
1

CMSC421: Principles of Operating Systems

Nilanjan Banerjee

Principles of Operating Systems
Acknowledgments: Some of the slides are adapted from Prof. Mark Corner and Prof. Emery

Berger’s OS course at Umass Amherst

Assistant Professor, University of Maryland

Baltimore County
nilanb@umbc.edu

http://www.csee.umbc.edu/~nilanb/teaching/421/

2

Announcements

•  Project 2 progress report due one week from Nov. 9th

3	

Coalescing

kernel

Text region

stack

free

allocated malloc(200)
brk

4

Jobs of a memory allocator like malloc

  Manage heap space in virtual memory
–  Use sbrk to ask for more memory from OS

  Coalescing
  Keep track of free blocks
  Merge them together when adjacent blocks are free

  Malloc needs to be really fast
  Decide which free block to allocate
  Lets take a look at the data structure that is used

for implementing malloc and free

5

Memory layout of the heap

http://gee.cs.oswego.edu/dl/html/malloc.html

this linked list can be ordered in different ways

6

Selecting the free block to allocate: Fragmentation

•  Intuitively, fragmentation stems from “breaking”
up heap into unusable spaces
–  More fragmentation = worse utilization

•  External fragmentation
–  Wasted space outside allocated objects

•  Internal fragmentation
–  Wasted space inside an object

7

Classical Algorithms

•  First-fit
–  find first chunk of desired size

8

Classical Algorithms

•  Best-fit
–  find chunk that fits best

•  Minimizes wasted space

9

Classical Algorithms

•  Worst-fit
–  find chunk that fits worst
–  name is a misnomer!
–  keeps large holes around

•  Reclaim space: coalesce free adjacent objects
into one big object

char	 *	 x	 =	 new	 char[16];	

10

virtual	 memory	 layout	

  Allocate	 some	 memory	

0x40001000	

0x40001040	 →	 0x4000104F	

A Day in the Life of a Page

char	 *	 x	 =	 new	 char[16];	

11

virtual	
memory	
layout	

  Update	 page	 tables	

0x40001000	

0x40001040	 →	 0x4000104F	

physical	
memory	
layout	

A Day in the Life of a Page

strcpy(x,	 “hello”);	

12

virtual	
memory	
layout	

  Write	 contents	 –	 dirty	 page	

0x40001000	

0x40001040	 →	 0x4000104F	

physical	
memory	
layout	

A Day in the Life of a Page

13

virtual	
memory	
layout	

  Other	 processes	 fill	 up	 memory…	

physical	
memory	
layout	

A Day in the Life of a Page

14

virtual	
memory	
layout	

  Forcing	 our	 page	 to	 be	 evicted	 (paged	 out)	

physical	
memory	
layout	

swap	
space	
(disk)	

A Day in the Life of a Page

15

virtual	
memory	
layout	

  Now	 page	 nonresident	 &	 protected	

physical	
memory	
layout	

swap	
space	
(disk)	

A Day in the Life of a Page

y[0]	 =	 x[0];	

16

virtual	
memory	
layout	

  Touch	 page	 –	 swap	 it	 in	

0x40001000	

0x40001040	 →	 0x4000104F	

physical	
memory	
layout	

swap	
space	
(disk)	

A Day in the Life of a Page

y[0]	 =	 x[0];	

17

virtual	
memory	
layout	

  Touch	 page	 –	 swap	 it	 in	

0x40001000	

0x40001040	 →	 0x4000104F	

physical	
memory	
layout	

swap	
space	
(disk)	

A Day in the Life of a Page

18

Talked about malloc? What about physical frame mgmt?

  malloc works in virtual memory (works in user space)
–  Manages free blocks
–  Allocates virtual address on the heap

  Remember the OS still has to manage physical frames
  The problem that the OS faces with physical frame

allocation is the similar to malloc
  Manage physical frames that all processes in the

system requests.
  Difference with malloc

  Has to work across all processes
  Each process perceives 4GB of space, but in

actuality there is only 4GB of physical memory
space

19

Tasks of the OS physical page management unit

  Allocate new pages to applications
–  OS do this lazily
–  malloc call would usually return immediately
–  OS allocates a new physical only when the process

reads/writes to the page
–  Similar to the Copy-on-Write policy for fork()

  In the event that all physical frames are taken
  OS needs to evict pages

  Take page from main memory and store it on
swap space

  Needs a policy for evicting pages

20

Page replacement policy for Demand Paging?

 What is the optimal page replacement policy?

21

Optimal Page Replacement policy

  Find the page that is going to used farthest into the
future
–  Evict the page from main memory to swap space
–  Allocate the freed page to the new process
–  Problems: it is impossible to predict the future

  Approximation is LRU (least recently used page)
  Find the page that is least recently used and evict

it
  Remember this has to be super-fast
  What would be techniques to implement this in

the kernel?

22

A, B, C, B, C, C, D

Implementing Exact LRU

•  On each reference, time stamp page
•  When we need to evict: select oldest page

= least-recently used

23

A
1 A, B, C, B, C, C, D

Implementing Exact LRU

•  On each reference, time stamp page
•  When we need to evict: select oldest page

= least-recently used

24

A
1

B
2 A, B, C, B, C, C, D

Implementing Exact LRU

•  On each reference, time stamp page
•  When we need to evict: select oldest page

= least-recently used

25

A
1

B
2

C
3

A, B, C, B, C, C, D

Implementing Exact LRU

•  On each reference, time stamp page
•  When we need to evict: select oldest page

= least-recently used

26

A
1

B
4

C
3 A, B, C, B, C, C, D

Implementing Exact LRU

•  On each reference, time stamp page
•  When we need to evict: select oldest page

= least-recently used

27

A
1

B
4

C
5

A, B, C, B, C, C, D

Implementing Exact LRU

•  On each reference, time stamp page
•  When we need to evict: select oldest page

= least-recently used

28

A
1

B
4

C
6 A, B, C, B, C, C, D

Implementing Exact LRU

•  On each reference, time stamp page
•  When we need to evict: select oldest page

= least-recently used

29

A, B, C, B, C, C D, A
1

B
4

C
6

D
7

LRU page How	 should	 we	 implement	 this?	

Implementing Exact LRU

•  On each reference, time stamp page
•  When we need to evict: select oldest page

= least-recently used

A
0

30

Implementing Exact LRU

•  Could keep pages in order
– optimizes eviction
–  Priority queue:

update = O(log n), eviction = O(log n)

•  Optimize for common case!
–  Common case: hits, not misses
–  Hash table:

update = O(1), eviction = O(n)

31

Cost of Maintaining Exact LRU

•  Hash tables: too expensive
–  On every reference:

•  Compute hash of page address
•  Update time stamp

32

Cost of Maintaining Exact LRU

•  Alternative: doubly-linked list
–  Move items to front when referenced
–  LRU items at end of list
–  Still too expensive

•  4-6 pointer updates per reference

•  Can we do better?

33

A
1

B
1

C
1 A, B, C, B, C, C, D

Hardware Support and approximate LRU (Linux Kernel)

•  Maintain reference bits for every page
–  On each access, set reference bit to 1
–  Page replacement algorithm periodically resets

reference bits

34

A
0

B
0

C
0

A, B, C, B, C, C, D

reset reference bits

Hardware Support

•  Maintain reference bits for every page
–  On each access, set reference bit to 1
–  Page replacement algorithm periodically resets

reference bits

35

A
0

B
1

C
0 A, B, C, B, C, C, D

Hardware Support

•  Maintain reference bits for every page
–  On each access, set reference bit to 1
–  Page replacement algorithm periodically resets

reference bits

36

A
0

B
1

C
1

A, B, C, B, C, C, D

Hardware Support

•  Maintain reference bits for every page
–  On each access, set reference bit to 1
–  Page replacement algorithm periodically resets

reference bits

37

A
0

B
1

C
1

A, B, C, B, C, C, D

Hardware Support

•  Maintain reference bits for every page
–  On each access, set reference bit to 1
–  Page replacement algorithm periodically resets

reference bits

38

A
0

A, B, C, B, C, C, D
B
1

C
1

D
1

Hardware Support

•  Maintain reference bits for every page
–  On each access, set reference bit to 1
–  Page replacement algorithm periodically resets

reference bits
–  Evict page with reference bit = 0

•  Cost per miss = O(n)

39

A, B, C, D, A, B, C, D, ...
size of available memory

Most-Recently Used (MRU)

•  Evict most-recently used page
•  Shines for LRU’s worst-case:

40

A A, B, C, D, A, B, C, D, ...
size of available memory

Most-Recently Used (MRU)

•  Evict most-recently used page
•  Shines for LRU’s worst-case: loop that exceeds RAM

size

41

A B A, B, C, D, A, B, C, D, ...
size of available memory

Most-Recently Used (MRU)

•  Evict most-recently used page
•  Shines for LRU’s worst-case: loop that exceeds RAM

size

42

A B C A, B, C, D, A, B, C, D, ...
size of available memory

Most-Recently Used (MRU)

•  Evict most-recently used page
•  Shines for LRU’s worst-case: loop that exceeds RAM

size

43

A B D A, B, C, D, A, B, C, D, ...
size of available memory

Most-Recently Used (MRU)

•  Evict most-recently used page
•  Shines for LRU’s worst-case: loop that exceeds RAM

size

44

A B D A, B, C, D, A, B, C, D, ...
size of available memory

Most-Recently Used (MRU)

•  Evict most-recently used page
•  Shines for LRU’s worst-case: loop that exceeds RAM

size

45

A B D A, B, C, D, A, B, C, D, ...
size of available memory

Most-Recently Used (MRU)

•  Evict most-recently used page
•  Shines for LRU’s worst-case: loop that exceeds RAM

size

46

A B D A, B, C, D, A, B, C, D, ...
size of available memory

Most-Recently Used (MRU)

•  Evict most-recently used page
•  Shines for LRU’s worst-case: loop that exceeds RAM

size

47

FIFO

•  First-in, first-out: evict oldest page
•  As competitive as LRU, but

performs miserably in practice!
–  Ignores locality
–  Suffers from Belady’s anomaly:

•  More memory can mean more paging!

–  LRU & similar algs. do not
•  Stack algorithms – more memory means ≥ hits

48

Tricks with Page Tables: Sharing

•  Paging allows sharing of
memory across
processes
–  Reduces memory

requirements
•  Shared stuff includes

code, data
–  Code typically R/O

Tricks with Page Tables: COW

•  Copy on write (COW)
–  Just copy page tables
–  Make all pages read-only

•  What if process changes mem?

•  All processes are created this way!

50

 In-class Discussion

