
1

CMSC421: Principles of Operating Systems

Nilanjan Banerjee

Principles of Operating Systems
Acknowledgments: Some of the slides are adapted from Prof. Mark Corner and Prof. Emery

Berger’s OS course at Umass Amherst

Assistant Professor, University of Maryland

Baltimore County
nilanb@umbc.edu

http://www.csee.umbc.edu/~nilanb/teaching/421/

2

Announcements

•  Midterm (29th of October in class)
•  Project 2 is out (design document is due 26th October)
•  Readings from Silberchatz [8th chapter]

Memory Hierarchy

•  Registers
•  Caches – L1, L2, L3 caches and a special cache

called the TLB (Translation lookaside buffer)
•  Main Memory
•  Network Memory
•  Hard Drive
•  Tape (nobody uses tape any more)

Registers

•  Fastest piece of memory
•  On the chip
•  1 clock cycle to read of write from a register

•  3 GHz machine --- 0.33 Nanoseconds
•  Pros: extremely fast
•  Cons:

•  Limited space (8 – 16 registers, each 16 bit or
32 bit)

•  Cannot store a lot of information
•  Should use it whenever possible
•  No direct access from a language like C

L1 cache

•  L1 cache geometrically close to the CPU
–  8 KB – 32 KB
–  3-4 clock cycles (1 ns to read/write from L1 cache)
–  You cannot address the cache directly (upto the

hardware, OS to put data into a cache)
–  Cache is associated with cache lines (64 Bytes)
–  You can populate 64 Bytes of data in the cache at a

time
–  Also, you cannot address all locations of a cache

(associativity)
–  Four way associative --- 4 locations in the cache that

can be addressed independently
–  Fully associative --- address all cache locations

L1 cache

•  L1 cache geometrically close to the CPU
–  8 KB – 32 KB
–  3-4 clock cycles (1-2 ns to read/write from L1 cache)
–  Cumulative overhead = 5 clock cycles
–  You cannot address the cache directly (upto the

hardware, OS to put data into a cache)
–  Cache is associated with cache lines (64 Bytes)
–  You can populate 64 Bytes of data in the cache at a

time
–  Also, you cannot address all locations of a cache

(associativity)
–  Four way associative --- 4 locations in the cache that

can be addressed independently
–  Fully associative --- address all cache locations

L2 cache

•  L2 cache geometrically close to the CPU
–  256 KB
–  6 clock cycles (2-3 ns to read/write)
–  Cumulative overhead = 5 clock cycles
–  4-way associative caches

L3 Cache and Main memory

•  L3 cache is shared between cores on the same
chip
–  12 Mbytes
–  10 cycles to access (3-5 ns)
–  Overall cumulative ~ 20 cycles

•  Main Memory
–  SDRAM (Synchronous dynamic random access memory)
–  Characterized by FSB (front side bus)
–  FSB– memory bus whose speed would be 1.3 GHz
–  7-7-7-21 would a specification for Main memory
–  Time to access <row>-<column>-<cleanup> -- total

latency
–  21 FSB clock cycles ~= 60 CPU clock cycles
–  18 ns?

Hard drive

•  Permanent storage
•  Use the harddrive instead of memory

Hard drive

•  Head moves up and down and the disc spins

 Acknowledgments: Wikipedia

Track
Sector

Track sector

Cluster

Hard drive

•  How fast can be read/write to the hard drive
•  7200 rpms --- 7200 revolutions/minute
•  = 120 revolutions/second
•  = 8 ms for one revolution
•  On expectation = 4 ms to read/write from a

sector
•  Compared to L1 cache == 1ns (4 million times

slower)

 Acknowledgments: Wikipedia

Lets put this in perspective

Registers: 0.3 ns

caches: 1- 5 ns

MM: 18 ns

Harddrive: 4 ms

6 orders of
magnitude
difference

There is an intermediary to Harddrive

 Network memory
 How fast is network memory?

How does all of this work?

•  A process asks for memory to read/write/copy
–  Does not really care where the data came from
–  Registers, L1, L2, L3, Main memory, Network memory or

the disk

•  Key question: How do we make this transparent
from the process

15

Virtual vs. Physical Memory

•  Processes don’t access physical
memory
–  Well, not directly

•  Apps use virtual memory
–  Addresses start at 0
–  One level of indirection
–  Address you see is not “real” address

Memory Pages

•  Programs use memory as individual bytes
•  OS manages groups of bytes: pages

–  typically 4kB, 8kB
–  Applies this to virtual and physical memory

•  Physical pages usually called frames

A

Mapping Virtual to Physical

18

Why Virtual Memory?

• Why?
–  Simpler

• Everyone gets illusion
of whole address
space

–  Isolation
• Every process

protected from every
other

–  Optimization
• Reduces space

requirements

Typical Virtual Memory Layout

•  Some things grow
–  Must leave room!

•  Mmap and heap spaces
–  Mmap increases mmap
–  Brk increases heap

•  Other layouts possible

Memory Management Unit

•  Programs issue loads and stores
• What kind of addresses are these?
• MMU Translates virtual to physical

addresses
–  Maintains page table (big hash table):
–  Almost always in HW… Why?

MMU Physical
Address

Virtual
Address Program Memory

Page
Table

Page Tables

•  Table of translations
–  virtual pages -> physical pages

•  One page table per process
•  One page table entry per virtual page
•  How?

–  Programs issue virtual address
–  Find virtual page (how?)
–  Lookup physical page, add offset

Page Table Entries

•  Do all virtual pages -> physical page?
–  Valid and Invalid bits

•  PTEs have lots of other information
–  For instance some pages can only be read

23	

Address Translation

•  Powers of 2:
–  Virtual address space: size 2^m
–  Page size 2^n

•  Page#: High m-n bits of virtual address
•  Lower n bits select offset in page

24	

Paging Hardware

Quick Activity

•  How much mem does a page table need?
–  4kB pages, 32 bit address space
–  page table entry (PTE) uses 4 bytes

•  2^32/2^12*4=2^22 bytes=4MB
–  Is this a problem?
–  Isn’t this per process?
–  What about a 64 bit address space?

•  Any ideas how to fix this?

26

 In-class discussion

