
1

CMSC421: Principles of Operating Systems

Nilanjan Banerjee

Principles of Operating Systems
Acknowledgments: Some of the slides are adapted from Prof. Mark Corner and Prof. Emery

Berger’s OS course at Umass Amherst

Assistant Professor, University of Maryland

Baltimore County
nilanb@umbc.edu

http://www.csee.umbc.edu/~nilanb/teaching/421/

2

Announcements

•  Project 2 progress report due one week from Nov. 9th

3

Talked about malloc? What about physical frame mgmt?

  malloc works in virtual memory (works in user space)
–  Manages free blocks
–  Allocates virtual address on the heap

  Remember the OS still has to manage physical frames
  The problem that the OS faces with physical frame

allocation is the similar to malloc
  Manage physical frames that all processes in the

system requests.
  Difference with malloc

  Has to work across all processes
  Each process perceives 4GB of space, but in

actuality there is only 4GB of physical memory
space

4

Tasks of the OS physical page management unit

  Allocate new pages to applications
–  OS do this lazily
–  malloc call would usually return immediately
–  OS allocates a new physical only when the process

reads/writes to the page
–  Similar to the Copy-on-Write policy for fork()

  In the event that all physical frames are taken
  OS needs to evict pages

  Take page from main memory and store it on
swap space

  Needs a policy for evicting pages

5

Page replacement policy for Demand Paging?

 What is the optimal page replacement policy?

6

Optimal Page Replacement policy

  Find the page that is going to used farthest into the
future
–  Evict the page from main memory to swap space
–  Allocate the freed page to the new process
–  Problems: it is impossible to predict the future

  Approximation is LRU (least recently used page)
  Find the page that is least recently used and evict

it
  Remember this has to be super-fast
  What would be techniques to implement this in

the kernel?

7

A, B, C, B, C, C, D

Implementing Exact LRU

•  On each reference, time stamp page
•  When we need to evict: select oldest page

= least-recently used

8

A
1 A, B, C, B, C, C, D

Implementing Exact LRU

•  On each reference, time stamp page
•  When we need to evict: select oldest page

= least-recently used

9

A
1

B
2 A, B, C, B, C, C, D

Implementing Exact LRU

•  On each reference, time stamp page
•  When we need to evict: select oldest page

= least-recently used

10

A
1

B
2

C
3

A, B, C, B, C, C, D

Implementing Exact LRU

•  On each reference, time stamp page
•  When we need to evict: select oldest page

= least-recently used

11

A
1

B
4

C
3 A, B, C, B, C, C, D

Implementing Exact LRU

•  On each reference, time stamp page
•  When we need to evict: select oldest page

= least-recently used

12

A
1

B
4

C
5

A, B, C, B, C, C, D

Implementing Exact LRU

•  On each reference, time stamp page
•  When we need to evict: select oldest page

= least-recently used

13

A
1

B
4

C
6 A, B, C, B, C, C, D

Implementing Exact LRU

•  On each reference, time stamp page
•  When we need to evict: select oldest page

= least-recently used

14

A, B, C, B, C, C D, A
1

B
4

C
6

D
7

LRU page How	 should	 we	 implement	 this?	

Implementing Exact LRU

•  On each reference, time stamp page
•  When we need to evict: select oldest page

= least-recently used

A
0

15

Implementing Exact LRU

•  Could keep pages in order
– optimizes eviction
–  Priority queue:

update = O(log n), eviction = O(log n)

•  Optimize for common case!
–  Common case: hits, not misses
–  Hash table:

update = O(1), eviction = O(n)

16

Cost of Maintaining Exact LRU

•  Hash tables: too expensive
–  On every reference:

•  Compute hash of page address
•  Update time stamp

17

Cost of Maintaining Exact LRU

•  Alternative: doubly-linked list
–  Move items to front when referenced
–  LRU items at end of list
–  Still too expensive

•  4-6 pointer updates per reference

•  Can we do better?

18

A
1

B
1

C
1 A, B, C, B, C, C, D

Hardware Support and approximate LRU (Linux Kernel)

•  Maintain reference bits for every page
–  On each access, set reference bit to 1
–  Page replacement algorithm periodically resets

reference bits

19

A
0

B
0

C
0

A, B, C, B, C, C, D

reset reference bits

Hardware Support

•  Maintain reference bits for every page
–  On each access, set reference bit to 1
–  Page replacement algorithm periodically resets

reference bits

20

A
0

B
1

C
0 A, B, C, B, C, C, D

Hardware Support

•  Maintain reference bits for every page
–  On each access, set reference bit to 1
–  Page replacement algorithm periodically resets

reference bits

21

A
0

B
1

C
1

A, B, C, B, C, C, D

Hardware Support

•  Maintain reference bits for every page
–  On each access, set reference bit to 1
–  Page replacement algorithm periodically resets

reference bits

22

A
0

B
1

C
1

A, B, C, B, C, C, D

Hardware Support

•  Maintain reference bits for every page
–  On each access, set reference bit to 1
–  Page replacement algorithm periodically resets

reference bits

23

A
0

A, B, C, B, C, C, D
B
1

C
1

D
1

Hardware Support

•  Maintain reference bits for every page
–  On each access, set reference bit to 1
–  Page replacement algorithm periodically resets

reference bits
–  Evict page with reference bit = 0

•  Cost per miss = O(n)

24

A, B, C, D, A, B, C, D, ...
size of available memory

Most-Recently Used (MRU)

•  Evict most-recently used page
•  Shines for LRU’s worst-case:

25

A A, B, C, D, A, B, C, D, ...
size of available memory

Most-Recently Used (MRU)

•  Evict most-recently used page
•  Shines for LRU’s worst-case: loop that exceeds RAM

size

26

A B A, B, C, D, A, B, C, D, ...
size of available memory

Most-Recently Used (MRU)

•  Evict most-recently used page
•  Shines for LRU’s worst-case: loop that exceeds RAM

size

27

A B C A, B, C, D, A, B, C, D, ...
size of available memory

Most-Recently Used (MRU)

•  Evict most-recently used page
•  Shines for LRU’s worst-case: loop that exceeds RAM

size

28

A B D A, B, C, D, A, B, C, D, ...
size of available memory

Most-Recently Used (MRU)

•  Evict most-recently used page
•  Shines for LRU’s worst-case: loop that exceeds RAM

size

29

A B D A, B, C, D, A, B, C, D, ...
size of available memory

Most-Recently Used (MRU)

•  Evict most-recently used page
•  Shines for LRU’s worst-case: loop that exceeds RAM

size

30

A B D A, B, C, D, A, B, C, D, ...
size of available memory

Most-Recently Used (MRU)

•  Evict most-recently used page
•  Shines for LRU’s worst-case: loop that exceeds RAM

size

31

A B D A, B, C, D, A, B, C, D, ...
size of available memory

Most-Recently Used (MRU)

•  Evict most-recently used page
•  Shines for LRU’s worst-case: loop that exceeds RAM

size

32

FIFO

•  First-in, first-out: evict oldest page
•  As competitive as LRU, but

performs miserably in practice!
–  Ignores locality

33

Tricks with Page Tables: Sharing

•  Paging allows sharing of
memory across
processes
–  Reduces memory

requirements
•  Shared stuff includes

code, data
–  Code typically R/O

34

Mmaping in virtual address space

•  Mapping files to virtual address space
–  Try and understand this through an example?

•  You can also anonymous mmaping
–  Why would we want to do that?

Tricks with Page Tables: COW

•  Copy on write (COW)
–  Just copy page tables
–  Make all pages read-only

•  What if process changes mem?

•  All processes are created this way!

36

 In-class Discussion

