
1

CMSC421: Principles of Operating Systems

Nilanjan Banerjee

Principles of Operating Systems

Assistant Professor, University of Maryland

Baltimore County
nilanb@umbc.edu

http://www.csee.umbc.edu/~nilanb/teaching/421/

2

Announcements

•  Readings from Silberchatz [3nd chapter]
•  Project 1 is out
•  Homework 2 would be out next week

3

Process Context Switch

  When CPU switches to another process, the system must save the
state of the old process and load the saved state for the new process
via a context switch.

  Context of a process represented in the PCB

  Context-switch time is overhead; the system does no useful work
while switching

  The more complex the OS and the PCB -> longer the context
switch

  Time dependent on hardware support

  Some hardware provides multiple sets of registers per CPU ->
multiple contexts loaded at once

4

Process Context Switch

5

Process Scheduling

6

Process Queues

7

 Lets take a kernel dive to study
 the process data structure and fork() system call

 Schedule
child process

 duplicate
task_struct

8

Inter-process communication

•  Processes within a system may be independent or
cooperating

•  Cooperating process can affect or be affected by other
processes, including sharing data

•  Reasons for cooperating processes:
–  Information sharing
–  Computation speedup
–  Convenience

•  Cooperating processes need interprocess communication
(IPC)

9

IPC mechanisms

•  Pipes (unidirectional)
–  Anonymous pipes (we have seen this)
–  Named pipes (FIFOs) (communication between processes that are

not child and parent) (makes use of semaphores)

•  Shared memory
–  Share a chunk of memory for read/write between processes

•  Mmaped files
–  Communication through a file mapped to memory

•  Message passing
–  Network sockets

•  Signals
–  Slightly weird way of IPC

10

Pipes (unidirectional data transfer)

•  Anonymous pipes
–  Defined within a process
–  Communication between parent and child processes

•  Named pipes (FIFO)
–  Allows communication between processes which are not child/

parent
–  Linux utilty: mkfifo

11

mkfifo

•  int retval = mkfifo(“path to the pipe”,
permissions)
–  Creates a pipe
–  Use this pipe for reading writing, just like a file

•  int fid = open(“path to file”, O_RDWR);

•  use read(fid, char *, length) and
•  write(fid, char *, length) to read and write from

the pipe

12

Shared memory

–  Linux utilty: shmget, shmat, shmdt

Page table Page table

Shared memory

Process 1
Process 2

physical
memory

13

Shared memory

•  POSIX Shared Memory
–  Process first creates shared memory segment
segment id = shmget(IPC PRIVATE, size, S IRUSR
| S IWUSR);

–  Process wanting access to that shared memory must attach
to it

shared memory = (char *) shmat(id, NULL, 0);

–  Now the process could write to the shared memory
sprintf(shared memory, "Writing to shared
memory");

–  When done a process can detach the shared memory from
its address space

shmdt(shared memory);

14

Memory mapped files (awesome hack!)

•  Linux utility
–  mmap()

File on disk

Page cache

File pages cached
 in memory

Page table Page table

Process 1 Process 2

15

Mmap()

•  First create a file of all zeros
 dd if=/dev/zero of=“your file” bs=1024
count = 1024
–  Creates a file of size 1M

•  Open that file

•  Memory map that file
–  mmap(start_addr, length, protocol (PROT_READ|
PROT_WRITE), flags (MAP_SHARED), <fd of the
open file>, offset)

–  Returns a pointer to read and write from the
mmaped region

16

POSIX Signals

Linux kernel

Process 1 Process 2

Register a
 signal

 deliver
a signal

17

signals

•  int kill(pid_t pid, int signo);
–  Send a signal to a process with a process id

•  signal(<signal name>, <pointer to
handler>)
–  Handle a maskable signal in your code

18

Message Passing Using Sockets

•  A socket is defined as an endpoint for
communication

•  Concatenation of IP address and port

•  The socket 161.25.19.8:1625 refers to port
1625 on host 161.25.19.8

•  Communication consists between a pair of
sockets

19

Message Passing Using Sockets

20

Concept of Remote Procedure calls

  Remote procedure call (RPC) abstracts procedure calls between
processes on networked systems

  Stubs – client-side proxy for the actual procedure on the server

  The client-side stub locates the server and marshalls the parameters

  The server-side stub receives this message, unpacks the marshalled
parameters, and performs the procedure on the server

Execution of RPC

22

 An in-class discussion

