CMSC421: Principles of Operating Systems

Nilanjan Banerjee

Assistant Professor, University of Maryland
Baltimore County
nilanb@umbc.edu

http://www.csee.umbc.edu/~nilanb/teaching/421/

Principles of Operating Systems
Acknowledgments: Some of the slides are adapted from Prof. Mark Corner and Prof. Emery
Berger’s OS course at Umass Amherst 1

Announcements

e Project 2 progress report due on Nov. 9th

« Homework 3 will be out soon (hopefully before the end
of this week)

Quick Activity

« How much mem does a page table need?
- 4kB pages, 32 bit address space
- page table entry (PTE) uses 4 bytes

e 2°32/2712*4=2"22 bytes=4MB
- Is this a problem?
- Isn’t this per process?

- What about a 64 bit address space?
e Any ideas how to fix this?

Locality

e Most programs obey
90/10 “rule”

- 90% of time spent
accessing 10% of
memory

e Exploit this rule:

- Only keep “live”
parts of process in
memory

Multi-Level Page Tables

e Use a multi-level page table

Level 0 Table Level 1 Table

A 4

Level 1 Table

A 4

Quick Activity

« How much mem does a page table need?
- 4kB pages, 32 bit address space
- Two level page table
- 20bits = 10 bits each level
- page table entry (PTE) uses 4 bytes
- Only first page of program is valid
e 2710*4+2"10*4=2"13 bytes=8kB

e Isn’t this slow?

Translation Lookaside Buffer (TLB)

o TLB: fast, fully associative memory
- Caches page table entries

- Stores page numbers (key) and frame (value) in which
they are stored

o Assumption: locality of reference

- Locality in memory accesses =
locality in address translation

e TLB sizes: 8 to 2048 entries

- Powers of 2 simplifies translation
of virtual to physical addresses

Linear Address in Linux

B Uses a three-level paging strategy that works well for
32-bit and 64-bit systems

B Linear address broken into four parts:

global middle page

directory directory table gl

Three-level Paging in Linux

(linear address)

. global directory | middle directory | page table | offset
global
directory middle
directory page
tabl
I able page
global _ frame
directory entry i » page table |
middle i entry &
CR3 —» directory entry
register N
N
N

Inverted Page Tables

CPU

physical
address

logical
address
olfe] || [© d
searchl
pid| p
page table

y

physical
memory

Maintain one global page table for all processes

Swap Space

page

page

page

page

virtual
memory

page
table

N

memory

Disk

Page table entry and page faults

31

Page-Table Entry (4-KByte Pa
121

ge)

9876543210

Page Base Address Avail.

G

0

D

-

P

!

W[/

R

/P

W

Available for system programmer’s use 4‘
Global page

Reserved (set io 0)

Dirty -
Accessed

Cache disabled

Write-through

User/Supervisor
Read/Write

Present

User-space memory allocation in the heap (malloc)

What happens
int *arg = (int *)malloc(sizeof(int))

= Programs ask memory manager

to allocate/free objects (or multiple pages)
= Memory manager asks OS

to allocate/free pages (or multiple pages)

malloc, free

Pages (mmap,brk)

User-space memory allocation in the heap (malloc)

brk
brk

brk
sbrk(0)

sbrk(100)
sbrk(100)

sbrk(100)
sbrk(0)

A demo?

User-space memory allocation in the heap (malloc)

Memory
llocator
brk a
keeps track
of the free
free blocks

sbrk(0)

Few Scenarios

brk

malloc(200)
Waste of resources

sbrk(0)

Coalescing

K
br malloc(200)

Waste of resources

sbrk(0)

Jobs of a memory allocator like malloc

= Manage heap space in virtual memory
Use sbrk to ask for more memory from OS
= Coalescing
= Keep track of free blocks
= Merge them together when adjacent blocks are free
= Malloc needs to be really fast
= Decide which free block to allocate

= Lets take a look at the data structure that is used
for implementing malloc and free

18

Memory layout of the heap

an allocated | sizefstatus=inuse
chunk ... Uset data space ...
s1ze
. ﬁeed_W
chunk pointer to next chiunk 1n bin
pointet to previous chunk i bin
Lunused space ...
s1ze
. alW
chunk uset data
s1ze
L . __}
other chunks| ***
MIQW
chunk
s1ze

(

end of available memory

this linked list can be ordered in different ways

http://gee.cs.oswego.edu/dl/html/malloc.html 19

Selecting the free block to allocate: Fragmentation

 Intuitively, fragmentation stems from “breaking”
up heap into unusable spaces
- More fragmentation = worse utilization

e External fragmentation
- Wasted space outside allocated objects

e Internal fragmentation
- Wasted space inside an object

20

Classical Algorithms

e First-fit
- find first chunk of desired size

21

Classical Algorithms

e Best-fit
- find chunk that fits best
e Minimizes wasted space

22

Classical Algorithms

o Worst-fit
- find chunk that fits worst
- name is a misnomer!
- keeps large holes around

e Reclaim space: coalesce free adjacent objects
into one big object

23

24

In-class Discussion

