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Announcements 

•  Project 2 progress report due one week from Nov. 9th 
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Talked about malloc? What about physical frame mgmt?  

  malloc works in virtual memory (works in user space) 
–  Manages free blocks 
–  Allocates virtual address on the heap 

  Remember the OS still has to manage physical frames 
  The problem that the OS faces with physical frame 

allocation is the similar to malloc 
  Manage physical frames that all processes in the 

system requests. 
  Difference with malloc 

  Has to work across all processes 
  Each process perceives 4GB of space, but in 

actuality there is only 4GB of physical memory 
space 
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Tasks of the OS physical page management unit 

  Allocate new pages to applications 
–  OS do this lazily 
–  malloc call would usually return immediately  
–  OS allocates a new physical only when the process 

reads/writes to the page 
–  Similar to the Copy-on-Write policy for fork() 

  In the event that all physical frames are taken 
  OS needs to evict pages  

  Take page from main memory and store it on 
swap space 

  Needs a policy for evicting pages 
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Page replacement policy for Demand Paging? 

         What is the optimal page replacement policy? 
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Optimal Page Replacement policy 

  Find the page that is going to used farthest into the 
future 
–  Evict the page from main memory to swap space 
–  Allocate the freed page to the new process 
–  Problems: it is impossible to predict the future 

  Approximation is LRU (least recently used page) 
  Find the page that is least recently used and evict 

it 
  Remember this has to be super-fast 
  What would be techniques to implement this in 

the kernel? 
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A, B, C, B, C, C, D 

Implementing Exact LRU 

•  On each reference, time stamp page 
•  When we need to evict: select oldest page 

= least-recently used 
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Implementing Exact LRU 

•  Could keep pages in order 
– optimizes eviction 
–  Priority queue: 

update = O(log n), eviction = O(log n) 

•  Optimize for common case! 
–  Common case: hits, not misses 
–  Hash table: 

update = O(1), eviction = O(n) 
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Cost of Maintaining Exact LRU 

•  Hash tables: too expensive 
–  On every reference: 

•  Compute hash of page address 
•  Update time stamp 
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Cost of Maintaining Exact LRU 

•  Alternative: doubly-linked list 
–  Move items to front when referenced 
–  LRU items at end of list 
–  Still too expensive 

•  4-6 pointer updates per reference 

•  Can we do better? 
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Hardware Support and approximate LRU (Linux Kernel) 

•  Maintain reference bits for every page 
–  On each access, set reference bit to 1 
–  Page replacement algorithm periodically resets 

reference bits 
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Hardware Support 

•  Maintain reference bits for every page 
–  On each access, set reference bit to 1 
–  Page replacement algorithm periodically resets 

reference bits 
–  Evict page with reference bit = 0 

•  Cost per miss = O(n) 
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A, B, C, D, A, B, C, D, ... 
size of available memory 

Most-Recently Used (MRU) 

•  Evict most-recently used page 
•  Shines for LRU’s worst-case: 
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FIFO 

•  First-in, first-out: evict oldest page 
•  As competitive as LRU, but 

performs miserably in practice! 
–  Ignores locality 
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Tricks with Page Tables: Sharing 

•  Paging allows sharing of 
memory across 
processes 
–  Reduces memory 

requirements 
•  Shared stuff includes 

code, data 
–  Code typically R/O 
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Mmaping in virtual address space 

•  Mapping files to virtual address space 
–  Try and understand this through an example? 

•  You can also anonymous mmaping 
–  Why would we want to do that? 



Tricks with Page Tables: COW 

•  Copy on write (COW) 
–  Just copy page tables 
–  Make all pages read-only 

•  What if process changes mem? 

•  All processes are created this way! 
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   In-class Discussion 


