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Principles of Operating Systems



Announcements

e Project 0 and Homework 1 are due this week
« Readings from Silberchatz [2"d chapter]
e Section 2.3



Lets write a system call in the kernel (sys_strcpy)

int strcpy(char *src, char *dest, int len)

can return values of
size of at most long? Why?

l

asmlinkage long sys_strcpy(char *src, char *dest, int len)

compiler directive
params will be read from stack



Issues to think about when writing system calls

e Moving data between the kernel and user process

Concerns: security and protection

e Synchronization and concurrency (will revisit)

Several (so called) kernel threads might be accessing
the same data structure that you want to read/write

Simple solution (disable interrupts “cli”)
e Usually not a good idea

Big problem in preemptive CPU (which is almost every
CPU) and multi-processor systems

o CONFIG_SMP or CONFIG_PREEMPT



Useful kernel API functions for bidirectional data movement
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e access_ok (type, addr, size). type (VERIFY_READ, VERIFY_WRITE)
e get_user(x, ptr) --- read a char or int from user-space

e put_user(x, ptr) --- write variable from kernel to user space

e copy_to_user(to, from, n) --- copy data from kernel to userspace
e copy_from_user(to, from, n) - copy data to kernel from userspace
e strnlen_user(src, n) - checks that the length of a buffer is n

e strcpy_from_user(dest, src, n) ---copies from kernel to user space

Acknowledgement: http://www.ibm.com/developerworks/linux/library/l-kernel-memory-access/index.html
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Linux Bootup process



Intel Motherboard

RAM Modules . _
(System Memory) Front Side Bus
. DDR2
@EEERMWSINETT <, - Channel A
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Acknowledgement:http://duartes.org/gustavo/blog/post/motherboard-chipsets-memory-map



Memory Organization during CPU bootup

0xFFFFFFFF 4GB
BIOS load up

Reset vector
0xFFFFFFFOQ 4GB - 16 bytes

0xFFFFF 1MB

0xF 0000 960 KB

896 KB
Real mode

768 KB

640 KB

Accessible RAM
Memory (640KB is
enough for anyone -
old DOS area)

0 0

Acknowledgement:http://duartes.org/gustavo/blog/post/how-computers-boot-up



Bootup Process

BIOS reads Bootloader
BIST CPU loads
(Built in Self Test)y  ~  BIOS code > MBR and loads > Starts
Bootloader the kernel
One disk page

(512 bytes)

Time Flow

| CPU in Real Mode CPU in Protected Mode

T o o e e e

Acknowledgement:http://duartes.org/gustavo/blog/post/how-computers-boot-up



Reading the first disk sector

N-sector disk drive. E ach sector has 512 bytes.

Sector0
Master | Sector1 | Sector2 | Sector 3 Sector N-2|Sector N-1
Boot
Record
Master Boot Record (512 bytes)
- Partition Table
(44%0:):%) Sig?‘l::i' — ' U(Z"s en(tfg:; 1&?;:83 Si;:gz Iz
(4 bytes) bytes) t c'>t al) (2 bytes)

Boot loader
Stage 1
(loads Stage 2)

Boot loader
Stage 2

(presents users with OS options)

Boot loader

Stage 3

(loads the 0S)

Acknowledgement:http://duartes.org/gustavo/blog/post/how-computers-boot-up




Bootup Process

BIOS reads Bootloader
BIST CPU loads
(Built in Self Test)y  ~  BIOS code > MBR and loads > Starts
Bootloader the kernel
One disk page

(512 bytes)
Bootloader

(stageO, stage1, stage2)

Time Flow

(CPUIn Real Mode i CPU in Protected Mode
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/

Acknowledgement:http://duartes.org/gustavo/blog/post/how-computers-boot-up 11



Lets take a look at some code
(Coreboot, GRUB, Kernel)
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Processes
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Process Tree generation

Sched
pid =0

o
V]

(e
@
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=
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pid =2

inetd dtlogin
pid = 140 pid = 251

telnetdaemon
pid =7776

Csh
pid = 7778

Xsession
pid = 294

sdt_shel
pid = 340

Csh
pid = 1400
Netscape emacs
pid =7785 pid = 8105

)
;

cat
pid = 2536

system process
tree

14



But what is a process?

B An operating system executes a variety of programs:
® Batch system - jobs
® Time-shared systems - user programs or tasks

B Process - a program in execution; process execution must progress in
sequential fashion

B A process includes:
® program counter
® stack
® data section
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Process Memory looks like.

1GB
0xCc0000000 == TASK_SIZE

(" }vRandom stack offset

RLIMIT_STACK (e.g., 8MB)

} Random mmap offset

virtual
Address space

3GB 4< program break
brk

start_brk
Random brk offset

= why virtual?

end_data
prototype”; start_data
end_code

= ©) |oxese4s000
N 0




How do we create new processes in userland (fork)
Lets see a demo
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What is really happening here

parent

child - exec()

wait

resumes
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What does the memory structure look like before fork()

Virtual addresses

unallocated

Physical addresses
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What does it look like after forking?

Physical addresses

Parent
process

Child
process
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Fork() Copy-on-write policy

Physical addresses

Parent
process

Child
process
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communication child/parent process (Unnamed pipes)

parent child

fd(0) fd(1) fd(0) fd(1)

S

Pipe(fid); // where int fid[2] fid[@] is the read
from the pipe and fid[1] 1s write to the pipe

dup2(oldfid, newfid) //creates an alias to oldfid

//very handy when you do not want to use file
descriptors and use standard ones
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Kernel data structure for processes (PCB)

Information associated with each process
B Process state

Program counter

CPU registers

CPU scheduling information
Memory-management information
Accounting information

/0 status information



Kernel data structure for processes (PCB)

« Represented by the C structure task struct

pid t pid; /* process identifier */
long state; /* state of the process */
unsigned int time slice /* scheduling information */

struct task struct *parent; /* this process’s parent */
struct list head children; /* this process’s children */
struct files struct *files; /* list of open files */

struct mm struct *mm; /* address space of this pro */

Siruct tasx_struct Siruct 1asx_struct struct task_struct
process information process information o process informanon
current

(currently execuling proccess)
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Process States

B As a process executes, it changes state
® new: The process is being created
running: Instructions are being executed
waiting: The process is waiting for some event to occur
ready: The process is waiting to be assighed to a processor

terminated: The process has finished execution

admitted interrupt

scheduler dispatch

I/O or event completion I/O or event wait
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Process Context Switch

When CPU switches to another process, the system must save the

state of the old process and load the saved state for the new process
via a context switch.

Context of a process represented in the PCB

Context-switch time is overhead; the system does no useful work
while switching

® The more complex the OS and the PCB -> longer the context
switch

Time dependent on hardware support

® Some hardware provides multiple sets of registers per CPU ->
multiple contexts loaded at once
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Process Context Switch

process P, operating system process P,

interrupt or system call

executing ‘l / l
T O save state into PCB,
. - idle
reload state from PCB, 1
-idle interrupt or system call executing
h 4 \ ! ~
save state into PCB;,
. \ idle
) reload state from PCB, y
executing | _\
L4




Process Scheduling

| readyqueue

/O queue  re—

interrupt
OCCurs

child
executes

CPU
I/O request  [&——
time slice :
expired
fork a
child
walit for an E
Interrupt
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Process Queues

ready
queue

mag
tape
unit O

mag
tape
unit 1

disk
unit O

terminal
unit O

queue header PCB, PCB,
head > =
tail N registers registers
head —+——=
tail —
head T——=
tail ] PCB; PCB,, PCBsg
/ [ -
head 4
PCBs
head —T—>  ——
@il
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Lets take a kernel dive to study
the process data structure and fork() system call
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Next class

e Process management

e Inter-process communication (Named pipes, shared
memory (shmget, mmap), message passing)

e |Intro to threads
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An in-class discussion
(a bit-hack)
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