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Announcements

e Project 2 progress report due on Nov. 9th

« Homework 3 will be out soon (hopefully before the end
of this week)



Quick Activity

« How much mem does a page table need?
- 4kB pages, 32 bit address space
- page table entry (PTE) uses 4 bytes

e 2°32/2712*4=2"22 bytes=4MB
- Is this a problem?
- Isn’t this per process?

- What about a 64 bit address space?
e Any ideas how to fix this?



Locality

e Most programs obey
90/10 “rule”

- 90% of time spent
accessing 10% of
memory

e Exploit this rule:

- Only keep “live”
parts of process in
memory




Multi-Level Page Tables

e Use a multi-level page table

Level 0 Table Level 1 Table

A 4

Level 1 Table

A 4




Quick Activity

« How much mem does a page table need?
- 4kB pages, 32 bit address space
- Two level page table
- 20bits = 10 bits each level
- page table entry (PTE) uses 4 bytes
- Only first page of program is valid
e 2710*4+2"10*4=2"13 bytes=8kB

e Isn’t this slow?



Translation Lookaside Buffer (TLB)

o TLB: fast, fully associative memory
- Caches page table entries

- Stores page numbers (key) and frame (value) in which
they are stored

o Assumption: locality of reference

- Locality in memory accesses =
locality in address translation

e TLB sizes: 8 to 2048 entries

- Powers of 2 simplifies translation
of virtual to physical addresses



Linear Address in Linux

B Uses a three-level paging strategy that works well for
32-bit and 64-bit systems

B Linear address broken into four parts:

global middle page

directory directory table gl




Three-level Paging in Linux

(linear address)
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Inverted Page Tables
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Maintain one global page table for all processes




Swap Space
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Page table entry and page faults
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User-space memory allocation in the heap (malloc)

What happens
int *arg = (int *)malloc(sizeof(int))

= Programs ask memory manager

to allocate/free objects (or multiple pages)
= Memory manager asks OS

to allocate/free pages (or multiple pages)

malloc, free

Pages (mmap,brk)



User-space memory allocation in the heap (malloc)
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A demo?



User-space memory allocation in the heap (malloc)

Memory
llocator
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Few Scenarios

brk

malloc(200)
Waste of resources

sbrk(0)




Coalescing
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Jobs of a memory allocator like malloc

= Manage heap space in virtual memory
Use sbrk to ask for more memory from OS
= Coalescing
= Keep track of free blocks
= Merge them together when adjacent blocks are free
= Malloc needs to be really fast
= Decide which free block to allocate

= Lets take a look at the data structure that is used
for implementing malloc and free
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Memory layout of the heap
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this linked list can be ordered in different ways
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Selecting the free block to allocate: Fragmentation

 Intuitively, fragmentation stems from “breaking”
up heap into unusable spaces
- More fragmentation = worse utilization

e External fragmentation
- Wasted space outside allocated objects

e Internal fragmentation
- Wasted space inside an object
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Classical Algorithms

e First-fit
- find first chunk of desired size
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Classical Algorithms

e Best-fit
- find chunk that fits best
e Minimizes wasted space

22



Classical Algorithms

o Worst-fit
- find chunk that fits worst
- name is a misnomer!
- keeps large holes around

e Reclaim space: coalesce free adjacent objects
into one big object
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In-class Discussion



