
1 

CMSC421: Principles of Operating Systems 

Nilanjan Banerjee 

Principles of Operating Systems 
Acknowledgments: Some of the slides are adapted from Prof. Mark Corner and Prof. Emery 

Berger’s OS course at Umass Amherst 

Assistant Professor, University of Maryland 

Baltimore County 
nilanb@umbc.edu 

http://www.csee.umbc.edu/~nilanb/teaching/421/ 



2 

Announcements 

•  Homework 3 will be out tomorrow 
•  Grades will be out for the midterm and project 1 before 

end of weekend. 



Thrashing 

•  If a process does not have “enough” pages, the 
page-fault rate is very high 
–  Page fault to get page 
–  Replace existing frame 
–  But quickly need replaced frame back 
–  This leads to: 

•  Low CPU utilization 
•  Operating system thinking that it needs to increase the 

degree of multiprogramming 
•  Another process added to the system 

•  Thrashing ≡ a process is busy swapping pages in and 
out 



Allocating Kernel Memory 

•  Treated differently from user memory 

•  Often allocated from a free-memory pool 
–  Kernel requests memory for structures of varying sizes 
–  Some kernel memory needs to be contiguous 

•  I.e. for device I/O 



Buddy System 
•  Allocates memory from fixed-size segment 

consisting of physically-contiguous pages 
•  Memory allocated using power-of-2 allocator 

–  Satisfies requests in units sized as power of 2 
–  Request rounded up to next highest power of 2 
–  When smaller allocation needed than is available, current 

chunk split into two buddies of next-lower power of 2 
•  Continue until appropriate sized chunk available 

•  For example, assume 256KB chunk available, kernel 
requests 21KB 
–  Split into AL and Ar of 128KB each 

•  One further divided into BL and BR of 64KB 
–  One further into CL and CR of 32KB each – one used to 

satisfy request 

•  Advantage – quickly coalesce unused chunks into 
larger chunk 

•  Disadvantage - fragmentation 



Buddy System Allocator 



Slab Allocator 

•  Alternate strategy 

•  Slab is one or more physically contiguous pages 

•  Cache consists of one or more slabs 

•  Single cache for each unique kernel data structure 
–  Each cache filled with objects – instantiations of the data 

structure 

•  When cache created, filled with objects marked as 
free 

•  When structures stored, objects marked as used 

•  If slab is full of used objects, next object allocated 
from empty slab 
–  If no empty slabs, new slab allocated 

•  Benefits include no fragmentation, fast memory 
request satisfaction 



Slab Allocation 



Segmentation (another method of implementing virtual 
memory) 

•  Memory-management scheme that supports user 
view of memory  

•  A program is a collection of segments 
–  A segment is a logical unit such as: 

  main program 
  procedure  
  function 
  method 
  object 
  local variables, global variables 
  common block 
  stack 
  symbol table 
  arrays 



User’s View of a Program 



Logical View of Segmentation 

1"

3"
2"

4"

1"
4"

2"
3"

user space " physical memory space"



Segmentation Architecture  

•  Logical address consists of a two tuple: 
  <segment-number, offset>, 

•  Segment table – maps two-dimensional physical 
addresses; each table entry has: 
–  base – contains the starting physical address where the 

segments reside in memory 
–  limit – specifies the length of the segment 

•  Segment-table base register (STBR) points to the 
segment table’s location in memory 

•  Segment-table length register (STLR) indicates 
number of segments used by a program; 

                   segment number s is legal if s < STLR 



Segmentation Architecture (Cont.) 

•  Protection 
–  With each entry in segment table associate: 

•  validation bit = 0 ⇒ illegal segment 
•  read/write/execute privileges 

•  Protection bits associated with segments; code 
sharing occurs at segment level 

•  Since segments vary in length, memory allocation is 
a dynamic storage-allocation problem 

•  A segmentation example is shown in the following 
diagram 



Segmentation Hardware 



15	  

File Systems (Lets start with the disk) 

•  Disk (hard drive) is a block device 
–  You can read and write blocks from the hard drive 
–  E.g. give me block number 50, or block number 100 
–  Blocks are usually 1KB in size 

•  You can also create logical block sizes 
–  E.g. using the command dd 
–  Example of creating files without file system (demo?) 

•  You can write file systems for block devices (e.g., 
cdrom, harddrive, flash drives) 

•  Another type of devices is character devices? 
–  Examples? 
–  What are the major differences between char and block 

devices  



16	  

File system structure and file manipulations 

•  File systems are made of directories 
–  In linux the root directory is / 

•  All directories are children of some directory 
–  Directories follow a tree structure 

•  Directories consist of files 
–  We will later talk about how files and directories are 

represented 

•  Files are associated with two things 
–  Name of the file 
–  Pointer to the data stored in the file 



17	  

Concept of virtual file systems 

•  In linux you can use the concept of mounting to 
add a custom file system to your directory tree 

•  You can also mount directories on remote machines 
onto your file system tree 

•  Lets take a look at a demo 



(a) Existing   (b) Unmounted Partition 



Mount Point 



20	  

Common file operations (you might be familiar with) 

•  Creating directories 
•  Removing directories 
•  Creating a file 
•  Open and reading a file 
•  Deleting a file 
•  Creating a soft link to a file 
•  Creating a hard link to a file 
•  Append a file 
•  Read last few bytes/characters of a file 



Protection 

•  File owner/creator should be able to control: 
–  what can be done 
–  by whom 

•  Types of access 
–  Read 
–  Write 
–  Execute 
–  Append 
–  Delete 
–  List 



Access Lists and Groups 

•  Mode of access:  read, write, execute 
•  Three classes of users 

     RWX 
  a) owner access  7  ⇒  1 1 1 

    RWX 
  b) group access  6   ⇒  1 1 0 
     RWX 
  c) public access  1   ⇒  0 0 1 

•  Ask manager to create a group (unique name), 
say G, and add some users to the group. 

•  For a particular file (say game) or subdirectory, 
define an appropriate access. 

owner! group! public!

chmod! 761! game!



23 

   In-class Discussion 


