CMSC421: Principles of Operating Systems

Nilanjan Banerjee

Assistant Professor, University of Maryland
Baltimore County
nilanb@umbc.edu

http://www.csee.umbc.edu/~nilanb/teaching/421/

Principles of Operating Systems
Acknowledgments: Some of the slides are adapted from Prof. Mark Corner and Prof. Emery
Berger’s OS course at Umass Amherst 1

Announcements

« Homework 3 is out (due nov 27t")
« Travelling next week: Dr. Joshi will teach on M/W

Access Lists and Groups

« Mode of access: read, write, execute
o Three classes of users

RWX
a) owner access 7 = 111
RWX
b) group access 6 = 110
RWX
c) public access 1 = 001

e Ask manager to create a group (unique name),
say G, and add some users to the group.

e For a particular file (say game) or subdirectory,
define an appropriate access.

OWNKQI'TUVHC

chmod 761 game

Access Control - chmod

o Can read bits via ls, set bits via chmod

elnux14> 1s -1 ack.scm
-PW-r----- 1 emery fac 197 Feb 25 15:19 ack.scm
elnux14> chmod -r ack.scm

elnux14> 1s -1 ack.scm

--W-=---=-=-- 1 emery fac 197 Feb 25 15:19 ack.scm
elnux14> cat ack.scm

cat: ack.scm: Permission denied

Access Control Lists (ACLs) in Windows

e ACLs are more expressive
- Specify different rights per user or group
- Opinion: one of the biggest UNIX problems

Storage-Lonestar Properties 2 | x|

General | Shaing Security I'W'eb Sharing | Customize |

Group or user hames:

!ﬁ Administrators (STONEHENGE \Administrators)
€7 CREATOR OWNER

ﬁ Goobers [STONEHENGE \Goobers)
€ SYSTEM

!ﬁ Users (STONEHENGE\Users]

Add... | Remove |
Permissions for Goobers Allow Deny
Full Control =
Modify

Read & Execute
List Folder Contents
Read

0®EO0O
ljoooooo

=i

For special permissions or for advanced settings, Advanced |
click Advanced. —

| 0K I Cancel | Apply I

Access Methods

e Sequential Access
read next
write next
reset
no read after last write
(rewrite)

e Direct Access
read n
write n
position to n
read next
write next
rewrite n

n = relative block number

Sequential-access File

current position

beginning end

= reWind

— read or write =)

Example of Index and Relative Files

logical record
last name number

Adams
Arthur
Asher

Smith

index file

smith, john

social-security

age

relative file

Directories

e Directory - just special file
- Contains metadata, filenames
- Store pointers to files
e Typically hierarchical tree
- odd exposure of data structure to user

A Typical File-system Organization

partition A <

partition B <

A4

directory

files

directory

files

>~ disk 1

partition C <

directory

files

AN

> disk 2

> disk 3

Operations Performed on Directory

e Search for a file
e Create afile

« Delete a file

e List a directory
e Rename a file

e Traverse the file system

Organize the Directory (Logically) to Obtain

o Efficiency - locating a file quickly

« Naming - convenient to users
- Two users can have same name for different files
- The same file can have several different names

e Grouping - logical grouping of files by properties,
(e.g., all Java programs, all games, ...)

Single-Level Directory

« A single directory for all users

directory c{l bzl] test data ma con hcgl recor

files

Naming problem

Grouping problem

Two-Level Directory

« Separate directory for each user

master file

directory | user 1 | USGI’Z‘ user3‘ USGI’4‘

user file
directory

test data test data

PRI RNY

B Path name

B Can have the same file name for different user
B Efficient searching

B No grouping capability

Tree-Structured Directories

root

spell

bin Iprogramsl

stat | mail | dist find | count | hex o:der mail
prog copy reorder| list find count
list ob; spell aII first

6 O

5 &

o

Tree-Structured Directories (Cont.)

o Efficient searching
e Grouping Capability

e Current directory (working directory)
- cd /spell/mail/prog

Tree-Structured Directories (Cont)

e Absolute or relative path name
e Creating a new file is done in current directory
e Delete afile

rm <file-name>

e Creating a new subdirectory is done in current
directory
mkdir <dir-name>
Example: if in current directory /mail

mkdir count

mail

prog copy | prtiexp| count
Deleting “mail” = deleting the entire subtree rooted by “mail”

Acyclic-Graph Directories

e Have shared subdirectories and files (how do you
accomplish this?)

root | dict | spell

N

list all w | count count|words| list

ol | ™ |6
l

— [ist | rade

P

Acyclic-Graph Directories (Cont.)

e Two different names (aliasing)

o If dict deletes list = dangling pointer

Solutions:

- Backpointers, so we can delete all pointers
Variable size records a problem

- Entry-hold-count solution

e New directory entry type

- Link - another name (pointer) to an existing file
- Resolve the link - follow pointer to locate the file

General Graph Directory

root | avi fc jim
text | mail | count| book book | mail |unhex| hyp
avi | count unhex| hex

$

¥ o

General Graph Directory (Cont.)

 How do we guarantee no cycles?
- Allow only links to file not subdirectories
- Garbage collection

- Every time a new link is added use a cycle detection
algorithm to determine whether it is OK

A Typical File Control Block

file permissions

file dates (create, access, write)

file owner, group, ACL

file size

file data blocks or pointers to file data blocks

Inodes (An example of a FCB)

e On disk data structure
- Describes where all the bits of a file are

exr?_tnode
viode I——

Data
Owner info
Size ™1 Data
Timestamps
Direct Blocks

Data

I"Data
o

‘ Data
Indirect blocks
Double Indirect L e - -

Data
Triple Indirect |

Data

-
——= Data

Directories

e Directory - just special file

- Contains metadata, filenames
e pointers to inodes

e Typically hierarchical tree
- odd exposure of data structure to user

24

In-Memory File System Structures

[]
[]

directory structure

HN

open (file name)

]

directory siruicllte file-control block

user space kernel memory secondary storage
(a)
index | || |
X =]
/ data blocks
—

read (index) ““\I:]

per-process system-wide file-control block

open-file table open-file table

user space kernel memory secondary storage

(b)

Directory Implementation

e Linear list of file names with pointer to the data
blocks

- Simple to program
- Time-consuming to execute

e Linear search time

e Could keep ordered alphabetically via linked list or use B+
tree

« Hash Table - linear list with hash data structure

- Decreases directory search time

- Collisions - situations where two file names hash to the
same location

- Only good if entries are fixed size, or use chained-overflow
method

Allocation Methods - Contiguous

e An allocation method refers to how disk blocks are
allocated for files:

« Contiguous allocation - each file occupies set of
contiguous blocks

- Best performance in most cases

- Simple - only starting location (block #) and length
(number of blocks) are required

- Problems include finding space for file, knowing file size,

external fragmentation, need for compaction off-line
(downtime) or on-line

Contiguous Allocation

e Mapping from logical to physical

AQ

LA/512
AN

R

Block to be accessed = Q + starting address
Displacement into block = R

Contiguous Allocation of Disk Space

T directory
ST file start length
WIERE 2 | 3] | count 0 2
f tr 14 S
407 501 60 700 e s
8] o110 J11[] T

12[_[13[_[14[[15[|

16117 18 |19 |
mail
20|l 21 |l 22l 23 ||

24| |25 126 |27]
list
28[|29 |30 _131_|

S -~

Extent-Based Systems

e Many newer file systems (i.e., Veritas File System)
use a modified contiguous allocation scheme

o Extent-based file systems allocate disk blocks in
extents

e An extent is a contiguous block of disks

- Extents are allocated for file allocation
- A file consists of one or more extents

Allocation Methods - Linked

 Linked allocation - each file a linked list of
blocks

File ends at nil pointer

No external fragmentation

Each block contains pointer to next block
No compaction, external fragmentation

Free space management system called when new block
needed

Improve efficiency by clustering blocks into groups but
increases internal fragmentation

Reliability can be a problem
Locating a block can take many I/Os and disk seeks

e FAT (File Allocation Table) variation

Beginning of volume has table, indexed by block
number

Much like a linked list, but faster on disk and cacheable
New block allocation simple

Linked Allocation

e Each file is a linked list of disk blocks: blocks may
be scattered anywhere on the disk

block #ointer

Linked Allocation

directory
file start end
jeep 9 25

17 18[]19[]

20[|21 21 _123[|

24)25 -1é6 [127[]

28 J29[J30[|31[]

-~

File-Allocation Table

directory entry

| test | eee | 217 |—
name start block

—» 217 618

339

618 339

no. of disk blocks —1

FAT

Allocation Methods - Indexed

e Indexed allocation
- Each file has its own index block(s) of pointers to its

data blocks
e Logical view o]
>]
>]
BN
]

index table

Example of Indexed Allocation

PR directory

v file index block
o] 1L 21 3[] I=ep 19
4[] 5[] 7 |

8[] ol J1o[N\11[]
12D13§%§

16
20[J21[J22[A23[|

24[125[J26[127[]

28[129[130 J31[]
N

37

Lets chat about project 2

