
1

CMSC421: Principles of Operating Systems

Nilanjan Banerjee

Principles of Operating Systems

Assistant Professor, University of Maryland

Baltimore County
nilanb@umbc.edu

http://www.csee.umbc.edu/~nilanb/teaching/421/

2

Announcements

•  Project 0 and Homework 1 are due this week
•  Readings from Silberchatz [2nd chapter]

•  Section 2.3

3

Lets write a system call in the kernel (sys_strcpy)

 int strcpy(char *src, char *dest, int len)

 asmlinkage long sys_strcpy(char *src, char *dest, int len)

 compiler directive
 params will be read from stack

 can return values of
 size of at most long? Why?

4

Issues to think about when writing system calls

•  Moving data between the kernel and user process
•  Concerns: security and protection

•  Synchronization and concurrency (will revisit)
•  Several (so called) kernel threads might be accessing

the same data structure that you want to read/write
•  Simple solution (disable interrupts “cli”)

•  Usually not a good idea
•  Big problem in preemptive CPU (which is almost every

CPU) and multi-processor systems
•  CONFIG_SMP or CONFIG_PREEMPT

5

Useful kernel API functions for bidirectional data movement

•  access_ok (type, addr, size): type (VERIFY_READ, VERIFY_WRITE)
•  get_user(x, ptr) --- read a char or int from user-space
•  put_user(x, ptr) --- write variable from kernel to user space
•  copy_to_user(to, from, n) --- copy data from kernel to userspace
•  copy_from_user(to, from, n) – copy data to kernel from userspace
•  strnlen_user(src, n) – checks that the length of a buffer is n
•  strcpy_from_user(dest, src, n) ---copies from kernel to user space

Acknowledgement: http://www.ibm.com/developerworks/linux/library/l-kernel-memory-access/index.html

6

 Linux Bootup process

7

Intel Motherboard

Acknowledgement:http://duartes.org/gustavo/blog/post/motherboard-chipsets-memory-map

8

Memory Organization during CPU bootup

Acknowledgement:http://duartes.org/gustavo/blog/post/how-computers-boot-up

BIOS load up

Real mode

9

Bootup Process

Acknowledgement:http://duartes.org/gustavo/blog/post/how-computers-boot-up

BIST
(Built in Self Test)

CPU loads
BIOS code

BIOS reads
MBR and loads

Bootloader

Bootloader
Starts

the kernel

One disk page
(512 bytes)

10

Reading the first disk sector

Acknowledgement:http://duartes.org/gustavo/blog/post/how-computers-boot-up

Boot loader
Stage 1

(loads Stage 2)

Boot loader
Stage 2

(presents users with OS options)

Boot loader
Stage 3

(loads the OS)

11

Bootup Process

Acknowledgement:http://duartes.org/gustavo/blog/post/how-computers-boot-up

BIST
(Built in Self Test)

CPU loads
BIOS code

BIOS reads
MBR and loads

Bootloader

Bootloader
Starts

the kernel

One disk page
(512 bytes)

Bootloader
(stage0, stage1, stage2)

12

 Lets take a look at some code
 (Coreboot, GRUB, Kernel)

13

 Processes

14

Process Tree generation

system process
 tree

15

But what is a process?

  An operating system executes a variety of programs:
  Batch system – jobs
  Time-shared systems – user programs or tasks

  Process – a program in execution; process execution must progress in
sequential fashion

  A process includes:
  program counter
  stack
  data section

16

Process Memory looks like.

 virtual
Address space

 why virtual?

17

 How do we create new processes in userland (fork)
 Lets see a demo

18

 What is really happening here

19

What does the memory structure look like before fork()

Virtual addresses

Physical addresses

unallocated

20

What does it look like after forking?

 Parent
process

Physical addresses

 Child
process

21

Fork() Copy-on-write policy

 Parent
process

Physical addresses

 Child
process

write to a
 page

22

communication child/parent process (Unnamed pipes)

Pipe(fid); // where int fid[2] fid[0] is the read
from the pipe and fid[1] is write to the pipe 	

dup2(oldfid, newfid) //creates an alias to oldfid	
//very handy when you do not want to use file

descriptors and use standard ones 	

23

Kernel data structure for processes (PCB)

Information associated with each process

  Process state

  Program counter

  CPU registers

  CPU scheduling information

  Memory-management information

  Accounting information

  I/O status information

24

Kernel data structure for processes (PCB)

•  Represented by the C structure task_struct

 pid t pid; /* process identifier */
long state; /* state of the process */
unsigned int time slice /* scheduling information */

 struct task struct *parent; /* this process’s parent */

 struct list head children; /* this process’s children */

 struct files struct *files; /* list of open files */

 struct mm struct *mm; /* address space of this pro */

25

Process States

  As a process executes, it changes state

  new: The process is being created

  running: Instructions are being executed

  waiting: The process is waiting for some event to occur

  ready: The process is waiting to be assigned to a processor

  terminated: The process has finished execution

26

Process Context Switch

  When CPU switches to another process, the system must save the
state of the old process and load the saved state for the new process
via a context switch.

  Context of a process represented in the PCB

  Context-switch time is overhead; the system does no useful work
while switching

  The more complex the OS and the PCB -> longer the context
switch

  Time dependent on hardware support

  Some hardware provides multiple sets of registers per CPU ->
multiple contexts loaded at once

27

Process Context Switch

28

Process Scheduling

29

Process Queues

30

 Lets take a kernel dive to study
 the process data structure and fork() system call

31

Next class

•  Process management
•  Inter-process communication (Named pipes, shared

memory (shmget, mmap), message passing)
•  Intro to threads

32

 An in-class discussion
 (a bit-hack)

