CMSC421: Principles of Operating Systems

Nilanjan Banerjee

Assistant Professor, University of Maryland
Baltimore County
nilanb@umbc.edu

http://www.csee.umbc.edu/~nilanb/teaching/421/

Principles of Operating Systems

Announcements

e Project 0 and Homework 1 are due this week
« Readings from Silberchatz [2"d chapter]
e Section 2.3

Lets write a system call in the kernel (sys_strcpy)

int strcpy(char *src, char *dest, int len)

can return values of
size of at most long? Why?

l

asmlinkage long sys_strcpy(char *src, char *dest, int len)

compiler directive
params will be read from stack

Issues to think about when writing system calls

e Moving data between the kernel and user process

Concerns: security and protection

e Synchronization and concurrency (will revisit)

Several (so called) kernel threads might be accessing
the same data structure that you want to read/write

Simple solution (disable interrupts “cli”)
e Usually not a good idea

Big problem in preemptive CPU (which is almost every
CPU) and multi-processor systems

o CONFIG_SMP or CONFIG_PREEMPT

Useful kernel API functions for bidirectional data movement

- a

Simple types Aggregate types sl;;i;
A A A
\ <
> N\
Y
copy_from_user()
put_user() ! copy_to_user() stmcpy_from_user() AL
space
get_user() clear_user() P
L A/

e access_ok (type, addr, size). type (VERIFY_READ, VERIFY_WRITE)
e get_user(x, ptr) --- read a char or int from user-space

e put_user(x, ptr) --- write variable from kernel to user space

e copy_to_user(to, from, n) --- copy data from kernel to userspace
e copy_from_user(to, from, n) - copy data to kernel from userspace
e strnlen_user(src, n) - checks that the length of a buffer is n

e strcpy_from_user(dest, src, n) ---copies from kernel to user space

Acknowledgement: http://www.ibm.com/developerworks/linux/library/l-kernel-memory-access/index.html

5

Linux Bootup process

Intel Motherboard

RAM Modules . _
(System Memory) Front Side Bus
. DDR2
@EEERMWSINETT <, - Channel A
@EERAMMGETE "< ppR:

Acknowledgement:http://duartes.org/gustavo/blog/post/motherboard-chipsets-memory-map

Memory Organization during CPU bootup

0xFFFFFFFF 4GB
BIOS load up

Reset vector
0xFFFFFFFOQ 4GB - 16 bytes

0xFFFFF 1MB

0xF 0000 960 KB

896 KB
Real mode

768 KB

640 KB

Accessible RAM
Memory (640KB is
enough for anyone -
old DOS area)

0 0

Acknowledgement:http://duartes.org/gustavo/blog/post/how-computers-boot-up

Bootup Process

BIOS reads Bootloader
BIST CPU loads
(Built in Self Test)y ~ BIOS code > MBR and loads > Starts
Bootloader the kernel
One disk page

(512 bytes)

Time Flow

| CPU in Real Mode CPU in Protected Mode

T o o e e e

Acknowledgement:http://duartes.org/gustavo/blog/post/how-computers-boot-up

Reading the first disk sector

N-sector disk drive. E ach sector has 512 bytes.

Sector0
Master | Sector1 | Sector2 | Sector 3 Sector N-2|Sector N-1
Boot
Record
Master Boot Record (512 bytes)
- Partition Table
(44%0:):%) Sig?‘l::i' — ' U(Z"s en(tfg:; 1&?;:83 Si;:gz Iz
(4 bytes) bytes) t c'>t al) (2 bytes)

Boot loader
Stage 1
(loads Stage 2)

Boot loader
Stage 2

(presents users with OS options)

Boot loader

Stage 3

(loads the 0S)

Acknowledgement:http://duartes.org/gustavo/blog/post/how-computers-boot-up

Bootup Process

BIOS reads Bootloader
BIST CPU loads
(Built in Self Test)y ~ BIOS code > MBR and loads > Starts
Bootloader the kernel
One disk page

(512 bytes)
Bootloader

(stageO, stage1, stage2)

Time Flow

(CPUIn Real Mode i CPU in Protected Mode
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/

Acknowledgement:http://duartes.org/gustavo/blog/post/how-computers-boot-up 11

Lets take a look at some code
(Coreboot, GRUB, Kernel)

12

Processes

13

Process Tree generation

Sched
pid =0

o
V]

(e
@
o}
=
=

pid =2

inetd dtlogin
pid = 140 pid = 251

telnetdaemon
pid =7776

Csh
pid = 7778

Xsession
pid = 294

sdt_shel
pid = 340

Csh
pid = 1400
Netscape emacs
pid =7785 pid = 8105

)
;

cat
pid = 2536

system process
tree

14

But what is a process?

B An operating system executes a variety of programs:
® Batch system - jobs
® Time-shared systems - user programs or tasks

B Process - a program in execution; process execution must progress in
sequential fashion

B A process includes:
® program counter
® stack
® data section

15

Process Memory looks like.

1GB
0xCc0000000 == TASK_SIZE

(" }vRandom stack offset

RLIMIT_STACK (e.g., 8MB)

} Random mmap offset

virtual
Address space

3GB 4< program break
brk

start_brk
Random brk offset

= why virtual?

end_data
prototype”; start_data
end_code

= ©) |oxese4s000
N 0

How do we create new processes in userland (fork)
Lets see a demo

17

What is really happening here

parent

child - exec()

wait

resumes

18

What does the memory structure look like before fork()

Virtual addresses

unallocated

Physical addresses

19

What does it look like after forking?

Physical addresses

Parent
process

Child
process

20

Fork() Copy-on-write policy

Physical addresses

Parent
process

Child
process

21

communication child/parent process (Unnamed pipes)

parent child

fd(0) fd(1) fd(0) fd(1)

S

Pipe(fid); // where int fid[2] fid[@] is the read
from the pipe and fid[1] 1s write to the pipe

dup2(oldfid, newfid) //creates an alias to oldfid

//very handy when you do not want to use file
descriptors and use standard ones

22

Kernel data structure for processes (PCB)

Information associated with each process
B Process state

Program counter

CPU registers

CPU scheduling information
Memory-management information
Accounting information

/0 status information

Kernel data structure for processes (PCB)

« Represented by the C structure task struct

pid t pid; /* process identifier */
long state; /* state of the process */
unsigned int time slice /* scheduling information */

struct task struct *parent; /* this process’s parent */
struct list head children; /* this process’s children */
struct files struct *files; /* list of open files */

struct mm struct *mm; /* address space of this pro */

Siruct tasx_struct Siruct 1asx_struct struct task_struct
process information process information o process informanon
current

(currently execuling proccess)

24

Process States

B As a process executes, it changes state
® new: The process is being created
running: Instructions are being executed
waiting: The process is waiting for some event to occur
ready: The process is waiting to be assighed to a processor

terminated: The process has finished execution

admitted interrupt

scheduler dispatch

I/O or event completion I/O or event wait

25

Process Context Switch

When CPU switches to another process, the system must save the

state of the old process and load the saved state for the new process
via a context switch.

Context of a process represented in the PCB

Context-switch time is overhead; the system does no useful work
while switching

® The more complex the OS and the PCB -> longer the context
switch

Time dependent on hardware support

® Some hardware provides multiple sets of registers per CPU ->
multiple contexts loaded at once

26

Process Context Switch

process P, operating system process P,

interrupt or system call

executing ‘l / l
T O save state into PCB,
. - idle
reload state from PCB, 1
-idle interrupt or system call executing
h 4 \ ! ~
save state into PCB;,
. \ idle
) reload state from PCB, y
executing | _\
L4

Process Scheduling

| readyqueue

/O queue re—

interrupt
OCCurs

child
executes

CPU
I/O request [&——
time slice :
expired
fork a
child
walit for an E
Interrupt

28

Process Queues

ready
queue

mag
tape
unit O

mag
tape
unit 1

disk
unit O

terminal
unit O

queue header PCB, PCB,
head > =
tail N registers registers
head —+——=
tail —
head T——=
tail] PCB; PCB,, PCBsg
/ [-
head 4
PCBs
head —T—> ——
@il

29

Lets take a kernel dive to study
the process data structure and fork() system call

30

Next class

e Process management

e Inter-process communication (Named pipes, shared
memory (shmget, mmap), message passing)

e |Intro to threads

31

An in-class discussion
(a bit-hack)

32

