
1

CMSC421: Principles of Operating Systems

Nilanjan Banerjee

Principles of Operating Systems
Acknowledgments: Some of the slides are adapted from Prof. Mark Corner and Prof. Emery

Berger’s OS course at Umass Amherst

Assistant Professor, University of Maryland

Baltimore County
nilanb@umbc.edu

http://www.csee.umbc.edu/~nilanb/teaching/421/

2

Announcements

•  Project 2 progress report due one week from Nov. 9th

3	

Coalescing

kernel

Text region

stack

free

allocated malloc(200)
brk

4

Jobs of a memory allocator like malloc

  Manage heap space in virtual memory
–  Use sbrk to ask for more memory from OS

  Coalescing
  Keep track of free blocks
  Merge them together when adjacent blocks are free

  Malloc needs to be really fast
  Decide which free block to allocate
  Lets take a look at the data structure that is used

for implementing malloc and free

5

Memory layout of the heap

http://gee.cs.oswego.edu/dl/html/malloc.html

this linked list can be ordered in different ways

6

Selecting the free block to allocate: Fragmentation

•  Intuitively, fragmentation stems from “breaking”
up heap into unusable spaces
–  More fragmentation = worse utilization

•  External fragmentation
–  Wasted space outside allocated objects

•  Internal fragmentation
–  Wasted space inside an object

7

Classical Algorithms

•  First-fit
–  find first chunk of desired size

8

Classical Algorithms

•  Best-fit
–  find chunk that fits best

•  Minimizes wasted space

9

Classical Algorithms

•  Worst-fit
–  find chunk that fits worst
–  name is a misnomer!
–  keeps large holes around

•  Reclaim space: coalesce free adjacent objects
into one big object

char	
 *	
 x	
 =	
 new	
 char[16];	

10

virtual	
 memory	
 layout	

  Allocate	
 some	
 memory	

0x40001000	

0x40001040	
 →	
 0x4000104F	

A Day in the Life of a Page

char	
 *	
 x	
 =	
 new	
 char[16];	

11

virtual	

memory	

layout	

  Update	
 page	
 tables	

0x40001000	

0x40001040	
 →	
 0x4000104F	

physical	

memory	

layout	

A Day in the Life of a Page

strcpy(x,	
 “hello”);	

12

virtual	

memory	

layout	

  Write	
 contents	
 –	
 dirty	
 page	

0x40001000	

0x40001040	
 →	
 0x4000104F	

physical	

memory	

layout	

A Day in the Life of a Page

13

virtual	

memory	

layout	

  Other	
 processes	
 fill	
 up	
 memory…	

physical	

memory	

layout	

A Day in the Life of a Page

14

virtual	

memory	

layout	

  Forcing	
 our	
 page	
 to	
 be	
 evicted	
 (paged	
 out)	

physical	

memory	

layout	

swap	

space	

(disk)	

A Day in the Life of a Page

15

virtual	

memory	

layout	

  Now	
 page	
 nonresident	
 &	
 protected	

physical	

memory	

layout	

swap	

space	

(disk)	

A Day in the Life of a Page

y[0]	
 =	
 x[0];	

16

virtual	

memory	

layout	

  Touch	
 page	
 –	
 swap	
 it	
 in	

0x40001000	

0x40001040	
 →	
 0x4000104F	

physical	

memory	

layout	

swap	

space	

(disk)	

A Day in the Life of a Page

y[0]	
 =	
 x[0];	

17

virtual	

memory	

layout	

  Touch	
 page	
 –	
 swap	
 it	
 in	

0x40001000	

0x40001040	
 →	
 0x4000104F	

physical	

memory	

layout	

swap	

space	

(disk)	

A Day in the Life of a Page

18

Talked about malloc? What about physical frame mgmt?

  malloc works in virtual memory (works in user space)
–  Manages free blocks
–  Allocates virtual address on the heap

  Remember the OS still has to manage physical frames
  The problem that the OS faces with physical frame

allocation is the similar to malloc
  Manage physical frames that all processes in the

system requests.
  Difference with malloc

  Has to work across all processes
  Each process perceives 4GB of space, but in

actuality there is only 4GB of physical memory
space

19

Tasks of the OS physical page management unit

  Allocate new pages to applications
–  OS do this lazily
–  malloc call would usually return immediately
–  OS allocates a new physical only when the process

reads/writes to the page
–  Similar to the Copy-on-Write policy for fork()

  In the event that all physical frames are taken
  OS needs to evict pages

  Take page from main memory and store it on
swap space

  Needs a policy for evicting pages

20

Page replacement policy for Demand Paging?

 What is the optimal page replacement policy?

21

Optimal Page Replacement policy

  Find the page that is going to used farthest into the
future
–  Evict the page from main memory to swap space
–  Allocate the freed page to the new process
–  Problems: it is impossible to predict the future

  Approximation is LRU (least recently used page)
  Find the page that is least recently used and evict

it
  Remember this has to be super-fast
  What would be techniques to implement this in

the kernel?

22

A, B, C, B, C, C, D

Implementing Exact LRU

•  On each reference, time stamp page
•  When we need to evict: select oldest page

= least-recently used

23

A
1 A, B, C, B, C, C, D

Implementing Exact LRU

•  On each reference, time stamp page
•  When we need to evict: select oldest page

= least-recently used

24

A
1

B
2 A, B, C, B, C, C, D

Implementing Exact LRU

•  On each reference, time stamp page
•  When we need to evict: select oldest page

= least-recently used

25

A
1

B
2

C
3

A, B, C, B, C, C, D

Implementing Exact LRU

•  On each reference, time stamp page
•  When we need to evict: select oldest page

= least-recently used

26

A
1

B
4

C
3 A, B, C, B, C, C, D

Implementing Exact LRU

•  On each reference, time stamp page
•  When we need to evict: select oldest page

= least-recently used

27

A
1

B
4

C
5

A, B, C, B, C, C, D

Implementing Exact LRU

•  On each reference, time stamp page
•  When we need to evict: select oldest page

= least-recently used

28

A
1

B
4

C
6 A, B, C, B, C, C, D

Implementing Exact LRU

•  On each reference, time stamp page
•  When we need to evict: select oldest page

= least-recently used

29

A, B, C, B, C, C D, A
1

B
4

C
6

D
7

LRU page How	
 should	
 we	
 implement	
 this?	

Implementing Exact LRU

•  On each reference, time stamp page
•  When we need to evict: select oldest page

= least-recently used

A
0

30

Implementing Exact LRU

•  Could keep pages in order
– optimizes eviction
–  Priority queue:

update = O(log n), eviction = O(log n)

•  Optimize for common case!
–  Common case: hits, not misses
–  Hash table:

update = O(1), eviction = O(n)

31

Cost of Maintaining Exact LRU

•  Hash tables: too expensive
–  On every reference:

•  Compute hash of page address
•  Update time stamp

32

Cost of Maintaining Exact LRU

•  Alternative: doubly-linked list
–  Move items to front when referenced
–  LRU items at end of list
–  Still too expensive

•  4-6 pointer updates per reference

•  Can we do better?

33

A
1

B
1

C
1 A, B, C, B, C, C, D

Hardware Support and approximate LRU (Linux Kernel)

•  Maintain reference bits for every page
–  On each access, set reference bit to 1
–  Page replacement algorithm periodically resets

reference bits

34

A
0

B
0

C
0

A, B, C, B, C, C, D

reset reference bits

Hardware Support

•  Maintain reference bits for every page
–  On each access, set reference bit to 1
–  Page replacement algorithm periodically resets

reference bits

35

A
0

B
1

C
0 A, B, C, B, C, C, D

Hardware Support

•  Maintain reference bits for every page
–  On each access, set reference bit to 1
–  Page replacement algorithm periodically resets

reference bits

36

A
0

B
1

C
1

A, B, C, B, C, C, D

Hardware Support

•  Maintain reference bits for every page
–  On each access, set reference bit to 1
–  Page replacement algorithm periodically resets

reference bits

37

A
0

B
1

C
1

A, B, C, B, C, C, D

Hardware Support

•  Maintain reference bits for every page
–  On each access, set reference bit to 1
–  Page replacement algorithm periodically resets

reference bits

38

A
0

A, B, C, B, C, C, D
B
1

C
1

D
1

Hardware Support

•  Maintain reference bits for every page
–  On each access, set reference bit to 1
–  Page replacement algorithm periodically resets

reference bits
–  Evict page with reference bit = 0

•  Cost per miss = O(n)

39

A, B, C, D, A, B, C, D, ...
size of available memory

Most-Recently Used (MRU)

•  Evict most-recently used page
•  Shines for LRU’s worst-case:

40

A A, B, C, D, A, B, C, D, ...
size of available memory

Most-Recently Used (MRU)

•  Evict most-recently used page
•  Shines for LRU’s worst-case: loop that exceeds RAM

size

41

A B A, B, C, D, A, B, C, D, ...
size of available memory

Most-Recently Used (MRU)

•  Evict most-recently used page
•  Shines for LRU’s worst-case: loop that exceeds RAM

size

42

A B C A, B, C, D, A, B, C, D, ...
size of available memory

Most-Recently Used (MRU)

•  Evict most-recently used page
•  Shines for LRU’s worst-case: loop that exceeds RAM

size

43

A B D A, B, C, D, A, B, C, D, ...
size of available memory

Most-Recently Used (MRU)

•  Evict most-recently used page
•  Shines for LRU’s worst-case: loop that exceeds RAM

size

44

A B D A, B, C, D, A, B, C, D, ...
size of available memory

Most-Recently Used (MRU)

•  Evict most-recently used page
•  Shines for LRU’s worst-case: loop that exceeds RAM

size

45

A B D A, B, C, D, A, B, C, D, ...
size of available memory

Most-Recently Used (MRU)

•  Evict most-recently used page
•  Shines for LRU’s worst-case: loop that exceeds RAM

size

46

A B D A, B, C, D, A, B, C, D, ...
size of available memory

Most-Recently Used (MRU)

•  Evict most-recently used page
•  Shines for LRU’s worst-case: loop that exceeds RAM

size

47

FIFO

•  First-in, first-out: evict oldest page
•  As competitive as LRU, but

performs miserably in practice!
–  Ignores locality
–  Suffers from Belady’s anomaly:

•  More memory can mean more paging!

–  LRU & similar algs. do not
•  Stack algorithms – more memory means ≥ hits

48

Tricks with Page Tables: Sharing

•  Paging allows sharing of
memory across
processes
–  Reduces memory

requirements
•  Shared stuff includes

code, data
–  Code typically R/O

Tricks with Page Tables: COW

•  Copy on write (COW)
–  Just copy page tables
–  Make all pages read-only

•  What if process changes mem?

•  All processes are created this way!

50

 In-class Discussion

