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Announcements 

•  Project 2 progress report due on Nov. 9th 
•  Homework 3 will be out soon (hopefully before the end 

of this week) 



Quick Activity 

•  How much mem does a page table need? 
–  4kB pages, 32 bit address space 
–  page table entry (PTE) uses 4 bytes 

•  2^32/2^12*4=2^22 bytes=4MB 
–  Is this a problem? 
–  Isn’t this per process? 
–  What about a 64 bit address space? 

•  Any ideas how to fix this? 
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Locality 

• Most programs obey 
90/10 “rule” 
–  90% of time spent 

accessing 10% of 
memory 

•  Exploit this rule: 
–  Only keep “live” 

parts of process in 
memory 



Multi-Level Page Tables 

•  Use a multi-level page table 

A A 

A 

Level 0 Table 

Level 1 Table 

Level 1 Table 



Quick Activity 

•  How much mem does a page table need? 
–  4kB pages, 32 bit address space 
–  Two level page table 
–  20bits = 10 bits each level 
–  page table entry (PTE) uses 4 bytes 
–  Only first page of program is valid 

•  2^10*4+2^10*4=2^13 bytes=8kB 

•  Isn’t this slow? 
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Translation Lookaside Buffer (TLB) 

•  TLB: fast, fully associative memory 
–  Caches page table entries 
–  Stores page numbers (key) and frame (value) in which 

they are stored 

•  Assumption: locality of reference 
–  Locality in memory accesses = 

locality in address translation 

•  TLB sizes: 8 to 2048 entries 
–  Powers of 2 simplifies translation 

of virtual to physical addresses 



Linear Address in Linux 

  Uses a three-level paging strategy that works well for 
32-bit and 64-bit systems"

  Linear address broken into four parts:"



Three-level Paging in Linux 



Inverted Page Tables 

Maintain one global page table for all processes 



Swap Space 
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Page table entry and page faults 
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User-space memory allocation in the heap (malloc) 

What happens  
 int *arg = (int *)malloc(sizeof(int)) 

  Programs ask memory manager 
–  to allocate/free objects (or multiple pages) 

  Memory manager asks OS 
–  to allocate/free pages (or multiple pages) 

User Program 

Allocator(libc) 

OS 
Pages (mmap,brk) 

malloc, free 
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User-space memory allocation in the heap (malloc) 

kernel 

Text region 

stack 

sbrk(0) 

sbrk(100) brk 

sbrk(100) brk 

sbrk(100) brk 

sbrk(0) 

allocated 

allocated 

allocated 

A demo? 
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User-space memory allocation in the heap (malloc) 

kernel 

Text region 

stack 

sbrk(0) 

brk 

free 

allocated 

allocated 

free 

Memory 
allocator 

keeps track 
of the free 

blocks 
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Few Scenarios 

kernel 

Text region 

stack 

sbrk(0) 

free 

free 

allocated malloc(200) 
Waste of resources 

brk 
allocated 
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Coalescing  

kernel 

Text region 

stack 

sbrk(0) 

free 

allocated malloc(200) 
Waste of resources 

brk 
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Jobs of a memory allocator like malloc 

  Manage heap space in virtual memory 
–  Use sbrk to ask for more memory from OS 

  Coalescing  
  Keep track of free blocks 
  Merge them together when adjacent blocks are free 

  Malloc needs to be really fast 
  Decide which free block to allocate 
  Lets take a look at the data structure that is used 

for implementing malloc and free 
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Memory layout of the heap 

http://gee.cs.oswego.edu/dl/html/malloc.html 

this linked list can be ordered in different ways 
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Selecting the free block to allocate: Fragmentation 

•  Intuitively, fragmentation stems from “breaking” 
up heap into unusable spaces 
–  More fragmentation = worse utilization 

•  External fragmentation 
–  Wasted space outside allocated objects 

•  Internal fragmentation 
–  Wasted space inside an object 
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Classical Algorithms 

•  First-fit 
–  find first chunk of desired size 
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Classical Algorithms 

•  Best-fit 
–  find chunk that fits best 

•  Minimizes wasted space 
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Classical Algorithms 

•  Worst-fit 
–  find chunk that fits worst 
–  name is a misnomer! 
–  keeps large holes around 

•  Reclaim space: coalesce free adjacent objects 
into one big object 
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   In-class Discussion 


