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Announcements 

•  Project 2 progress report due one week from Nov. 9th 



3 

Talked about malloc? What about physical frame mgmt?  

  malloc works in virtual memory (works in user space) 
–  Manages free blocks 
–  Allocates virtual address on the heap 

  Remember the OS still has to manage physical frames 
  The problem that the OS faces with physical frame 

allocation is the similar to malloc 
  Manage physical frames that all processes in the 

system requests. 
  Difference with malloc 

  Has to work across all processes 
  Each process perceives 4GB of space, but in 

actuality there is only 4GB of physical memory 
space 
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Tasks of the OS physical page management unit 

  Allocate new pages to applications 
–  OS do this lazily 
–  malloc call would usually return immediately  
–  OS allocates a new physical only when the process 

reads/writes to the page 
–  Similar to the Copy-on-Write policy for fork() 

  In the event that all physical frames are taken 
  OS needs to evict pages  

  Take page from main memory and store it on 
swap space 

  Needs a policy for evicting pages 
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Page replacement policy for Demand Paging? 

         What is the optimal page replacement policy? 
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Optimal Page Replacement policy 

  Find the page that is going to used farthest into the 
future 
–  Evict the page from main memory to swap space 
–  Allocate the freed page to the new process 
–  Problems: it is impossible to predict the future 

  Approximation is LRU (least recently used page) 
  Find the page that is least recently used and evict 

it 
  Remember this has to be super-fast 
  What would be techniques to implement this in 

the kernel? 
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A, B, C, B, C, C, D 

Implementing Exact LRU 

•  On each reference, time stamp page 
•  When we need to evict: select oldest page 

= least-recently used 
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LRU page How	  should	  we	  implement	  this?	  

Implementing Exact LRU 

•  On each reference, time stamp page 
•  When we need to evict: select oldest page 

= least-recently used 

A 
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Implementing Exact LRU 

•  Could keep pages in order 
– optimizes eviction 
–  Priority queue: 

update = O(log n), eviction = O(log n) 

•  Optimize for common case! 
–  Common case: hits, not misses 
–  Hash table: 

update = O(1), eviction = O(n) 
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Cost of Maintaining Exact LRU 

•  Hash tables: too expensive 
–  On every reference: 

•  Compute hash of page address 
•  Update time stamp 
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Cost of Maintaining Exact LRU 

•  Alternative: doubly-linked list 
–  Move items to front when referenced 
–  LRU items at end of list 
–  Still too expensive 

•  4-6 pointer updates per reference 

•  Can we do better? 
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Hardware Support and approximate LRU (Linux Kernel) 

•  Maintain reference bits for every page 
–  On each access, set reference bit to 1 
–  Page replacement algorithm periodically resets 

reference bits 
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Hardware Support 

•  Maintain reference bits for every page 
–  On each access, set reference bit to 1 
–  Page replacement algorithm periodically resets 

reference bits 
–  Evict page with reference bit = 0 

•  Cost per miss = O(n) 
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A, B, C, D, A, B, C, D, ... 
size of available memory 

Most-Recently Used (MRU) 

•  Evict most-recently used page 
•  Shines for LRU’s worst-case: 
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FIFO 

•  First-in, first-out: evict oldest page 
•  As competitive as LRU, but 

performs miserably in practice! 
–  Ignores locality 
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Tricks with Page Tables: Sharing 

•  Paging allows sharing of 
memory across 
processes 
–  Reduces memory 

requirements 
•  Shared stuff includes 

code, data 
–  Code typically R/O 
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Mmaping in virtual address space 

•  Mapping files to virtual address space 
–  Try and understand this through an example? 

•  You can also anonymous mmaping 
–  Why would we want to do that? 



Tricks with Page Tables: COW 

•  Copy on write (COW) 
–  Just copy page tables 
–  Make all pages read-only 

•  What if process changes mem? 

•  All processes are created this way! 
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   In-class Discussion 


