
1

CMSC421: Principles of Operating Systems

Nilanjan Banerjee

Principles of Operating Systems
Acknowledgments: Some of the slides are adapted from Prof. Mark Corner and Prof. Emery

Berger’s OS course at Umass Amherst

Assistant Professor, University of Maryland

Baltimore County
nilanb@umbc.edu

http://www.csee.umbc.edu/~nilanb/teaching/421/

2

Announcements

•  Homework 3 is out (due nov 27th)
•  Travelling next week: Dr. Joshi will teach on M/W

Access Lists and Groups

•  Mode of access: read, write, execute
•  Three classes of users

 RWX
 a) owner access 7 ⇒ 1 1 1

 RWX
 b) group access 6 ⇒ 1 1 0
 RWX
 c) public access 1 ⇒ 0 0 1

•  Ask manager to create a group (unique name),
say G, and add some users to the group.

•  For a particular file (say game) or subdirectory,
define an appropriate access.

owner! group! public!

chmod! 761! game!

4

elnux14>	
 ls	
 -­‐l	
 ack.scm	

-­‐rw-­‐r-­‐-­‐-­‐-­‐-­‐	
 	
 1	
 emery	
 fac	
 197	
 Feb	
 25	
 15:19	
 ack.scm	

elnux14>	
 chmod	
 -­‐r	
 ack.scm	

elnux14>	
 ls	
 -­‐l	
 ack.scm	

-­‐-­‐w-­‐-­‐-­‐-­‐-­‐-­‐-­‐	
 	
 1	
 emery	
 fac	
 197	
 Feb	
 25	
 15:19	
 ack.scm	

elnux14>	
 cat	
 ack.scm	

cat:	
 ack.scm:	
 Permission	
 denied	

Access Control - chmod

•  Can read bits via ls, set bits via chmod

Access Control Lists (ACLs) in Windows

•  ACLs are more expressive
–  Specify different rights per user or group
–  Opinion: one of the biggest UNIX problems

Access Methods

•  Sequential Access
 read next
 write next
 reset
 no read after last write
 (rewrite)

•  Direct Access
 read n
 write n
 position to n
 read next
 write next
 rewrite n

 n = relative block number

Sequential-access File

Example of Index and Relative Files

9

Directories

•  Directory – just special file
–  Contains metadata, filenames
–  Store pointers to files

•  Typically hierarchical tree
–  odd exposure of data structure to user

A Typical File-system Organization

Operations Performed on Directory

•  Search for a file

•  Create a file

•  Delete a file

•  List a directory

•  Rename a file

•  Traverse the file system

Organize the Directory (Logically) to Obtain

•  Efficiency – locating a file quickly

•  Naming – convenient to users
–  Two users can have same name for different files
–  The same file can have several different names

•  Grouping – logical grouping of files by properties,
(e.g., all Java programs, all games, …)

Single-Level Directory

•  A single directory for all users

Naming problem 

Grouping problem#

Two-Level Directory

•  Separate directory for each user

  Path name#
  Can have the same file name for different user#
  Efficient searching#
  No grouping capability#

Tree-Structured Directories

Tree-Structured Directories (Cont.)

•  Efficient searching

•  Grouping Capability

•  Current directory (working directory)
–  cd /spell/mail/prog

Tree-Structured Directories (Cont)

•  Absolute or relative path name
•  Creating a new file is done in current directory
•  Delete a file

 rm <file-name>
•  Creating a new subdirectory is done in current

directory
 mkdir <dir-name>

 Example: if in current directory /mail
 mkdir count

mail#

prog# copy# prt#exp# count#
Deleting “mail” ⇒ deleting the entire subtree rooted by “mail”#

Acyclic-Graph Directories

•  Have shared subdirectories and files (how do you
accomplish this?)

Acyclic-Graph Directories (Cont.)

•  Two different names (aliasing)

•  If dict deletes list ⇒ dangling pointer
 Solutions:

–  Backpointers, so we can delete all pointers
Variable size records a problem

–  Entry-hold-count solution

•  New directory entry type
–  Link – another name (pointer) to an existing file
–  Resolve the link – follow pointer to locate the file

General Graph Directory

General Graph Directory (Cont.)

•  How do we guarantee no cycles?
–  Allow only links to file not subdirectories
–  Garbage collection
–  Every time a new link is added use a cycle detection

algorithm to determine whether it is OK

A Typical File Control Block

Inodes (An example of a FCB)

•  On disk data structure
–  Describes where all the bits of a file are

24

Directories

•  Directory – just special file
–  Contains metadata, filenames

•  pointers to inodes

•  Typically hierarchical tree
–  odd exposure of data structure to user

In-Memory File System Structures

Directory Implementation

•  Linear list of file names with pointer to the data
blocks
–  Simple to program
–  Time-consuming to execute

•  Linear search time
•  Could keep ordered alphabetically via linked list or use B+

tree

•  Hash Table – linear list with hash data structure
–  Decreases directory search time
–  Collisions – situations where two file names hash to the

same location
–  Only good if entries are fixed size, or use chained-overflow

method

Allocation Methods - Contiguous

•  An allocation method refers to how disk blocks are
allocated for files:

•  Contiguous allocation – each file occupies set of
contiguous blocks
–  Best performance in most cases
–  Simple – only starting location (block #) and length

(number of blocks) are required
–  Problems include finding space for file, knowing file size,

external fragmentation, need for compaction off-line
(downtime) or on-line

Contiguous Allocation

•  Mapping from logical to physical

LA/512#
Q#

R#
Block to be accessed = Q + starting address#
Displacement into block = R#

Contiguous Allocation of Disk Space

Extent-Based Systems

•  Many newer file systems (i.e., Veritas File System)
use a modified contiguous allocation scheme

•  Extent-based file systems allocate disk blocks in
extents

•  An extent is a contiguous block of disks
–  Extents are allocated for file allocation
–  A file consists of one or more extents

Allocation Methods - Linked
•  Linked allocation – each file a linked list of

blocks
–  File ends at nil pointer
–  No external fragmentation
–  Each block contains pointer to next block
–  No compaction, external fragmentation
–  Free space management system called when new block

needed
–  Improve efficiency by clustering blocks into groups but

increases internal fragmentation
–  Reliability can be a problem
–  Locating a block can take many I/Os and disk seeks

•  FAT (File Allocation Table) variation
–  Beginning of volume has table, indexed by block

number
–  Much like a linked list, but faster on disk and cacheable
–  New block allocation simple

Linked Allocation

•  Each file is a linked list of disk blocks: blocks may
be scattered anywhere on the disk

pointer#block =#

Linked Allocation

File-Allocation Table

Allocation Methods - Indexed

•  Indexed allocation
–  Each file has its own index block(s) of pointers to its

data blocks

•  Logical view

index table#

Example of Indexed Allocation

37

 Lets chat about project 2

