
1

CMSC421: Principles of Operating Systems

Nilanjan Banerjee

Principles of Operating Systems
Acknowledgments: Some of the slides are adapted from Prof. Mark Corner and Prof. Emery

Berger’s OS course at Umass Amherst

Assistant Professor, University of Maryland

Baltimore County
nilanb@umbc.edu

http://www.csee.umbc.edu/~nilanb/teaching/421/

2

Announcements

•  Midterm (29th of October in class)
•  Project 2 design document is due 26th October
•  We will do a review at the end of the class

How does all of this work?

•  A process asks for memory to read/write/copy
–  Does not really care where the data came from
–  Registers, L1, L2, L3, Main memory, Network memory or

the disk

•  Key question: How do we make this transparent
from the process

4

Virtual vs. Physical Memory

•  Processes don’t access physical
memory
–  Well, not directly

•  Apps use virtual memory
–  Addresses start at 0
–  One level of indirection
–  Address you see is not “real” address

Memory Pages

•  Programs use memory as individual bytes
•  OS manages groups of bytes: pages

–  typically 4kB, 8kB
–  Applies this to virtual and physical memory

•  Physical pages usually called frames

A

Mapping Virtual to Physical

7

Why Virtual Memory?

• Why?
–  Simpler

• Everyone gets illusion
of whole address
space

–  Isolation
• Every process

protected from every
other

–  Optimization
• Reduces space

requirements

Memory Management Unit

•  Programs issue loads and stores
•  What kind of addresses are these?
•  MMU Translates virtual to physical addresses

–  Maintains page table (big hash table):
–  Almost always in HW… Why?

MMU Physical
Address

Virtual
Address Program Memory

Page
Table

Page Tables

•  Table of translations
–  virtual pages -> physical pages

•  One page table per process
•  One page table entry per virtual page
•  How?

–  Programs issue virtual address
–  Find virtual page (how?)
–  Lookup physical page, add offset

Page Table Entries

•  Do all virtual pages -> physical page?
–  Valid and Invalid bits

•  PTEs have lots of other information
–  For instance some pages can only be read

11	

Address Translation

•  Powers of 2:
–  Virtual address space: size 2^m
–  Page size 2^n

•  Page#: High m-n bits of virtual address
•  Lower n bits select offset in page

 Lets take an example

12	

Paging Hardware

Quick Activity

•  How much mem does a page table need?
–  4kB pages, 32 bit address space
–  page table entry (PTE) uses 4 bytes

•  2^32/2^12*4=2^22 bytes=4MB
–  Is this a problem?
–  Isn’t this per process?
–  What about a 64 bit address space?

•  Any ideas how to fix this?

14	

A

B
A B

Locality

• Most programs obey
90/10 “rule”
–  90% of time spent

accessing 10% of
memory

•  Exploit this rule:
–  Only keep “live”

parts of process in
memory

Multi-Level Page Tables

•  Use a multi-level page table

A A

A

Level 0 Table

Level 1 Table

Level 1 Table

Quick Activity

•  How much mem does a page table
need?
–  4kB pages, 32 bit address space
–  Two level page table
–  20bits = 10 bits each level
–  page table entry (PTE) uses 4 bytes
–  Only first page of program is valid

•  2^10*4+2^10*4=2^13 bytes=8kB

•  Isn’t this slow?

17

Translation Lookaside Buffer (TLB)

•  TLB: fast, fully associative memory
–  Caches page table entries
–  Stores page numbers (key) and frame (value) in which

they are stored

•  Assumption: locality of reference
–  Locality in memory accesses =

locality in address translation

•  TLB sizes: 8 to 2048 entries
–  Powers of 2 simplifies translation

of virtual to physical addresses

Linear Address in Linux

  Uses a three-level paging strategy that works well for
32-bit and 64-bit systems"

  Linear address broken into four parts:"

Three-level Paging in Linux

20	

Paging

21

 Midterm review

