
1

CMSC421: Principles of Operating Systems

Nilanjan Banerjee

Principles of Operating Systems

Assistant Professor, University of Maryland

Baltimore County
nilanb@umbc.edu

http://www.csee.umbc.edu/~nilanb/teaching/421/

2

Announcements

•  Readings from Silberchatz [3rd chapter]
•  Late Policy

3

 Processes

4

Process Tree generation

system process
 tree

5

But what is a process?

  An operating system executes a variety of programs:
  Batch system – jobs
  Time-shared systems – user programs or tasks

  Textbook uses the terms job and process almost interchangeably

  Process – a program in execution; process execution must progress in
sequential fashion

  A process includes:
  program counter
  stack
  data section

6

Process Memory looks like.

 virtual
Address space

 why virtual?

7

 How do we create new processes in userland (fork)
 Lets see a demo

8

 What is really happening here

9

Fork() primer into virtual memory management

Virtual addresses
 (page table)

Physical addresses

unallocated

10

Fork() Copy-on-write policy

 Parent
process

Physical addresses

 Child
process

11

Fork() Copy-on-write policy

 Parent
process

Physical addresses

 Child
process

write to a
 page

12

communication child/parent process (Unnamed pipes)

Pipe(fid); // where int fid[2] fid[0] is the read
from the pipe and fid[1] is write to the pipe 	

dup2(oldfid, newfid) //creates an alias to oldfid	
//very handy when you do not want to use file

descriptors and use standard ones 	

13

Process States

  As a process executes, it changes state

  new: The process is being created

  running: Instructions are being executed

  waiting: The process is waiting for some event to occur

  ready: The process is waiting to be assigned to a processor

  terminated: The process has finished execution

14

Kernel data structure for processes (PCB)

Information associated with each process

  Process state (running, waiting, ready, terminated)

  Program counter (instruction that is executing right now)

  CPU registers (eax, ebx, etc)

  CPU scheduling information (when would it scheduled)

  Memory-management information (pages that are allocated, non-
allocated, what do they correspond to)

  Accounting information (several things like time created, time run, time
waiting etc.)

  I/O status information (file descriptors in addition to stdin, stdout,
stderr, other files, pipe information, FIFO, shared memory, mmaped
file)

 get a plethora of information in /proc/<pid>/

15

Kernel data structure for processes (PCB)

•  Represented by the C structure task_struct

 pid t pid; /* process identifier */
long state; /* state of the process */
unsigned int time slice /* scheduling information */

 struct task struct *parent; /* this process’s parent */

 struct list head children; /* this process’s children */

 struct files struct *files; /* list of open files */

 struct mm struct *mm; /* address space of this pro */

16

Process Context Switch

  When CPU switches to another process, the system must save the
state of the old process and load the saved state for the new process
via a context switch.

  Context of a process represented in the PCB

  Context-switch time is overhead; the system does no useful work
while switching

  The more complex the OS and the PCB -> longer the context
switch

  Time dependent on hardware support

  Some hardware provides multiple sets of registers per CPU ->
multiple contexts loaded at once

17

Process Context Switch

18

Process Scheduling

19

Process Queues

20

 Lets take a kernel dive to study
 the process data structure and fork() system call

 Schedule
child process

 duplicate
task_struct

21

Next class

•  Process management
•  Inter-process communication (Named pipes, shared

memory (shmget, mmap), message passing)
•  Intro to threads

22

 An in-class discussion
 (a bit-hack)

