
1

CMSC421: Principles of Operating Systems

Nilanjan Banerjee

Principles of Operating Systems
Acknowledgments: Some of the slides are adapted from Prof. Mark Corner and Prof. Emery

Berger’s OS course at Umass Amherst

Assistant Professor, University of Maryland

Baltimore County
nilanb@umbc.edu

http://www.csee.umbc.edu/~nilanb/teaching/421/

2

Announcements

•  Homework 3 is out (due nov 27th)
•  Will discuss midterm at the end of class
•  Will have a session on Project 2 on Wednesday (after

talking about file systems)

3	

File Systems (Lets start with the disk)

•  Disk (hard drive) is a block device
–  You can read and write blocks from the hard drive
–  E.g. give me block number 50, or block number 100
–  Blocks are usually 1KB in size

•  You can also create logical block sizes
–  E.g. using the command dd
–  Example of creating files without file system (demo?)

•  You can write file systems for block devices (e.g.,
cdrom, harddrive, flash drives)

•  Another type of devices is character devices?
–  Examples?
–  What are the major differences between char and block

devices

4	

File system structure and file manipulations

•  File systems are made of directories
–  In linux the root directory is /

•  All directories are children of some directory
–  Directories follow a tree structure

•  Directories consist of files

•  Files are associated with two things
–  Name of the file
–  Pointer to the data stored in the file

5	

Concept of virtual file systems (primer)

•  In linux you can use the concept of mounting to
add a custom file system to your directory tree

•  You can also mount directories on remote machines
onto your file system tree

•  Lets take a look at a demo

Virtual FSs allow mount points

Mount Point

File Concept

•  Contiguous logical address space

•  Types:
–  Data

•  numeric
•  character
•  binary

–  Program

File Structure

•  None - sequence of words, bytes
•  Simple record structure

–  Lines
–  Fixed length
–  Variable length

•  Complex Structures (pdf or doc format)
–  Formatted document
–  Relocatable load file

•  Can simulate last two with first method by inserting
appropriate control characters

•  Who decides:
–  Operating system
–  Program

File Attributes

•  Name – only information kept in human-readable
form

•  Identifier – unique tag (number) identifies file
within file system

•  Type – needed for systems that support different
types

•  Location – pointer to file location on device
•  Size – current file size
•  Protection – controls who can do reading,

writing, executing
•  Time, date, and user identification – data for

protection, security, and usage monitoring
•  Information about files are kept in the directory

structure, which is maintained on the disk

File Operations

•  File is an abstract data type
•  Create
•  Write
•  Read
•  Delete
•  Truncate
•  Open(Fi) – search the directory structure on disk for

entry Fi, and move the content of entry to memory
•  Close (Fi) – move the content of entry Fi in memory

to directory structure on disk

Open Files

•  Several pieces of data are needed to manage open
files:
–  File pointer: pointer to last read/write location, per

process that has the file open
–  File-open count: counter of number of times a file is open

– to allow removal of data from open-file table when last
processes closes it

–  Access rights: per-process access mode information

13	

Common file operations (you might be familiar with)

•  Creating a file
•  Open and reading a file
•  Deleting a file
•  Creating a soft link to a file
•  Creating a hard link to a file
•  Append a file
•  Read last few bytes/characters of a file

File Protection

•  File owner/creator should be able to control:
–  what can be done
–  by whom

•  Types of access
–  Read
–  Write
–  Execute
–  Append
–  Delete
–  List

Access Lists and Groups

•  Mode of access: read, write, execute
•  Three classes of users

 RWX
 a) owner access 7 ⇒ 1 1 1

 RWX
 b) group access 6 ⇒ 1 1 0
 RWX
 c) public access 1 ⇒ 0 0 1

•  Ask manager to create a group (unique name),
say G, and add some users to the group.

•  For a particular file (say game) or subdirectory,
define an appropriate access.

owner! group! public!

chmod! 761! game!

16

elnux14>	
 ls	
 -­‐l	
 ack.scm	

-­‐rw-­‐r-­‐-­‐-­‐-­‐-­‐	
 	
 1	
 emery	
 fac	
 197	
 Feb	
 25	
 15:19	
 ack.scm	

elnux14>	
 chmod	
 -­‐r	
 ack.scm	

elnux14>	
 ls	
 -­‐l	
 ack.scm	

-­‐-­‐w-­‐-­‐-­‐-­‐-­‐-­‐-­‐	
 	
 1	
 emery	
 fac	
 197	
 Feb	
 25	
 15:19	
 ack.scm	

elnux14>	
 cat	
 ack.scm	

cat:	
 ack.scm:	
 Permission	
 denied	

Access Control - chmod

•  Can read bits via ls, set bits via chmod

Access Control Lists (ACLs) in Windows

•  ACLs are more expressive
–  Specify different rights per user or group
–  Opinion: one of the biggest UNIX problems

Access Methods

•  Sequential Access
 read next
 write next
 reset
 no read after last write
 (rewrite)

•  Direct Access
 read n
 write n
 position to n
 read next
 write next
 rewrite n

 n = relative block number

Sequential-access File

Example of Index and Relative Files

21

Directories

•  Directory – just special file
–  Contains metadata, filenames
–  Store pointers to files

•  Typically hierarchical tree
–  odd exposure of data structure to user

A Typical File-system Organization

Operations Performed on Directory

•  Search for a file

•  Create a file

•  Delete a file

•  List a directory

•  Rename a file

•  Traverse the file system

Organize the Directory (Logically) to Obtain

•  Efficiency – locating a file quickly

•  Naming – convenient to users
–  Two users can have same name for different files
–  The same file can have several different names

•  Grouping – logical grouping of files by properties,
(e.g., all Java programs, all games, …)

Single-Level Directory

•  A single directory for all users

Naming problem 

Grouping problem#

Two-Level Directory

•  Separate directory for each user

  Path name#
  Can have the same file name for different user#
  Efficient searching#
  No grouping capability#

Tree-Structured Directories

Tree-Structured Directories (Cont.)

•  Efficient searching

•  Grouping Capability

•  Current directory (working directory)
–  cd /spell/mail/prog

Tree-Structured Directories (Cont)

•  Absolute or relative path name
•  Creating a new file is done in current directory
•  Delete a file

 rm <file-name>
•  Creating a new subdirectory is done in current

directory
 mkdir <dir-name>

 Example: if in current directory /mail
 mkdir count

mail#

prog# copy# prt#exp# count#
Deleting “mail” ⇒ deleting the entire subtree rooted by “mail”#

Acyclic-Graph Directories

•  Have shared subdirectories and files (how do you
accomplish this?)

Acyclic-Graph Directories (Cont.)

•  Two different names (aliasing)

•  If dict deletes list ⇒ dangling pointer
 Solutions:

–  Backpointers, so we can delete all pointers
Variable size records a problem

–  Entry-hold-count solution

•  New directory entry type
–  Link – another name (pointer) to an existing file
–  Resolve the link – follow pointer to locate the file

General Graph Directory

General Graph Directory (Cont.)

•  How do we guarantee no cycles?
–  Allow only links to file not subdirectories
–  Garbage collection
–  Every time a new link is added use a cycle detection

algorithm to determine whether it is OK

How are files organized: Blocks

•  Storage organized as a sequence of blocks
–  Unit or reading and writing
–  Read, modify, write sequence

•  File system tracks free and full blocks
–  typically stored in a bitmap

Inodes

•  On disk data structure
–  Describes where all the bits of a file are

36

Directories

•  Directory – just special file
–  Contains metadata, filenames

•  pointers to inodes

•  Typically hierarchical tree
–  odd exposure of data structure to user

37

 Lets chat about the midterm

