
1

CMSC421: Principles of Operating Systems

Nilanjan Banerjee

Principles of Operating Systems
Acknowledgments: Some of the slides are adapted from Prof. Mark Corner and Prof. Emery

Berger’s OS course at Umass Amherst

Assistant Professor, University of Maryland

Baltimore County
nilanb@umbc.edu

http://www.csee.umbc.edu/~nilanb/teaching/421/

2

Announcements

•  Project 2 progress report due one week from Nov. 9th

3

Talked about malloc? What about physical frame mgmt?

  malloc works in virtual memory (works in user space)
–  Manages free blocks
–  Allocates virtual address on the heap

  Remember the OS still has to manage physical frames
  The problem that the OS faces with physical frame

allocation is the similar to malloc
  Manage physical frames that all processes in the

system requests.
  Difference with malloc

  Has to work across all processes
  Each process perceives 4GB of space, but in

actuality there is only 4GB of physical memory
space

4

Tasks of the OS physical page management unit

  Allocate new pages to applications
–  OS do this lazily
–  malloc call would usually return immediately
–  OS allocates a new physical only when the process

reads/writes to the page
–  Similar to the Copy-on-Write policy for fork()

  In the event that all physical frames are taken
  OS needs to evict pages

  Take page from main memory and store it on
swap space

  Needs a policy for evicting pages

5

Page replacement policy for Demand Paging?

 What is the optimal page replacement policy?

6

Optimal Page Replacement policy

  Find the page that is going to used farthest into the
future
–  Evict the page from main memory to swap space
–  Allocate the freed page to the new process
–  Problems: it is impossible to predict the future

  Approximation is LRU (least recently used page)
  Find the page that is least recently used and evict

it
  Remember this has to be super-fast
  What would be techniques to implement this in

the kernel?

7

A, B, C, B, C, C, D

Implementing Exact LRU

•  On each reference, time stamp page
•  When we need to evict: select oldest page

= least-recently used

8

A
1 A, B, C, B, C, C, D

Implementing Exact LRU

•  On each reference, time stamp page
•  When we need to evict: select oldest page

= least-recently used

9

A
1

B
2 A, B, C, B, C, C, D

Implementing Exact LRU

•  On each reference, time stamp page
•  When we need to evict: select oldest page

= least-recently used

10

A
1

B
2

C
3

A, B, C, B, C, C, D

Implementing Exact LRU

•  On each reference, time stamp page
•  When we need to evict: select oldest page

= least-recently used

11

A
1

B
4

C
3 A, B, C, B, C, C, D

Implementing Exact LRU

•  On each reference, time stamp page
•  When we need to evict: select oldest page

= least-recently used

12

A
1

B
4

C
5

A, B, C, B, C, C, D

Implementing Exact LRU

•  On each reference, time stamp page
•  When we need to evict: select oldest page

= least-recently used

13

A
1

B
4

C
6 A, B, C, B, C, C, D

Implementing Exact LRU

•  On each reference, time stamp page
•  When we need to evict: select oldest page

= least-recently used

14

A, B, C, B, C, C D, A
1

B
4

C
6

D
7

LRU page How	
 should	
 we	
 implement	
 this?	

Implementing Exact LRU

•  On each reference, time stamp page
•  When we need to evict: select oldest page

= least-recently used

A
0

15

Implementing Exact LRU

•  Could keep pages in order
– optimizes eviction
–  Priority queue:

update = O(log n), eviction = O(log n)

•  Optimize for common case!
–  Common case: hits, not misses
–  Hash table:

update = O(1), eviction = O(n)

16

Cost of Maintaining Exact LRU

•  Hash tables: too expensive
–  On every reference:

•  Compute hash of page address
•  Update time stamp

17

Cost of Maintaining Exact LRU

•  Alternative: doubly-linked list
–  Move items to front when referenced
–  LRU items at end of list
–  Still too expensive

•  4-6 pointer updates per reference

•  Can we do better?

18

A
1

B
1

C
1 A, B, C, B, C, C, D

Hardware Support and approximate LRU (Linux Kernel)

•  Maintain reference bits for every page
–  On each access, set reference bit to 1
–  Page replacement algorithm periodically resets

reference bits

19

A
0

B
0

C
0

A, B, C, B, C, C, D

reset reference bits

Hardware Support

•  Maintain reference bits for every page
–  On each access, set reference bit to 1
–  Page replacement algorithm periodically resets

reference bits

20

A
0

B
1

C
0 A, B, C, B, C, C, D

Hardware Support

•  Maintain reference bits for every page
–  On each access, set reference bit to 1
–  Page replacement algorithm periodically resets

reference bits

21

A
0

B
1

C
1

A, B, C, B, C, C, D

Hardware Support

•  Maintain reference bits for every page
–  On each access, set reference bit to 1
–  Page replacement algorithm periodically resets

reference bits

22

A
0

B
1

C
1

A, B, C, B, C, C, D

Hardware Support

•  Maintain reference bits for every page
–  On each access, set reference bit to 1
–  Page replacement algorithm periodically resets

reference bits

23

A
0

A, B, C, B, C, C, D
B
1

C
1

D
1

Hardware Support

•  Maintain reference bits for every page
–  On each access, set reference bit to 1
–  Page replacement algorithm periodically resets

reference bits
–  Evict page with reference bit = 0

•  Cost per miss = O(n)

24

A, B, C, D, A, B, C, D, ...
size of available memory

Most-Recently Used (MRU)

•  Evict most-recently used page
•  Shines for LRU’s worst-case:

25

A A, B, C, D, A, B, C, D, ...
size of available memory

Most-Recently Used (MRU)

•  Evict most-recently used page
•  Shines for LRU’s worst-case: loop that exceeds RAM

size

26

A B A, B, C, D, A, B, C, D, ...
size of available memory

Most-Recently Used (MRU)

•  Evict most-recently used page
•  Shines for LRU’s worst-case: loop that exceeds RAM

size

27

A B C A, B, C, D, A, B, C, D, ...
size of available memory

Most-Recently Used (MRU)

•  Evict most-recently used page
•  Shines for LRU’s worst-case: loop that exceeds RAM

size

28

A B D A, B, C, D, A, B, C, D, ...
size of available memory

Most-Recently Used (MRU)

•  Evict most-recently used page
•  Shines for LRU’s worst-case: loop that exceeds RAM

size

29

A B D A, B, C, D, A, B, C, D, ...
size of available memory

Most-Recently Used (MRU)

•  Evict most-recently used page
•  Shines for LRU’s worst-case: loop that exceeds RAM

size

30

A B D A, B, C, D, A, B, C, D, ...
size of available memory

Most-Recently Used (MRU)

•  Evict most-recently used page
•  Shines for LRU’s worst-case: loop that exceeds RAM

size

31

A B D A, B, C, D, A, B, C, D, ...
size of available memory

Most-Recently Used (MRU)

•  Evict most-recently used page
•  Shines for LRU’s worst-case: loop that exceeds RAM

size

32

FIFO

•  First-in, first-out: evict oldest page
•  As competitive as LRU, but

performs miserably in practice!
–  Ignores locality

33

Tricks with Page Tables: Sharing

•  Paging allows sharing of
memory across
processes
–  Reduces memory

requirements
•  Shared stuff includes

code, data
–  Code typically R/O

34

Mmaping in virtual address space

•  Mapping files to virtual address space
–  Try and understand this through an example?

•  You can also anonymous mmaping
–  Why would we want to do that?

Tricks with Page Tables: COW

•  Copy on write (COW)
–  Just copy page tables
–  Make all pages read-only

•  What if process changes mem?

•  All processes are created this way!

36

 In-class Discussion

