
1

CMSC421: Principles of Operating Systems

Nilanjan Banerjee

Principles of Operating Systems
Acknowledgments: Some of the slides are adapted from Prof. Mark Corner and Prof. Emery

Berger’s OS course at Umass Amherst

Assistant Professor, University of Maryland

Baltimore County
nilanb@umbc.edu

http://www.csee.umbc.edu/~nilanb/teaching/421/

2

Announcements

•  Project 2 progress report due on Nov. 9th
•  Homework 3 will be out soon (hopefully before the end

of this week)

Quick Activity

•  How much mem does a page table need?
–  4kB pages, 32 bit address space
–  page table entry (PTE) uses 4 bytes

•  2^32/2^12*4=2^22 bytes=4MB
–  Is this a problem?
–  Isn’t this per process?
–  What about a 64 bit address space?

•  Any ideas how to fix this?

4	

A

B
A B

Locality

• Most programs obey
90/10 “rule”
–  90% of time spent

accessing 10% of
memory

•  Exploit this rule:
–  Only keep “live”

parts of process in
memory

Multi-Level Page Tables

•  Use a multi-level page table

A A

A

Level 0 Table

Level 1 Table

Level 1 Table

Quick Activity

•  How much mem does a page table need?
–  4kB pages, 32 bit address space
–  Two level page table
–  20bits = 10 bits each level
–  page table entry (PTE) uses 4 bytes
–  Only first page of program is valid

•  2^10*4+2^10*4=2^13 bytes=8kB

•  Isn’t this slow?

7

Translation Lookaside Buffer (TLB)

•  TLB: fast, fully associative memory
–  Caches page table entries
–  Stores page numbers (key) and frame (value) in which

they are stored

•  Assumption: locality of reference
–  Locality in memory accesses =

locality in address translation

•  TLB sizes: 8 to 2048 entries
–  Powers of 2 simplifies translation

of virtual to physical addresses

Linear Address in Linux

  Uses a three-level paging strategy that works well for
32-bit and 64-bit systems"

  Linear address broken into four parts:"

Three-level Paging in Linux

Inverted Page Tables

Maintain one global page table for all processes

Swap Space

12	

Page table entry and page faults

13	

User-space memory allocation in the heap (malloc)

What happens
 int *arg = (int *)malloc(sizeof(int))

  Programs ask memory manager
–  to allocate/free objects (or multiple pages)

  Memory manager asks OS
–  to allocate/free pages (or multiple pages)

User Program

Allocator(libc)

OS
Pages (mmap,brk)

malloc, free

14	

User-space memory allocation in the heap (malloc)

kernel

Text region

stack

sbrk(0)

sbrk(100) brk

sbrk(100) brk

sbrk(100) brk

sbrk(0)

allocated

allocated

allocated

A demo?

15	

User-space memory allocation in the heap (malloc)

kernel

Text region

stack

sbrk(0)

brk

free

allocated

allocated

free

Memory
allocator

keeps track
of the free

blocks

16	

Few Scenarios

kernel

Text region

stack

sbrk(0)

free

free

allocated malloc(200)
Waste of resources

brk
allocated

17	

Coalescing

kernel

Text region

stack

sbrk(0)

free

allocated malloc(200)
Waste of resources

brk

18

Jobs of a memory allocator like malloc

  Manage heap space in virtual memory
–  Use sbrk to ask for more memory from OS

  Coalescing
  Keep track of free blocks
  Merge them together when adjacent blocks are free

  Malloc needs to be really fast
  Decide which free block to allocate
  Lets take a look at the data structure that is used

for implementing malloc and free

19

Memory layout of the heap

http://gee.cs.oswego.edu/dl/html/malloc.html

this linked list can be ordered in different ways

20

Selecting the free block to allocate: Fragmentation

•  Intuitively, fragmentation stems from “breaking”
up heap into unusable spaces
–  More fragmentation = worse utilization

•  External fragmentation
–  Wasted space outside allocated objects

•  Internal fragmentation
–  Wasted space inside an object

21

Classical Algorithms

•  First-fit
–  find first chunk of desired size

22

Classical Algorithms

•  Best-fit
–  find chunk that fits best

•  Minimizes wasted space

23

Classical Algorithms

•  Worst-fit
–  find chunk that fits worst
–  name is a misnomer!
–  keeps large holes around

•  Reclaim space: coalesce free adjacent objects
into one big object

24

 In-class Discussion

