = 1024

— Creates a file of size 1M

 Open that file

e Memory map that file

— mmap (start addr, length, protocol (PROT READ|
PROT WRITE), flags (MAP SHARED), <fd of the
open file>, offset)

— Returns a pointer to read and write from the
mmaped region

15

POSIX Signals

Register a de.liver
signal a signal

<+~ Name Description Default Action
SIGINT Interrupt character typed terminate process
SIGQUIT Quit character typed (~\) create core image
SIGKILL kill -9 terminate process
SIGSEGV Invalid memory reference create core image

SIGPIPE Write on pipe but no reader terminate process
SIGALRM alarm() clock ‘rings’ terminate process
SIGUSR1 user-defined signal type terminate process

SIGUSR2 user-defined signal type terminate process

16

signals

e Int kill(pid t pid, 1int signo);

— Send a signal to a process with a process id

* signal (<signal name>, <poilinter to
handler>)

— Handle a maskable signal in your code

17

Message Passing Using Sockets

e A socket is defined as an endpoint for
communication

e Concatenation of IP address and port

e The socket 161.25.19.8:1625 refers to port
1625 on host 161.25.19.8

« Communication consists between a pair of
sockets

18

Message Passing Using Sockets

host X
(146.86.5.20)

socket
(146.86.5.20:1625)

web server
(161.25.19.8)

socket
({liGHF2ERICr8E8)

19

Concept of Remote Procedure calls

Remote procedure call (RPC) abstracts procedure calls between
processes on networked systems

Stubs - client-side proxy for the actual procedure on the server

The client-side stub locates the server and marshalls the parameters

The server-side stub receives this message, unpacks the marshalled
parameters, and performs the procedure on the server

20

Execution of RPC

client

user calls kernel
to send RPC
message to
procedure X

kernel sends
message to
matchmaker to
find port number

kernel places
port Pin user
RPC message

kernel sends
RPC

kernel receives
reply, passes
it to user

messages

From: client
To: server
Port: matchmaker
Re: address
for RPC X

From: server
To: client
Port: kernel
Re: RPC X
Port: P

From: client
To: server
Port: port P
<contents>

From: RPC
Port: P
To: client
Port: kernel
<output>

server

matchmaker
receives
message, looks
up answer

Y

matchmaker
replies to client
with port P

daemon
listening to
port P receives
message

h 4

daemon
processes
request and
processes send
output

An in-class discussion

22

